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Minimum-density anomaly and spatial ordering of
softly repulsive particles in a narrow channel

Santi Prestipino,*ab Franz Saija,b Alessandro Sergic and Paolo V. Giaquintaa

We performed an extensive numerical investigation of a system of repulsive Gaussian particles confined in

a thin cylindrical pore. In this setting, the fluid phase can be cooled down to very low temperatures, thus

bypassing the freezing transition. Focusing on the thermal behavior of the average number density, we

find a range of pressures within which, upon cooling, the system density first approaches a maximum

that is then followed by a minimum at lower temperatures. As the width of the pore is reduced, the

density minimum shifts to larger pressures, in line with what happens in the same model in one

dimension. As far as the system structure is concerned, a pronounced layering is observed at the wall;

moreover, when the pore radius is not too small, the relative fraction of solid-like (i.e., well coordinated)

particles increases overall on cooling, in a somewhat larger amount when crossing the region bounded

by the two density extrema. On account of this phenomenology, we surmise that the anomalous

behavior of the system density stems from the smoothening of the density jump occurring at the three-

dimensional freezing point. By analogy, our findings suggest that the essential driving mechanism

leading to the volumetric anomaly exhibited by supercooled water confined in silica nanopores at

ambient pressure is an effective soft repulsion between water molecules at short distances.
I. Introduction

Particle connement at the nanoscale provides a convenient
playground for testing and evaluating the impact of reduced
dimensionality on the structure, thermodynamics, and trans-
port properties of uids and solids. Besides being of funda-
mental interest, the study of low-dimensional systems may also
reveal unexpected emergent behavior that is unknown to three-
dimensional (3D) systems (the extraordinary physics of carbon
sheets and tubes being but one notable example). We focus here
on quasi-one-dimensional connement, and particularly on
(classical) dense uid systems, where particle mobility is still
sufficiently high to permit an overall structural rearrangement
in response to varying thermodynamic conditions. The systems
studied in this context range from hard1–6 and so spheres7,8 to
water (see e.g. ref. 9–17). For spherical particles conned in a
cylindrical pore (nanochannel), both helical and columnar
densest packings have been described, depending on the pore
width.6 Special attention has been paid to the remnants of the
bulk freezing transition; it was found that stable packings with
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long-range orientational order abruptly evolve into disordered
packings as the particle volume fraction is reduced, making it
possible to speak of a phase-transition-like behavior even for
quasi-one-dimensional systems.2,3,8 As for water, freezing-point
depression induced by connement in silica nanopores or
carbon nanotubes has been used to probe the properties of
supercooled water experimentally, down to exceptionally low
temperatures. Neutron scattering experiments9,10,14,16 as well as
molecular-dynamics simulations12,15 have shown that water
molecules, far from being homogeneously distributed inside a
narrow channel, display complex spatial patterns that are
heavily inuenced by the degree of hydrophilicity of the pore
wall. While interfacial molecules are characterized by a low
mobility and a glassy structure, water is more liquid-like near
the pore center, where crystallization of the molecules is frus-
trated by the curvature of the surrounding shells.

Following a line of research that we have been pursuing in
the last few years, we have carried out a Monte Carlo (MC)
simulation of the Gaussian-core model (GCM)18–20 in a hollow
channel of small width. This uid has been already investigated
in one dimension (1D)21 and on the surface of a 3D sphere;22 in
both cases, strict crystallization is ruled out and the uid phase
can be cooled down to virtually zero temperature (on the sphere,
at a low enough temperature the system becomes glassy on the
timescale of the simulation). The same thing would happen in a
cylinder, provided at least that its cross-section is sufficiently
small. More specically, upon gradually reducing the width of
the channel, the uid would undergo a crossover from a 3D-like
This journal is ª The Royal Society of Chemistry 2013
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to a 1D-like behavior, accompanied by the suppression of the
freezing transition. Near the 1D limit, we expect a whole spec-
trum of water-like anomalies:21 in particular, in a certain range
of pressures, the number density should likely exhibit, in
addition to a local maximum, also a point of minimum at lower
temperatures. This behavior is reminiscent of that of super-
cooled water in silica nanopores.9,10,16

Waterlike anomalies have been well described for effective
potentials characterized by two repulsive length scales which
mimic the competition between two distinct local arrangements
of particles, i.e., a loosely-packed (ice-type) and a more compact
(water-type) arrangement. In addition to the density anomaly (i.e.,
system expansion upon isobaric cooling), one typically observes
an increase in the particle diffusivity as well as a decrease in the
structural order (as measured by the two-body entropy) upon
isothermal compression (see e.g. ref. 23–25). In some cases,
including the GCMcase, these anomalies occur as a cascade, with
the (r, T) region of structural anomaly encompassing those of
diffusivity and density.26,27 It is a recent discovery that two
repulsive scales are by no means a necessary requirement for
observing waterlike anomalies with isotropic unbounded poten-
tials,28–30 in that it is sufficient that one length scale becomes
more loosely dened over a range of pressures. Similarly, the
GCM exhibits an anomalous melting with just one single char-
acteristic length s (the other one related to the inner core being,
in a sense, zero). For low values of temperature and pressure, s
sets the scale of the solid lattice structure; upon compression, this
length scale becomes increasingly penetrated until the crystalline
order has been washed out. Hence, either a weakly soened
potential with a single length scale or the GCM itself provide
minimal models for investigating waterlike anomalies.

Choosing an inert cylinder so as to distil the essence of the
phenomenon, we have computed the average number density of
the GCM uid upon cooling, and found a water-like minimum-
density anomaly. Apparently, this feature originates from the
smoothening of the density step occurring at the 3D freezing
point. Accordingly, the density minimum observed in water
would not be a peculiar consequence of the loose hydrogen-
bond network existing in this anomalous liquid, save in the
sense that this network ultimately induces a soening of
the effective repulsion between pairs of molecules. Actually, the
observation of a density minimum for the GCM in 1D, as well as
in 2D on a sphere, suggests an additional explanation, which is
more plausible for the thinnest channels, according to which
the minimum-density anomaly would be a hidden feature of the
supercooled GCM uid that becomes manifest whenever
permitted by the embedding geometry. This explanation is
corroborated by the results of a mean-eld theory for conned
waterlike uids which, while not knowing about the possibility
of freezing transitions, predicts similar trends for the density
maxima and minima, including pressure dependencies.31

The paper is organized as follows. We rst describe the model
and the simulation method in Section II, paying due attention to
the way the systempressure and chemical potential are computed
in a pore geometry. Our results are then presented and discussed
in Section III, devoted to thermodynamic and structural proper-
ties. In particular, Section III.II presents a detailed analysis of the
This journal is ª The Royal Society of Chemistry 2013
radial prole of the number density as a function of temperature,
for xed values of the cylinder radius and of the imposed pres-
sure, as well as some remarks about the typical size and distri-
bution of patches of solid-like particles within the cylinder.
Finally, we state our conclusions in Section IV.
II. Model and method

The uid under investigation is a system ofN particles interacting
via a bounded repulsive isotropic potential of Gaussian shape,
v(r)¼ 3 exp{�r2/s2}, where 3 and s are arbitrary energy and length
units (from now on, the values of all quantities will be given in
these units), respectively. This system provides a model for the
effective pair interaction between polymers in a solution.32 A
distinctive feature of the GCM is reentrant melting, i.e., the
reappearance of the uid phase upon isothermal compression of
the solid below Tm x 0.01.19,20,33 This entails a decreasing solid–
uid coexistence locus, Tm(P), above the pressure PM of the
maximum melting temperature (PM x 0.136 in 3D (ref. 34)). A
decreasing Tm(P) function is also found in water, starting with the
triple-point pressure and all the way up to P z 200 MPa.

In the present study, the particles are conned within a
cylindrical box of radius R and length L, with periodic conditions
along the axial z direction. The value of R was taken in the range
between 1.5 and 10, andN was chosen accordingly in order that L
be at least 5 times larger than R at the relevant densities, so as to
avoid spurious edge effects (N ranged between 300 and 3000). No
quenched molecular structure is assumed for the lateral wall,
which is smooth and hard, i.e., innitely repulsive.

The simulation setup recalls the more customary isothermal–
isobaric ensemble, except for the complication caused by the use
of different updating rules for coordinates parallel and perpen-
dicular to the cylinder axis. This is due to the choice of keeping R
xed while allowing L to uctuate as a result of the imposition of
a constant pressure PL along z (for the reader's convenience, we
have reported in the paper's Appendix the thermodynamic
formalism appropriate to a system of particles enclosed in a
long box of cylindrical shape, with a few remarks on the way
the most important properties of the system are computed in
the simulation). The temperature was reduced in steps DT ¼
0.0005, starting from 0.015 and ending with 0.001 for every PL
(the values chosen for PL were 0.3, 0.4,., 0.9). For R ¼ 2 and 5,
we generated as many as ve million MC sweeps (one sweep
consisting of N + 1 elementary MC moves) during the
production stage of the run at temperature T, whereas an
equal number of sweeps was discarded in order to allow for
system relaxation to equilibrium starting from the last
conguration produced at T + DT. With the only exception of
PL ¼ 0.4, the cumulated statistics was lower for other values of
the radius, but still sufficiently accurate to capture at least the
trends of the various properties as a function of temperature
and pressure. We monitored the average number density n ¼
N/(AhLi) (with A ¼ 4pR2), the average total energy E/N,
the lateral pressure PA (see the Appendix), and a few response
functions that are also quoted in the Appendix. Moreover,
we computed the radial prole n1(r) (rmeasuring the distance
from the axis) of the one-body density function and, for every
Soft Matter, 2013, 9, 9876–9886 | 9877
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Fig. 1 Number density n of the GCM fluid in a cylinder, plotted as a function of the
temperature for PL ¼ 0.4. From top to bottom, R ¼ 2 (N ¼ 300, solid triangles), 3 (N ¼
500, open squares), 4 (N ¼ 500, solid squares), 5 (N ¼ 800, open dots), and 10 (N ¼
3000, solid dots). Data points were vertically shifted in order to make the comparison
easier. The numbers on the right are the absolute density values for T ¼ 0.015; the
vertical scale is the same for all curves, the distance between two large ticks being 0.005.
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thin cylindrical shell, the average percentage of solid-like
particles in that shell (see more below; both these functions
were typically updated every 100 sweeps). Once n1(r) is known,
the average number �N(d) of particles that are found within a
distance d from the axis is simply

�N(d) ¼ 2phLiÐ d0drrn1(r), (2.1)

assuming homogeneity along z, which is correct for hLi [ R.
Obviously, �N(R) ¼ N, which was used to check the exactness of
the calculation.

Now, it is worth spending a few words to explain how, given
the positions of all the system particles, we state a certain
particle i to be solid-like in the given conguration. Classi-
fying the particles as either solid-like or liquid-like is instru-
mental in gaining a better knowledge of the building up of
spatial order on cooling, as well as to locate the crystalline
patches in the pore and the preferential sites for defects. In
order to decide whether the environment of particle i is more
solid-like or liquid-like, we closely follow the by now standard
prescription proposed by ten Wolde and coworkers,35 which
we recall in the following. First of all, the particles that are
neighbors of i are identied: these are the Nb(i) particles j that
are within a certain cutoff distance rc from i, where rc is taken
equal to the abscissa of the rst minimum of the radial
distribution function (a more precise criterion to identify the
neighbors, like e.g. the Voronoi construction, would slow
down the simulation too much). Then, calling r̂ij the unit
vector specifying the orientation of the bond joining i to j, one
denes a local bond-order parameter

qlmðiÞ ¼
1

NbðiÞ
XNbðiÞ

j¼1

Ym
l r̂ij
� �

; (2.2)

Yml being spherical harmonics. In a crystal, at variance with what
occurs in a liquid, the �q6m(i) add up coherently, which is the
reason why these numbers are useful to identify solid-like
particles. Next, for every particle i, a normalized 13-dimensional
complex vector q6(i) is dened with components proportional to
�q6m(i). The dot product

q6ðiÞ$q6ð jÞ ¼
P6

m¼�6

q6mðiÞq6mð jÞ*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP6
m¼�6

jq6mðiÞj2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP6

m¼�6

jq6mð jÞj2
s (2.3)

gives a clue as to how similar the environment of i is to that of j.
If q6(i)$q6( j) exceeds 0.5, then particles i and j are said to be
connected. If the number of particles connected to i is larger
than 7, then particle i is said to be solid-like.

Finally, in order to get an insight into the spatial distribution
of solid-like particles in the cylinder, we compute a function S(r)
(“solidity”) whose formal denition is

SðrÞ ¼ 1

2phLi

*XN
i¼1

Si

r
dðr� riÞ

+
; (2.4)

Si being 1 if particle i is solid-like, and 0 otherwise. In practice,
for any given thin cylindrical shell, we count the average
9878 | Soft Matter, 2013, 9, 9876–9886
number of solid-like particles and eventually divide this
number by the shell volume.

III. Results
I. Thermodynamic properties

In this section, we analyze the behavior of those thermody-
namic variables – above all, the number density and the total
energy – that better elucidate the characteristics of the conned
GCM uid; these properties are then contrasted with those of
the 3D system. Useful indications are expected to come from the
plots of the isobaric specic heat CPL and of the isothermal
compressibility KT, which show anomalous water-like behavior
in both one and three dimensions.

In Fig. 1 we report the average number density n of the
conned system as a function of the temperature for PL¼ 0.4 and
for a number of R values (for later comparison, note that under a
pressure of 0.4 the 3D uid freezes into a less dense bcc crystal at
Tm ¼ 0.00643 (ref. 20)). As R increases, n undergoes a crossover
from a uid-like monotonous to a non-monotonous T depen-
dence resembling a smoothened 3D behavior. The most prom-
inent feature seen in Fig. 1 is obviously the point of minimum
which, at the considered pressure, is present for all radii except
R¼ 2. A similar minimum is observed also in 1D and on a sphere,
as well as in supercooled water conned in silica nanopores. The
3D-GCM feature that most closely resembles the density
minimum is the shallow minimum present in the density of the
bcc solid over the whole pressure range from 0.30 to 0.40 (see
Fig. 2); below P ¼ 0.30 the average bcc density is a decreasing
function of T, while it increases with T above P ¼ 0.40.
This journal is ª The Royal Society of Chemistry 2013
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Fig. 2 Number density n of the GCM fluid in three dimensions, plotted as a
function of the temperature for a number of pressures. Left top panel: P ¼ 0.30;
right top panel: P ¼ 0.35; left bottom panel: P ¼ 0.38; right bottom panel: P ¼
0.40. The liquid branch (black dots) was obtained in a cooling trajectory while the
bcc-solid branch (red squares) is the result of a heating trajectory that is started at
very low temperature from a perfect lattice. Each vertical dotted line marks the
equilibrium freezing temperature for that pressure (as from ref. 20). It can be
noted that when the liquid eventually freezes it hardly gets the right bcc density,
because of residual extended crystal defects in the sample that would take much
more time to be healed than our simulation time.

Fig. 3 Number density n of the GCM fluid in a cylinder of radius R¼ 5, plotted as
a function of the temperature for a number of pressures. From bottom to top, PL¼
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Data points were vertically shifted in order to
facilitate the comparison. The numbers on the right are the density values for T ¼
0.015 (reduced units); the vertical scale is the same for all curves, the distance
between two large ticks being 0.005.

Fig. 4 Number density n of the GCM fluid in a cylinder of radius R¼ 2, plotted as
a function of the temperature for a number of pressures. Same notation as in
Fig. 3, but the distance between two large ticks is now 0.02.
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A second glance at Fig. 1 reveals that the small-R data are
affected by substantial statistical noise, indicating that the
positions of the particles near the wall (i.e., the vast majority for
small R) evolve more slowly than those of the particles near the
axis. Actually, a more serious problem is that the low-tempera-
ture data points are rather sensitive to the system cooling rate:
as we veried in a number of cases, if the cooling rate had been
a factor of, say, 4 larger, then the low-T branch of the density
data would have had a (slightly) different slope, suggesting that
the lowest-T data in Fig. 1 may not be fully trustworthy. This is
evidence of long system relaxation times, especially in very
narrow cylinders. That said, it must be stressed that the
evidence of a density minimum for R > 2 is not being called into
question, and should thus be considered a genuine property of
the conned system.

In Fig. 3 we report the pressure behavior of n(T) for R¼ 5. We
see from this picture that the point of minimum density is not a
permanent feature of the system, i.e., the density minimum only
exists in a limited pressure range. Upon increasing the pressure
for xed R, the minimum is pushed to lower and lower
temperatures until, beyond a certain PL threshold, only the
maximum survives. The behavior of the thermal expansion
coefficient is consistent with the density evolution with pressure
(data not shown). The characteristic pressure range in which a
density minimum exists moves to higher pressures on reducing
the radius (see the case of R ¼ 2 in Fig. 4), which is consistent
with the pressure interval (between 1.2 and 1.5) where a density
minimum is found in 1D.21
This journal is ª The Royal Society of Chemistry 2013
The average energy of the GCM system for R ¼ 5 is plotted as
a function of temperature in the le panel of Fig. 5 for a number
of PL values. For every pressure, the energy shows a monotonic
trend, with an inection point that roughly follows the freezing-
temperature locus of the 3D system. Likewise the density, also
the thermal evolution of the energy is evocative of that of the 3D
energy curves.

The lateral pressure PA, dened in the Appendix, is plotted in
the right panel of Fig. 5 for R ¼ 5. At variance with PL, PA is a
Soft Matter, 2013, 9, 9876–9886 | 9879
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Fig. 5 Specific total energy (left) and lateral pressure (right) of the GCM fluid in a
cylinder of radius R ¼ 5, plotted as a function of the temperature for a number of
pressures. Same notation as in Fig. 3 and 4, but the distance between two large
ticks is 0.02 on the left and 0.2 on the right.

Fig. 6 One-body density function of the GCM fluid in a cylinder of radius R ¼ 5,
plotted as a function of r (the distance from the axis) for PL¼ 0.4 and a number of
temperatures T: 0.001 (black), 0.003 (blue), 0.005 (cyan), 0.007 (green), 0.009
(magenta), 0.011 (red).
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uctuating variable whose average value is only weakly depen-
dent on T; as a result of system anisotropy (see Section III.II), PA
is also substantially smaller than PL. As R increases, the differ-
ence between PL and PA progressively reduces until it becomes
negligible for R [ s.

Let us nally comment on the thermal behavior of CPL and KT
(see their denition in the Appendix) for R ¼ 5 (data not shown).
Overall, the phenomenology is similar to that of the 1D and
spherical-surface cases.21,22 The isobaric specic heat exhibits a
maximum that moves to low temperatures as the pressure
increases; the (PL, T) locus of this maximum runs very close to the
isobaric minimum-expansivity line. Note that also the isobaric
specic heat of water increases upon supercooling; however, in
this case a CP maximum is preempted by the occurrence of ice
nucleation. Even though no experimental data are apparently
available for the specic heat of supercooled water conned in
silica pores, we can easily conjecture the existence of a CP

maximum also for this system at temperatures below the
homogeneous-nucleation threshold (i.e., below x235 K at
ambient pressure36). As for KT, it slightly decreases upon cooling,
at a somewhat larger rate when crossing the T region where a
change of concavity in the energy is observed. By the analogy with
the 1D case, we expect a shallow KT maximum to occur at larger
temperatures than those sampled in our simulations.

We have also attempted to investigate the structural anomaly
in a pore geometry, by rst computing the radial distribution
function in the axial direction only and then extracting the
associated two-body entropy. The noise-to-signal ratio turned
out to be large, even at high temperature (T ¼ 0.015); however,
we easily recognize in this case the same trend as found in the
3D GCM,27 with a nice �s2 maximum falling in the same pres-
sure range where a density minimum is observed (which then
shis to higher pressures as R becomes smaller).
9880 | Soft Matter, 2013, 9, 9876–9886
II. Structural properties

The rst and most relevant effect of particle connement in a
narrow cylinder is a highly inhomogeneous density prole at low
temperatures, caused by the impossibility of reconciling the
natural system tendency to order as a crystal with the imposed
geometric constraints. This is demonstrated for R ¼ 5 in Fig. 6,
showing the radial prole of the one-body density function n1(r)
for PL ¼ 0.4 and for a number of temperatures. Far from being
randomly dispersed in the cylinder, the Gaussian particles are
distributed in curved shells or layers around the axis (four shells
for the case represented in Fig. 6), whose statistical denition
becomes increasingly pronounced as the temperature is reduced.
We see practically no particles located on the cylinder axis, the
radius of the innermost shell being close to s for the given R and
PL. For all temperatures, the sharpest shell is the outermost one,
comprising particles that are in contact with the wall. Away from
the wall the width of the shells is larger, indicating that inner
particles move more freely than interfacial particles. Anyway, a
loosely-dened shell radius might also be the consequence of
thermal disorder superposed on a particle array of cubic
symmetry with one axis parallel to z. It remains to see whether a
sharpening of the radial denition of the shells is also accom-
panied by solidication, as one would guess. Since crystalline
order can only be local in a cylinder, the meaning of the term
“solid” here is the same as recalled in Section II, where we tagged
those particles having a high number of neighbors with a local
environment similar to that of the reference particle as solid-like.

For the same states whose one-body density is plotted in Fig. 6,
the function S(r) is reported in Fig. 7. We see that solidication
develops gradually on cooling, propagating from the cylinder wall
This journal is ª The Royal Society of Chemistry 2013
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Fig. 7 GCM fluid in a cylinder of radius R¼ 5: percentage of solid-like particles as
a function of r for PL ¼ 0.4 and the same T values as considered in Fig. 6.

Fig. 8 GCM fluid in a cylinder of radius R¼ 5: percentage of solid-like particles as
a function of r for PL ¼ 0.8 and the same T values as considered in Fig. 6.

Fig. 9 A snapshot of the GCM fluid in a cylinder of radius R ¼ 5, for PL ¼ 0.4 and
T ¼ 0.005: solid-like particles (red) and fluid-like particles (cyan). Only part of the
system is shown in the picture.
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to the center, and that almost all the particles in the outer shells
are solid-like at the lowest temperatures. This happens even in
spite of the reduced coordination of the particles at the wall,
which give rise to a curved triangular layer that is admittedly well
matched with the bcc-like structure of particles in the inner
shells. Curiously, the more badly coordinated particles are those
lying near the axis, where the highest number of mobile particles
is found. By further looking at Fig. 7, we note that the number of
solid-like particles in the cylinder does not grow evenly on cool-
ing. In fact, upon moving from 0.009 to 0.007, the solid fraction
undergoes a major increase which, rather interestingly, occurs in
the same temperature region where the average system density
drops from the maximum to the minimum value. Another
example is shown in Fig. 8, which refers to PL ¼ 0.8. Here the
number of shells is ve, due to a higher system density; again,
most of the solidication occurs between T ¼ 0.007 and T ¼
0.005, where the density loop is located. However, at variance with
the lower-pressure case discussed above, particles near the wall
remain uid-like down to the lowest temperatures.

All the evidence collected so far leads us to conclude that the
density minimum of the cylindrically-conned GCM uid is the
outcome of the smoothening of the 3D-freezing density step.
Therefore, a sufficient condition for observing this anomaly
under tube connement would be a bulk 3D system with two
properties: (i) at coexistence, the liquid should be sufficiently
more dense than the solid (which requires a decreasing Tm(P)
function with a large enough |dTm/dP|); (ii) at very low
temperatures, the solid density should be a decreasing function
of T over a range of pressures. It goes without saying that both
conditions (i) and (ii) are fullled for ambient-pressure water,
and the same two properties are probably generic among
systems with so pair repulsions. However, this is only part of
the truth, since a minimum-density anomaly is also present in
1D. Hence, a hidden tendency to develop a density minimum is
probably encoded in the Gaussian potential, as also evidenced
This journal is ª The Royal Society of Chemistry 2013
by the existence of a minimum in the average solid density of
both 2D (ref. 21) and 3D systems (this paper).

When looking at the narrower R ¼ 2 cylinder, no analogous
solidication with cooling is found, whatever the pressure.
However, this just occurs because our notion of solid-like
particle becomes inadequate when the cylinder is too thin. The
origin of the density minimum for R¼ 2 should have more to do
with the similarity of this system with the 1D case.

A nal issue is the triangular order exhibited by interfacial
particles at low temperatures, which shows remarkable simi-
larities with the structure of gold nanowires39–41 and of microgel
spheres inside glass capillaries.8 Shown in Fig. 9 is a slice of a
typical system conguration for R ¼ 5, PL ¼ 0.4, and T ¼ 0.005,
where solid-like (uid-like) particles have been highlighted in
Soft Matter, 2013, 9, 9876–9886 | 9881
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Fig. 10 For the same configuration represented in Fig. 9, we report here a planar
projection of the particles in the interfacial layer, obtained as described in the text.
Solid-like particles (red) are distinguished from fluid-like particles (cyan). We also
show in white the periodic images of the particles along all directions. The blue
straight lines are guides to the eye, showing strands of particles along the crys-
tallographic axis that is closer to the horizontal direction. The small non-zero slope
of these lines is the evidence that the triangular array is tilted with respect to z,
hence it is chiral.

Fig. 11 A snapshot of the GCM fluid in a cylinder of radius R ¼ 1.5, for PL ¼ 0.5
and T ¼ 0.005. For this radius, there are only two shells of particles, the interfacial
one and a chain running along the axis. The figure shows (only a slice of) the
planar projection of the particles in the interfacial layer (green). For the sake of
clarity, the system (central stripe) has been repeated periodically to the left and to
the right.
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red (cyan). A planar projection of the positions of the interfacial
particles alone is shown in Fig. 10. This picture was constructed
by rst selecting out the wall particles and subsequently
unfolding the cylinder onto a plane. The result is a manifestly
triangular arrangement which owes its origin to the necessity of
lling the interfacial layer with spheres in the most efficient
way. However, owing to the requirement of a good matching
with the inner particles, the triangular array is slightly tilted
with respect to the vertical axis, similarly to the particle
arrangements which are seen in gold nanowires freely sus-
pended in a vacuum. However, chiral interfacial arrays are not
the rule. In other conditions of radius, pressure, and tempera-
ture, more symmetric arrangements that are dual of armchair
and zigzag carbon nanotubes are observed, as shown by the
example illustrated in Fig. 11, which is relative to N ¼ 500, R ¼
1.5, PL ¼ 0.5, and T ¼ 0.005. It is evident from this picture that
the triangular patches have a nite length, and are separated
from other triangular patches of different orientation by a stripe
of defects with the interfacial coordination number different
from six. In the attempt to rationalize this behavior, we
considered a hollow cylinder that is so thin to host only an
interfacial layer and a monoatomic chain on the central axis.
We reviewed arrangements of any type (see ref. 41) and particle
periodicity in the chain, and for each of them we computed the
T ¼ 0 chemical potential so as to eventually lter out the most
stable structure for the given pressure (following a procedure
similar to the one described in ref. 42). Upon increasing the
pressure, we typically observe a full sequence of zero-tempera-
ture phase transitions between structures that are occasionally
chiral, along with a dense crowd of other (metastable) struc-
tures that are nearly optimal, hence potentially relevant at low
temperature. The lack of a net preference for a specic structure
9882 | Soft Matter, 2013, 9, 9876–9886
is the apparent reason for the nite size of triangular patches in
a small-R system at low temperature. In other words, the nite
size of these patches reects the frustration characterizing the
system in its search for packing optimization on cooling. This
effect would be less important for R ¼ 5, which is more bulk-
dominated than R ¼ 2, and this justies why the properties of
this system are less hampered by statistical noise.
IV. Conclusions

In this paper, we present a numerical study of the thermody-
namic and structural properties of a uid of Gaussian particles
in a long and narrow cylinder, which is meant to be a minimally
This journal is ª The Royal Society of Chemistry 2013
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representative model for water molecules inside silica nano-
pores. The dimensionality of this conned uid is intermediate
between one and three dimensions. Hence, the model provides
an interesting example of a geometrically-frustrated uid
which, while being unable to crystallize on cooling, can be
supercooled to a large extent before becoming a glass, at least
on the time scale of the simulation.

As is well known, the GCM uid exhibits many water-like
anomalies in three dimensions, including a density maximum at
a temperature close to freezing (see e.g. ref. 43). In addition to this
maximum, the cylindrically-conned system also exhibits a
density minimum at lower temperatures, which however is only
observed in a limited pressure interval that is shied upwards
when reducing the cylinder radius. For pressures higher than this
interval, the minimum disappears and only the maximum
survives, precisely as observed in the same model uid in other
conning geometries like a 1D torus or the surface of a sphere. In
fact, the minimum-density anomaly is even more general since it
is also observed in the solid phase of planar and 3D GCM
systems. All this evidence suggests that the volumetric anomaly of
GCM particles in a cylinder has a two-fold explanation: on one
side, the density minimum would simply be the consequence of
the smoothening of the density step occurring at 3D freezing; on
the other hand, this anomaly is undoubtedly specic of the
Gaussian potential, i.e., of its bounded so-core characteristic,
since a density minimum is also found in the 1D space. By
analogy, our ndings suggest that the density minimum of
nanoconned water would have essentially the same mixed
origin, and the behavior would be similar in all systems that are
characterized by an effective interparticle so repulsion.

We also looked at the uneven distribution of GCM particles
inside the tube. The particles were found to be organized in
layers, wrapped around the cylinder axis, which upon cooling
become “solid” at different temperatures, starting from the
outermost layer. We also noted that the amount of solidied
matter in a not-too-narrow tube undergoes an enhancement in
the temperature region of the density loop, consistently with the
view that this loop is the remnant of the density jump at 3D
freezing. As for the particles wetting the wall, they give rise to an
extended triangular layer at low temperatures. Similarly as in
gold nanowires, chiral arrangements are occasionally observed
in the interfacial layer while, in other cases, arrangements of
higher symmetry are found. Using zero-temperature total-
energy calculations, we provide the criterion behind the selec-
tion of the surface structure in thin tubes as well as the likely
reason for the nite length of the triangular surface patches at
low temperature.
Appendix
Thermodynamics and statistical mechanics of the conned
system

In this appendix we adapt the framework developed in ref. 37
and 38 to the derivation of useful formulae for the statistical
properties of a system of particles enclosed in a cylinder.

The entropy of a macroscopic system conned in a cylinder
of xed radius R and length L [ R obeys the scaling relation
This journal is ª The Royal Society of Chemistry 2013
S(lE, lL, A, lN) ¼ lS(E, L, A, N), (A.1)

E being the internal energy and A¼ 4pR2 the cross-section area.
From the above equation it readily follows that

SðE; L; A; NÞ ¼ 1

T
E þ PLA

T
L� m

T
N; (A.2)

where

1

T
¼ vS

vE

����
L;A;N

;
PLA

T
¼ vS

vL

����
E;A;N

; and
m

T
¼ �vS

vN

����
E;A;L

: (A.3)

On the other hand, if we call PAL/T the variable conjugate to
A, the rst law of thermodynamics prescribes that

dS ¼ 1

T
dE þ PLA

T
dLþ PAL

T
dA� m

T
dN (A.4)

with generally distinct PA and PL values, both approaching the
bulk pressure when R is large. A comparison of eqn (A.4) with
eqn (A.2) yields the Gibbs–Duhem relation:

Ed
1

T
þ Ld

PLA

T
� PAL

T
dA�Nd

m

T
¼ 0: (A.5)

The Massieu function derived from S aer substituting E
with 1/T and L with PLA/T is then

S

�
1

T
;
PLA

T

�
¼ S � 1

T
E � PLA

T
Lh ~S; (A.6)

which is meant to be a function of 1/T, PLA/T, A, N through the
rst two eqn (A.3). Its differential is:

d ~S ¼ �Ed
1

T
� Ld

PLA

T
þ PAL

T
dA� m

T
dN: (A.7)

In particular, the following relation holds:

PAL

T
¼ v ~S

vA

����
1=T ;PLA=T ;N

; (A.8)

which turns out to be useful for calculating PA in a simulation.
We decided to work with xed values of T, PL, A, and N, cor-

responding to an ensemble with mixed canonical and
isothermal–isobaric features. The pertinent partition function is

D ¼ 1

L0

ð ​þN

0

dL expf�bPLALg 1

N!L3N

ð
ðLAÞN

d3Nx exp
�� bU

�
xN

�	
;

(A.9)

where L0 is an arbitrary length, b ¼ (kBT)
�1, L is the thermal

wavelength, and U is the potential energy (the rightmost inte-
gral in eqn (A.9) is performed over the cylinder for every
particle). The fundamental prescription to derive thermody-
namics from statistical mechanics is:

~S(1/T, PLA/T, A, N) ¼ kB ln D, (A.10)

hence the values of PA and hLi are in terms of the system
Hamiltonian. While the calculation of hLi in the simulation is
obvious, a virial-like formula applies for PA that is derived below.
Assume x¼ (r, f, z) to be the cylindrical coordinates of a generic
particle, and let scaled (primed) coordinates be introduced in
Soft Matter, 2013, 9, 9876–9886 | 9883
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order to eliminate L and A from the integration boundary in
eqn (A.9). Their denitions are r ¼ Rr0, f ¼ f0, z ¼ Lz0, with
R ¼ ffiffiffiffiffiffiffiffiffi

A=p
p

. Hence, d3x ¼ rdrdfdz ¼ (LA/p)d3x0 with d3x0 ¼
r0dr0df0dz0, yielding:

D ¼ 1

L0

AN

N!L3NpN

ðþN

0

dLLN expf�bPLALg

�
ð
ð2pÞN

d3Nx0 exp



� bÛ

�
x0N��; (A.11)

where the last integral is over the 3D interval [0, 1] � [0, 2p] �
[0, 1] for every x0 and

Û
�
x0N� ¼ X

i\j

u

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

�
x0
ij
2 þ y0ij2

�þ L2z0ij2
q 


(A.12)

with x 0
ij ¼ r

0
i cos f

0
i � r

0
j cos f

0
j , y

0
ij ¼ r

0
i sin f

0
i � r

0
j sin f

0
j , and

z 0
ij ¼ z 0

i � z 0
j . In particular, we observe that

vÛ

vR
¼ 1

R

X
i\j

u0
�
rij
� xij

2 þ yij
2

rij
and

vÛ

vL
¼ 1

L

X
i\j

u0
�
rij
� zij2
rij

;

(A.13)

where the results have been expressed in terms of the original
Cartesian coordinates. Upon inserting eqn (A.10) into the
second of eqn (A.8), we nally get:

bPA ¼ N

AhLi þ
b

AhLi

*
� 1

2

X
i\j

u0
�
rij
� xij

2 þ yij
2

rij

+
; (A.14)

h/i being an average over the (b, bPLA, A, N) ensemble. Eqn
(A.14) is clearly reduced to the usual virial formula when both R
and L are large.

We now derive a Widom-like formula for the chemical
potential m. It follows from the very denition of m that

bm ¼ �v ln D

vN

����
b;bPLA;A

x� ln
DNþ1

DN

; (A.15)

where the second step applies for large values of N. The
potential energy of a system of N + 1 particles can be written as
the sum of the interaction energy of the rst N particles plus a
residual term DU involving the interaction of the (N + 1)-th
particle with the others. Upon plugging eqn (A.9) in eqn (A.15),
we readily obtain:
bm ¼ �ln
1

ðN þ 1ÞL3

ð
dL expf�bPLALg

ð
ðALÞN

d3Nx expf�bUNg
ð
AL

d3xNþ1 expf�bDUgð
dL expf�bPLALg

ð
ðALÞN

d3Nx expf�bUNg

0
BB@

1
CCA; (A.16)
which can be reshuffled as

bm ¼ ln
�
bPLL

3
�� ln

�
bPL

�
AL

N þ 1
� 1

AL

ð
AL

d3xNþ1 expf�bDUg
��

;

(A.17)

the last average being taken over the N-particle system, i.e., over
the Boltzmann distribution of the (b, bPLA, A, N) ensemble. The
9884 | Soft Matter, 2013, 9, 9876–9886
two terms in eqn (A.17) are identied with the ideal and excess
contributions, respectively, by just noticing that the rst term
follows through eqn (A.15) from the exact ideal partition
function,

Did ¼ 1

L0

ðþN

0

dL expf�bPLALg ðALÞ
N

N!L3N
¼ 1�

bPLL
3
�N 1

bPLAL0

:

(A.18)

Let us now explain how the Boltzmann distribution of the (b,
bPLA, A, N) ensemble is sampled in a MC simulation. A generic
ensemble average reads

hO i ¼

ð
dL LN expf�bPLALg

ð
pN

d3Nx0
Ô
�
x0N�exp
� bÛ

�
x0N��

ð
dL LNexpf�bPLALg

ð
pN

d3Nx0 exp



� bÛ

�
x0N��

h
D
Ô
E
p

(A.19)

with

p(x0N) f exp{�b[Û(x0N) + PLAL � kBTN ln L]}. (A.20)

The p distribution can be sampled by means of a Metropolis
algorithm with trial moves of two types: (i) a small displacement
of a randomly chosen particle, and (ii) a random updating of the
tube length L. In case (i), the ratio between the p values aer and
before the move is simply

pfin

pin

¼ expf�bdUg; (A.21)

dU being the difference between the nal and initial values of
the interaction energy pertaining to the selected particle. In case
(ii), the scaled coordinates of the particles are kept xed while
the box length is incremented by dL (therefore, only the absolute
z coordinates are affected by the move). The p ratio is now:

pfin

pin

¼ exp



� b

�
dU þ PLADL�NkBT ln

Lþ dL

L


�
: (A.22)

In both cases, the acceptance probability of the move is min{1,
pn/pin}. The maximum amplitude of the particle displacement
in a type-(i) move and of dL in a type-(ii) move were adjusted
during the equilibration stage of the run so as to ensure a fraction
of acceptedmoves close to 50%. Thesemaximum amplitudes are
kept xed instead during the production stage. In a single MC
cycle or sweep, only one move on average is a type-(ii) move.

Finally, we quote the formulae for the main response func-
tions (i.e., isobaric specic heat, isothermal compressibility,
and isobaric expansion coefficient) in the (b, bPLA, A, N)
ensemble:
This journal is ª The Royal Society of Chemistry 2013
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CPL
¼ T

vS

vT

����
PL

¼ 3

2
kB þ 1

NðkBTÞ2
�
hH2i � hHi2

�
with H ¼ 3

2
NkBT þU þ PLAL;

KT ¼ �1

L

vL

vPL

����
T

¼ A

kBTL

��
L2

�� hLi2
�
;

aPL
¼ 1

L

vL

vT

����
PL

¼ 1

LkBT2

�
hELi � hEihLi

�
with E ¼ 3

2
NkBT þU :

(A.23)
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The derivation of these formulae is straightforward, even
though rather lengthy. Considering, for example, the case of the
isobaric specic heat, one rst observes that

vS

vT

����
PL

¼ � 1

T2

vS

vð1=TÞ �
PLA

T2

vS

vðPLA=TÞ (A.24)

and

Sð1=T ; PLA=T ; A; NÞ ¼ ~S � 1

T

v ~S

vð1=TÞ �
PLA

T

v ~S

vðPLA=TÞ :

(A.25)

Putting eqn (A.24) and (A.25) together, we nd:

CPL
¼ 1

T2

v2 ~S

vð1=TÞ2 þ
2PLA

T2

v2 ~S

vð1=TÞvðPLA=TÞ

þ ðPLAÞ2
T2

v2 ~S

vðPLA=TÞ2 : (A.26)

Other useful relations are

kB
v2 ~S

vð1=TÞ2 ¼
�
H2

�� hHi2;

kB
v2 ~S

vð1=TÞvðPLA=TÞ ¼ hHLi � hHihLi;

kB
v2 ~S

vðPLA=TÞ2 ¼
�
L2

�� hLi2;

(A.27)

with H ¼ K + U + PLAL (K is the kinetic energy and H a sort of
enthalpy), which follow from eqn (A.9) and (A.10). Upon
inserting eqn (A.27) into eqn (A.26), the rst equation of eqn
(A.23) eventually follows.
Acknowledgements

A. S. is grateful to the National Research Foundation of South
Africa for funding his sabbatical stay at the Dipartimento di
Fisica e di Scienze della Terra of the University of Messina.
References

1 R. O. Erikson, Science, 1973, 181, 705.
2 M. C. Gordillo, B. Mart́ınez-Haya and J. M. Romero-Enrique,
J. Chem. Phys., 2006, 125, 144702.

3 F. J. Durán-Olivencia and M. C. Gordillo, Phys. Rev. E: Stat.,
Nonlinear, So Matter Phys., 2009, 79, 061111.

4 H. C. Huang, S. K. Kwak and J. K. Singh, J. Chem. Phys., 2009,
130, 164511.
This journal is ª The Royal Society of Chemistry 2013
5 H.-K. Chan, Phys. Rev. E: Stat., Nonlinear, So Matter Phys.,
2011, 84, 050302(R).

6 A. Mughal, H. K. Chan, D. Weaire and S. Hutzler, Phys.
Rev. E: Stat., Nonlinear, So Matter Phys., 2012, 85,
051305.

7 M. W. Maddox and K. E. Gubbins, J. Chem. Phys., 1997, 107,
9659.

8 M. A. Lohr, A. M. Alsayed, B. G. Chen, Z. Zhang, R. D. Kamien
and A. G. Yodh, Phys. Rev. E: Stat., Nonlinear, So Matter
Phys., 2010, 81, 040401(R).

9 D. Liu, Y. Zhang, C.-C. Chen, C.-Y. Mou, P. H. Poole and
S.-H. Chen, Proc. Natl. Acad. Sci. U. S. A., 2007, 104,
9570.

10 F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.-Y. Mou
and S.-H. Chen, Proc. Natl. Acad. Sci. U. S. A., 2007, 104,
18387.

11 R. Mancinelli, F. Bruni and M. A. Ricci, J. Phys. Chem. Lett.,
2010, 1, 1277.

12 E. B. Moore, E. de la Llave, K. Welke, D. A. Scherlis and
V. Molinero, Phys. Chem. Chem. Phys., 2010, 12, 4124.

13 A. A. Milischuk and B. M. Ladanyi, J. Chem. Phys., 2011, 135,
174709.

14 A. K. Soper, J. Phys.: Condens. Matter, 2012, 24, 064107.
15 D. T. Limmer and D. Chandler, J. Chem. Phys., 2012, 137,

044509.
16 M. Erko, D. Wallacher, A. Hoell, T. Hauss, I. Zizak and

O. Paris, Phys. Chem. Chem. Phys., 2012, 14, 3852.
17 F. G. Alabarse, J. Haines, O. Cambon, C. Levelut,

D. Bourgogne, A. Haidoux, D. Granier and B. Coasne, Phys.
Rev. Lett., 2012, 109, 035701.

18 F. H. Stillinger, J. Chem. Phys., 1976, 65, 3968.
19 A. Lang, C. N. Likos, M. Watzlawek and H. Löwen, J. Phys.:
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