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We investigated the volumetric anomaly of a two-dimensional system of particles embedded in the

surface of an inert sphere. The interaction between particles was modeled with a purely repulsive

Gaussian potential. The phase diagram of the model exhibits one single fluid phase since the absence of

an attractive term in the potential rules out a liquid–vapour phase transition while the curved geometry

inhibits the formation of a long-range-ordered crystalline arrangement. Nonetheless, we found that the

thermodynamic behavior of the model is, in some aspects, qualitatively reminiscent of that observed in

a much more complex liquid such as supercooled water confined in cylindrical silica nanopores. In fact,

upon cooling the fluid isobarically, the number density exhibits – over a range of moderately low

pressures – a two-fold anomaly: a maximum followed, at lower temperatures, by a shallow minimum.

Interestingly, a minimum also shows up in the density of the two-dimensional triangular solid which,

for similar values of pressure and temperature, is the stable phase in a flat space. The two loci, traced by

the thermodynamic parameters for which the density attains its minimum value in the fluid and in the

solid phase, run very close to each other, a behavior which suggests that the emergence of the density

minimum is not affected by the nature of the stable host phase but is more basically rooted in the

properties of the interatomic potential.

I. Introduction

The list of ‘‘anomalous’’ properties of water currently includes up

to sixty-eight entries.1 Among these, the most famous one

certainly is the negative thermal expansivity that is manifested by

water on approaching the freezing point, over a temperature

range whose upper boundary corresponds to the temperature of

maximum density (TMD). The observation of this behavior at

ambient pressure dates back to the very origins of modern

experimental science.2 One might then wonder whether, upon

cautiously cooling water so as to avoid it to congeal, this

substance should eventually re-enter, even though as a meta-

stable liquid, a ‘‘normal’’ volumetric regime characterized by a

positive thermal expansivity. The corresponding threshold would

then coincide with a minimum of the density as a function of

temperature.

To the best of our knowledge, the first, though problematic,

indication of the existence of such a minimum in metastable bulk

waterwas given a century ago byP.W.Bridgman.3His pioneering

investigations of the effects of pressure on the temperature

dependence of the molar volume showed that a density minimum

should actually be expected on physical grounds, even though its

observation at a given pressure might be effectively impeded by

the supervening termination of the accessible metastable region.

In more recent years, Angell and coworkers, while discussing the

properties of water in relation with other tetrahedral liquids,4 also

argued that the overall volumetric behavior of such systems does,

of necessity, imply the existence of a density minimum, but also

emphasized that observing it in a laboratory experiment may be a

rather difficult task.

The first theoretical confirmations of the plausibility of the

thermodynamic scenario originally envisaged by Bridgman

eventually came from an accurate molecular theory which

accounts in a simple way for the effects of geometric constraints

on hydrogen bonding.5 This theory predicts that the density

minimum is present in the deeply supercooled bulk liquid and

moves to higher temperatures upon confinement between two

parallel hydrophobic walls.6 Unambiguous evidence of a density

minimum later emerged from numerical simulation studies of

various rigid-molecule potential models of bulk liquid water7–9 as

well as, more recently, from an efficient Monte Carlo simulation

of a coarse-grained model of a water monolayer within hydro-

phobic walls.10 In this latter study the anomaly has been asso-

ciated with the rearrangement of the hydrogen-bond network in

the low-temperature sub-diffusive regime.

On the experimental side, the first indication of a density

minimum in deeply supercooled water was obtained in water

confined, at normal pressure, within silica nanopores.11,12 The

estimated temperature of minimum density (TmD) was about

210 K. However, there is no general consensus so far on whether
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the observed feature can be considered a property of the ‘‘bulk’’,

albeit metastable, liquid or, rather, an effect produced by the

confinement of water on a nanometer scale.

Based on the above evidence, a view has developed that the

density minimum may actually be a genuine property of super-

cooled water which, as yet, has not been observed at ambient

pressure just because its emergence is preempted by the vanishing

of the ice-nucleation barrier at about 230 K. A different expla-

nation is apparently suggested by the data of Erko and coworkers

for nanoconfined water;13 in fact, these authors observed the

rough merging, on cooling, of the confined-system and bulk-solid

density branches for temperatures lower than TmD. This behav-

iour suggests that water in the nanopore core has, to all proba-

bilities, transformed into ice. Since solidification iswashedout as a

sharp transition, nanoconfinement would effectively manage to

bridge the gap between the liquid and solid density branches, thus

giving rise to a densityminimum.Wefinally recall that, aside from

water, the minimum-density anomaly has been observed in

tellurium,14 also mixed with sulphur.15

While awaiting the experimental confirmation of the existence

of the density minimum in water at higher than ambient pres-

sures, one may try to learn something more from simplified

models that still retain the gist of the water system. In this

respect, the minimum-density anomaly has been detected even in

rather archetypal one-dimensional (1D) model fluids.16,17 Indeed,

it is well known that particles interacting through isotropic core-

softened potentials display many water-like anomalies, including

a density maximum in the fluid phase.18,19 The simplest system of

this kind is probably the Gaussian-core model (GCM),20–22 in

which the bounded interparticle repulsion has a Gaussian shape.

However, as yet no minimum-density anomaly has been

observed in the fluid phase of the GCM, neither in three nor in

two dimensions.23 Somewhat surprisingly, this feature was found

instead in one dimension,24where no fluid–solid transition occurs

in a strict thermodynamic sense. On this basis, one might spec-

ulate that the density minimum appears whenever the hosting

space is such that the solid is suppressed as a proper thermody-

namic phase. In order to verify this guess, we simulated the

behavior of the GCM system on a sphere. Spherical boundary

conditions (SBC) do actually prevent an extended and defect-free

triangular network of bonds from being established, this way

pushing the stability range of the fluid phase to virtually zero

temperature. In such a setting, the melting transition of the

planar GCM reduces to a crossover phenomenon. The trick of

curving space so as to induce the frustration of crystalline order

has also been used as a means to tune the slowing down of the

relaxation processes associated with glass formation.25

Simulating Gaussian repulsive particles embedded in a

spherical surface, far from being only an interesting conceptual

exercise, may actually provide useful information on the

behavior of real molecular substances under locally inhomoge-

neous conditions such as those that are typically found in the first

hydration shell of a globular protein. It is not unreasonable to

imagine that, using a suitable local probe, one might succeed in

disentangling the properties of solvation water from those per-

taining to the hydrated protein.26 Alternatively, it should be

possible to measure, within an atomistic simulation of one single

protein immersed in a water bath maintained at constant pres-

sure, the density of solvated water, thus allowing the

thermodynamic behavior investigated here to be checked in a

more realistic system. In this regard, we recall that protein

hydration water is known to exhibit, similarly to bulk water, a

dynamic fragile-to-strong glass crossover at low tempera-

tures;27,28 hence, it may reasonably be expected that other bulk-

water anomalies are shared by solvation water.

The outline of this paper is as follows. In Section II we illustrate

the model and the simulation method. The results are then pre-

sented in Section III, together with a discussion of their potential

relevance for an understanding of the minimum-density anomaly

in water. Some concluding remarks are finally given in Section IV.

II. Model and method

We investigated a classical system of particles interacting through

the repulsive potential u(r) ¼ 3 exp("r2/s2), where r is the inter-

particle distance while 3 and s are the energy and length scaling

constants, respectively. In a flat 2D space the GCM system

exhibits, below a maximum melting temperature, a reentrant

melting transition, i.e., the melting of the solid upon isothermal

compression. As a result, the fluid phase is thermodynamically

stable at low and high pressures. The reentrant melting transition

turns out to be continuous and occurs in two stages, through an

intermediate hexatic phase.23 When particles are located on a

sphere, the melting transition gets blurred and ceases to be a

thermodynamic singularity, turning into a crossover phenom-

enon.29,30 Note that in a spherical geometry the distance r corre-

sponds to the length of the shortest arc joining two particles: r¼R

arccos(R1$R2/R
2), where R1 and R2 are the vector radii of the

particles and R is the sphere radius.

We simulated the GCM system in the isothermal–isobaric

ensemble, using the Metropolis Monte Carlo (MC) method with

SBC. For selected values of the pressure Pwe ran, starting from a

state at relatively high temperature, a sequence of MC simula-

tions, advancing with steps DT* ¼ "0.0005, where T* ¼ kBT/3 is

the reduced temperature. Correspondingly, the reduced density

and pressure are defined as r* ¼ rs2 and P* ¼ Ps2/3.

At each state point the system was equilibrated for a long time

(one to two million sweeps, one sweep corresponding to N trial

MC moves), before generating an equilibrium trajectory of,

typically, two million sweeps. We investigated systems with sizes

N ¼ 200 and N ¼ 500, since spherical boundary conditions

introduce a stronger N dependence of thermodynamic and

structural properties than in the flat space under periodic

boundary conditions.

Besides the particle number density r and the average energy

per particle E/N, we computed the specific heat at constant

pressure, CP ¼ T(vs/vT)P, where s is the entropy per particle, the

isothermal compressibility, KT ¼ "v"1(vv/vP)T, where n ¼ r"1 is

the average volume per particle, and the thermal expansion

coefficient, aP ¼ v"1(vv/vT)P. We also calculated the orienta-

tional correlation function (OCF) h6(r), whose definition is the

same as given in ref. 29, namely

h6(r) ¼ hcos{6[q(R1) " q(R2)]}i, (1)

where r is the spherical distance between the particles whose

positions are defined by R1 and R2, and q(R1) is the angle,

measured on the plane tangent to the sphere at R1, between the
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arc joining the particle at R1 with a nearest neighbor (chosen at

random among those identified through the Voronoi construc-

tion) and the direction pointing from R1 to R2.

III. Simulation results

The curvature of the sphere imposes an excess of five-fold over

seven-fold coordinated particles,30 thus preventing the formation

of extended crystallites. As a result, the system is in a disordered

phase at any density and down to very low temperatures. We

note, however, that the lower the temperature the more difficult

is simulating the system at equilibrium, since it becomes even-

tually trapped in a local energy minimum, with the result that the

relaxation to equilibrium does not occur in a reasonable simu-

lation time. A typical snapshot of the system with 500 particles at

low temperature and moderate pressure is reported in Fig. 1. We

see a pervasive triangular particle network that is punctuated

with chain-like defects most of which are 5-7-5 trimers.

Following the procedure described in the previous section, we

investigated the phase behavior of the GCMfluid on a sphere in a

range of moderate to large reduced pressures (0.3–2.0) and for

reduced temperatures lower than 0.03. As expected, neither the

number density nor the energy exhibits any (even rounded-off)

jump discontinuity in the explored domain. However, while the

energy is a smooth increasing function of the temperature for all

pressures, the density shows a more complex behavior. In Fig. 2

we plotted the number density as a function of the temperature

for various pressures. We clearly see the emergence of both a

minimum and a maximum in a narrow pressure range (0.35( P*

( 0.45, for N ¼ 500); for larger pressures, only the maximum

survives. A magnification of this behavior is presented in Fig. 3

for three values of the pressure and for both explored sizes. While

a maximum in the density of the GCM fluid had already been

observed in three31 as well as in two dimensions,23 the emergence

of a shallow minimum in the density of a 2D system is, to our

knowledge, a novel finding.

One might legitimately wonder whether the data points rela-

tive to the lowest temperatures presented in Fig. 3 are the

outcome of well-equilibrated sampling runs or are possibly

flawed, thus reflecting a glassy non-ergodic behaviour. Indeed,

upon deeply cooling the system at constant pressure, it will

eventually enter a dynamic regime characterized by longer and

longer equilibration times. One way to settle the controversy

would be to follow the particles in their motions throughout the

surface, in order to check whether equilibration at a given

temperature has actually been achieved or not. Indeed, two

possibilities may occur: either the particles get trapped inside self-

imposed cages at all times or they keep on diffusing freely on the

Fig. 1 A snapshot of the system taken for P* ¼ 0.38 and T* ¼ 0.005.

Particles are represented as circles whose diameter has been arbitrarily set

equal to s. Open circles: sixfold coordinated particles (front side of the

spherical surface); triangles: fivefold coordinated particles; squares:

sevenfold coordinated particles; solid black symbols: particles located on

the back side of the spherical surface.

Fig. 2 Reduced number density plotted as a function of the reduced

temperature for increasing pressures in the range 0.30 # P* # 0.60 (data

for 500 particles). The curves were shifted along the vertical direction so

as to make their main features more visible; the separation between two

major tick marks along the left vertical axis is equal to 0.005, while the

absolute scale has been fixed through the value of each curve at T* ¼
0.015 that is reported on the right vertical axis.

Fig. 3 Reduced number density plotted as a function of the reduced

temperature for three values of the reduced pressure (P* ¼ 0.35, 0.38,

0.40) and for two sets of data: N ¼ 200, upper panel; N ¼ 500, lower

panel. The separation between two major tick marks along the left

vertical axis is equal to 0.0005, while the absolute scale has been fixed

through the value of each curve at T*¼ 0.015 that is reported on the right

vertical axis.
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sphere. Therefore, for selected values of the reduced temperature

in the range 0.001# T*# 0.005, we computed the average cosine

of the angular separation, a, between the current and the initial

positions of a particle as a function of the MC time lag, s. The
resulting data were then fitted at long times to the law

hcos a(s)i ¼ exp{"2Ds/s2}, (2)

which, as such, applies to a Brownian walker on a rigid sphere.32

The quantity hcosa(s)i has been plotted for various temperatures,

at the reduced pressure P* ¼ 0.4, in Fig. 4. We see that, after the

initial ballistic behaviour at short times, all the curves show a

typical diffusional trend,with no indication of a saturation at long

times. Hence, we can safely conclude that the system dynamics is

effectively ergodic down to the lowest sampled temperatures,

though forT*# 0.002 particles diffuse so slowly that their average

shift after 2# 106 sweeps is atmost of the order of s. In the light of

the results of ref. 29 and 30, we expect that at such extremely low

temperatures point defects are clustered inwell-separated regions,

which remain frozen for long times, thus causing a global

suppression of self-diffusion. Upon cooling the system, the total

number of disclinations gradually drops, more rapidly across the

melting line of the planar system, until it levels off at about 4% of

the particle number in the pressure range where the density shows

a minimum. At low temperatures the difference between the

average numbers of five-fold and seven-fold particles is main-

tained practically equal to 12.30

The volumetric anomaly gives rise to related anomalies in the

thermodynamic response functions.24 In particular, a minimum

in aP and a maximum in CP show up along an isobaric path (see

Fig. 5 and 6). As for the isothermal compressibility, we found

that, for reduced pressures in the range 1 < P* < 2, its rate of

change as a function of the temperature is so small that the

maximum which would be expected on account of the thermo-

dynamic arguments illustrated in ref. 24 is so weak a feature that

it is likely buried in the statistical noise of the data.

The loci in the P–T plane corresponding to an extremum of

either the density or of a thermodynamic response function are

depicted in Fig. 7. The overall morphology of all such lines is

analogous to that found in the 1D GCM fluid.24 Thus, the

temperature loci corresponding to the isobaric minimum of the

thermal expansivity and to the isobaric maximum of the specific

heat run very close to each other and, as expected, cross the

boundary of the density-anomaly region (i.e., the region where

aP < 0) at the point of confluence of the TMD and TmD lines.

The volumetric behavior of the GCM fluid in a spherical

geometry can also be contrasted with that of the planar 2D

system, which shares an identical local structure. While no

special feature besides the density maximum has been observed

all along the metastable fluid branch of the planar GCM, we

found instead that the number density of the triangular solid

Fig. 4 Log–log plot of Y(s) ^ "lnhcos a(s)i (see text) for P* ¼ 0.4 and

for a number of temperatures (from top to bottom, T* ¼ 0.005, 0.004,

0.003, 0.002, 0.001). Y(s) may be viewed as the analogue, for a particle

confined to a spherical surface, of the mean square displacement (MSD)

of a particle on a plane (s is the time lag measured in sweeps; the data

have been collected during a production run of 2 # 106 sweeps). The

dotted straight line with unit slope was plotted for the reader’s conve-

nience. The shorter s the larger is the statistical accuracy of the datum;

this explains why the spherical MSD gets more irregular for the largest s
values shown. Inset: D(T) in units of s2 per sweep as obtained through a

linear fit of the Y data in the range 4.5 # log s # 6.

Fig. 5 Thermal expansion coefficient plotted as a function of the

reduced temperature for different reduced pressures (data for 500 parti-

cles): inverted triangles, P* ¼ 0.30; tripods, P* ¼ 0.35; circles, P* ¼ 0.38;

crosses, P* ¼ 0.40; diamonds, P* ¼ 0.43; open squares, P* ¼ 0.45; stars,

P* ¼ 0.50; triangles, P* ¼ 0.60.

Fig. 6 Isobaric specific heat plotted as a function of the reduced

temperature for different reduced pressures (data for 500 particles); same

notation as in Fig. 5. Though visual inspection is hampered by the

partially overlapping datasets plotted in the figure, the monotonic

evolution of the maximum with pressure is clear.
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exhibits a minimum in a narrow pressure interval: 0.38 # P* #
0.43 (see Fig. 8). The data refer to MC simulations carried out on

a system of 1152 particles. The locus of such minima, when

plotted on the P–T plane, is seen to run very close to the density-

minima locus of the spherical GCM fluid. This manifest corre-

spondence suggests that the emergence of the density minimum

in the 2D GCM system is not conditioned by the ordered or

disordered nature of the stable host phase but is more basically

rooted in the properties of the interatomic potential.

Lastly, we comment on the spatial modulation of the OCF,

which is reported in Fig. 9 for P*¼ 0.4 and reduced temperatures

in the range 0.003 # T* # 0.015. For the relatively small size

considered here (N ¼ 500), looking at the large-distance decay of

h6(r) does not make much sense. A natural upper cutoff for

interparticle separations on the sphere is rc ¼ pR/2, corre-

sponding to the distance from a pole to the equator. For

distances in the range rc/2# r# rc, the decay of the h6(r) maxima

in Fig. 9 is more akin to being exponential rather than algebraic,

which suggests that the orientational order in this system remains

short-ranged until at least T* ¼ 0.003. Below this temperature,

the equilibration of the fluid becomes at best difficult, as can be

guessed from the fact that, for T* ¼ 0.001 and 0.002, the profile

of h6(r) at medium and large distances still is highly irregular,

notwithstanding a production-run length of more than two

million MC sweeps.

IV. Conclusions

In this paper we have studied the equilibrium properties of a

system of Gaussian particles embedded in a spherical surface,

with a focus on the anomalous behavior of the number density

and of the thermodynamic response functions. Under spherical

boundary conditions, no extended crystalline order is possible

though, at low temperatures, local particle arrangements can

hardly be distinguished from those found in the solid. In two

dimensions the melting transition becomes blurred, with the

effect of extending the thermodynamic stability of the fluid phase

down to T ¼ 0. Under such conditions, if the system size is not

too large, the Gaussian-core model (GCM) is expected to exhibit

thermodynamic anomalies that are analogous to those found in

Fig. 7 Location of the density and thermodynamic response functions

extrema in the P–T plane (we used polynomial interpolations to locate

maxima and minima). Black line: melting line of the planar GCM system

(the solid phase is stable at lower temperatures); open circles: tempera-

tures of maximum density (TMD) for N ¼ 500; open squares: TMD line

for N ¼ 200; open diamonds: TMD line of a planar GCM fluid; solid

circles: temperatures of minimum density (TmD) for N ¼ 500; solid

squares: TmD line for N ¼ 200; solid diamonds: TmD line of the planar

GCM solid; open triangles: temperatures of minimum thermal expan-

sivity; open inverted triangles: temperatures of maximum isobaric specific

heat. The inset shows the TMD lines for N ¼ 500 and for the planar

GCM fluid, plotted over a more extended pressure range. Lines traced

through the data points are a guide to the eye.

Fig. 8 Reduced number density of the planar GCM solid plotted as a

function of the reduced temperature with increasing pressures over the

range 0.37 # P* # 0.44. The data were obtained upon simulating a

system with N ¼ 1152 particles. All curves were shifted along the vertical

direction so as to make their features more clearly visible; the separation

between two major tick marks along the left vertical axis is equal to

0.0005, while the absolute scale has been fixed through the value of each

curve at T* ¼ 0.0005 that is reported on the left vertical axis.

Fig. 9 Orientational correlation function (OCF) for a system of 500

particles at the reduced pressure P* ¼ 0.4. The reduced temperature

varies from 0.015 down to 0.003 with steps of "0.002 (lower curves refer

to higher temperatures). Top panel: log–log plot; bottom panel: log–lin

plot. The OCF was plotted only up to r/s ¼ 13.6, which roughly corre-

sponds to the distance pR/2 from a pole to the equator.
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one dimension as well as in metastable water confined inside a

nanocylinder.

Indeed, in the phase diagram of the GCM fluid on a sphere we

have identified a region of anomalous volumetric behavior (aP <

0) that is bounded at high temperatures by a locus of density

maxima and, at low temperatures, by a locus of density minima.

Both such lines stem from a common point C, where the first and

second temperature derivatives of the density are both zero. We

have also identified lines of maximum isobaric specific heat and

of minimum thermal-expansion coefficient that cross the

boundary of the anomalous-density region at C.

We have ascertained that density minima are also present in

the crystalline phase of the flat GCM, while being absent in the

fluid phase. Interestingly, the associated density-minima locus

runs close, in the P–T plane, to the corresponding locus of the

system in a curved geometry, a circumstance which strongly

suggests that this feature has its roots in the nature of the GCM

interaction potential and in the local spatial arrangements that it

generates at low temperatures and high pressures.

It would certainly be interesting to verify whether the ther-

modynamic phenomenology exhibited by a system of Gaussian

particles on a sphere can be observed on a layer of solvation

water surrounding a globular protein, like lysozyme or

myoglobin.
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