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Discovering novel emergent behavior in quantum many-body systems is a main objective of

contemporary research. In this Letter, we explore the effects on phases and phase transitions of the

proximity to a Ruelle-Fisher instability, marking the transition to a collapsed state. To accomplish this, we

study by quantumMonte Carlo simulations a two-dimensional system of soft-core bosons interacting through

an isotropic finite-ranged attraction, with a parameter η describing its strength. If η exceeds a characteristic

value ηc, the thermodynamic limit is lost, as the system becomes unstable against collapse. We investigate the

phase diagram of the model for η≲ ηc, finding—in addition to a liquid-vapor transition—a first-order

transition between two liquid phases. Upon cooling, the high-density liquid turns superfluid, possibly above

the vapor-liquid-liquid triple temperature. As η approaches ηc, the stability region of the high-density liquid is

shifted to increasingly higher densities, a behavior at variance with distinguishable quantum or classical

particles. Finally, for η larger than ηc our simulations yield evidence of collapse of the low-temperature

fluid for any density; the collapsed system forms a circular cluster whose radius is insensitive to the number

of particles.

DOI: 10.1103/PhysRevLett.133.096001

A first-order transition between two liquid phases is an

uncommon, still elusive phenomenon that challenges our

understanding of the fluid state of matter [1]. In pure

systems, a liquid-liquid phase transition (LLPT) is found in

tetrahedral liquids [2,3], where, however, it falls in the

supercooled region. A LLPT may occur in parallel with a

change in the chemical nature of the constituent particles,

like in hydrogen [4], where a molecular liquid is trans-

formed under pressure into an atomic liquid. In equilib-

rium, a LLPT has been observed in phosphorus [5,6] and in

sulfur [7], between liquids characterized by a different

degree of polymerization. There also exist (controversial)

examples of LLPT in complex molecular fluids (e.g., in

triphenyl phosphite [8]). The situation is clearer in models,

where a genuine LLPT occurs in classical particles inter-

acting through isotropic core-softened potentials [9–11] or

anisotropic potentials [12–14]. The mechanism commonly

invoked for the onset of a LLPT is the existence of two

distinct repulsive length scales in the effective interparticle

potential.

We here introduce a new paradigm of LLPT with no

classical counterpart—that is, a structural transition not

involving a change in the elementary constituents and/or

interactions. To this aim, we push our system (a bosonic

fluid) close to its stability threshold, such as existing for

particles that interact via a finite repulsion augmented with

a strong enough attraction. We will highlight the nontrivial

role of quantum indistinguishability, without which the

LLPT simply vanishes. In the same system, we also

document a first-order transition from liquid to superfluid,

a possibility which has remained unexplored so far.

While bare interatomic forces are strongly repulsive at

short distances, an effective steplike repulsion can be

induced at larger separations, in the nanometer to micro-

meter range. This is achieved, for instance, in ultracold
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bosonic gases, by means of a weak laser coupling of the

atomic ground state to a highly excited Rydberg state

[15,16]. Such “soft-core” bosons are an ideal playground

for the study of supersolidity [17–19], which in this kind of

systems is promoted by cluster-crystal ordering of particles

at high density [20–23].
We consider the scenario (which could become feasible

in future experimental protocols) in which a finite-range
attraction of tunable strength is added to a soft-core
repulsion. As the strength of attraction grows a Bose fluid
eventually undergoes the collapsing transition predicted a
long time ago by Ruelle and Fisher [24,25] and observed in
classical fluids [26–29].

For a stable interaction (see p. 33 of Ref. [25]), the grand-

canonical partition function cannot grow faster than

expðcVÞ as a function of the system volume V, where c

depends on the temperature and the chemical potential.

When stability is violated, the grand partition function is

instead divergent, even for finite V, while a system with a

fixed number N of particles collapses to a compact cluster

or blob with a potential energy proportional to N2. Ruelle

and Fisher derived analytic criteria [24,25] to ascertain

whether a bounded potential with an attractive component

leads to collapse in a classical system. For a large class of

regular potentials, they also proved [24] that classical

instability and quantum instability are reciprocally implied

in the case of bosons. However, the behavior of a quantum

fluid near and beyond the stability threshold is largely

unexplored, and can certainly be elucidated by numerical

simulation. From the experimental standpoint, the physics

of a quantum system near collapse is relevant, for example,

to cold dipolar assemblies [30,31].

In this Letter, we present the results of a numerical

investigation of a two-dimensional (2D) system of identical

particles of spin zero, hence obeying Bose statistics,

interacting via a double-Gaussian (DG) potential [28]:

uðrÞ ¼ ϵ

�

e−ðr=σÞ
2

− ηe−ðr=σ−3Þ
2
�

; ð1Þ

with η > 0 [we also set a cutoff distance rc ¼ 6σ, beyond

which u ¼ 0 in Eq. (1)]. This potential is known to

characterize a fluid near collapse; it has the advantage that

the collapsing threshold can be exactly determined (see

below). Henceforth, we take ϵ and σ as units of energy and

length, respectively. Moreover, the temperature T is

expressed in units of ϵ (we set Boltzmann’s constant

kB ¼ 1).

For an isotropic potential uðrÞ of finite strength, a

sufficient condition for thermodynamic instability is

ũð0Þ < 0 [25], where ũðkÞ is the Fourier transform of

uðrÞ; on the other hand, if ũðkÞ ≥ 0 for all k, then the

system is stable [24]. This implies that, with the DG

potential [Eq. (1)], a system is thermodynamically stable

for η ≤ ηc ¼ 0.094 031…, unstable for η > ηc.

We carried out Monte Carlo simulations of the DG fluid

with the aim of exploring—well beyond the usual dilute

limit—the route toward Ruelle-Fisher instability in a

quantum system, contrasting the system behavior with that

of its classical counterpart. By simulating the system

beyond the collapse threshold, we also searched for

indications of subextensive scaling of the emerging cluster.

Our study is completed by an analysis of the structure and

superfluidity of the collapsed system, also in comparison

with a liquid droplet in equilibrium with vapor.

To set the stage for subsequent analysis, it is useful to

investigate first the classical DG fluid as a function of η.

We employ Gibbs-ensemble Monte Carlo (GEMC) simu-

lations [32,33] to determine liquid-vapor coexistence and

isothermal-isobaric MC simulations to locate the stability

region of the triangular crystal. To this purpose, a large-size

crystal is heated isobarically until a jump is observed in the

values of the number density (ρ) and energy (E).
Liquid-vapor coexistence points for a number of η values

close below ηc are plotted in Fig. 1 left. Up to η ≈ 0.09 the

shape of the binodal line is usual. As η approaches ηc,

however, the coexistence region becomes wider and wider

near zero temperature, thus progressively eroding the solid

region (whose boundaries are less sensitive to η [34,35]). In

particular, notice the substantial increase in width of the

two-phase region on going from η ¼ 0.094 to η ¼ 0.094 03

(a value only 3 × 10−5 higher), suggesting that the liquid

density diverges as η → ηc and T → 0 simultaneously. For

η ¼ 0.0935, where the density of the saturated liquid is

around 1, the solid is confined to a tiny region close to

T ¼ 0 (Fig. 1 right), which would shrink even further for

FIG. 1. Phase diagram of the two-dimensional classical DG

model on the ρ-T plane. Left: liquid-vapor coexistence data for a

few values of η < ηc and various choices of the initial numbers of

particles in the two simulation boxes (in the legend). Right:

magnification of the low-temperature region for η ¼ 0.0935. The

triangular solid (S) is stable in a small density window, bounded

to the left by the vapor (V) and to the right by the liquid (L). The
dashed line marks the triple temperature.
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larger η. We did not observe a hexatic phase, whose

existence is possible in an extremely narrow temperature

range (no more than 10−4 wide) above the solid phase [36],

and thus tentatively assume a first-order melting transition.

We found no evidence of cluster solids, consistently with

the predictions of Ref. [37]. More results for the classical

DG fluid, including a survey of the structure of two-

phase coexistence at low temperature, are presented in

Supplemental Material [38] (see also Refs. [39–41]

therein).

For the simulations of the quantum system, we used the

continuous-space worm algorithm [42,43]. If periodic

boundary conditions are adopted,we compute the superfluid

fraction fs using the winding-number estimator [44];

otherwise, in a droplet regime, we employ the area esti-

mator [45,46]. The relative importance of quantum effects is

embodied [47,48] in the parameterΛ ¼ ℏ
2=ðmϵσ

2Þ,mbeing

the particle mass. We find that, for η ¼ 0.09 and Λ ¼ 0.02,

the pair correlation function (PCF) at a density ρ ∼ 1 and at

temperature T ∼ 0.1 is nearly indistinguishable from that of

the classical system. Unless otherwise specified, we use this

value of Λ in our simulations (we also present, for com-

parison, some results obtained with Λ ¼ 0.04).

A sample of raw simulation data for η ¼ 0.0935 is

reported in Fig. 2. Here, we plot the pressureP as a function

of ρ at T ¼ 0.08; as evidenced by the two van der Waals

loops in PðρÞ, upon compression the vapor undergoes two

first-order phase transitions. The liquidlike character of the

two denser phases, referred to as L1 and L2, is demon-

strated by the PCF (see Fig. 2 inset), which is less

structured for the phase of higher density (L2).
Figure 3 shows the computed phase diagram of the

quantum DG model for three values of η (0.093, 0.0935,

and 0.0938) with Λ ¼ 0.02, and for η ¼ 0.0935 with

Λ ¼ 0.04. The phase behavior of distinguishable quantum

particles (black dots in Fig. 3) mimics that of classical

particles. On the other hand, the Bose system displays a

much richer phase diagram. Far away from ηc [panel (a)]

the only phase transition present is between vapor and

liquid, with the liquid becoming superfluid below the

Berezinskii-Kosterlitz-Thouless (BKT) line, very much

like, e.g., two-dimensional 4He [49,50]. Close to ηc, a

second liquid phase appears (L2), which coexists with the

low-density liquid (L1) between a temperature Tt and an

η-dependent critical temperature Tc [panels (b) and (c)].

Below Tt, the L2 phase instead coexists with the vapor, and
a cusp on the saturated L2 line at the triple temperature Tt

marks this change. The L2 phase acquires superfluid

properties below the BKT line, which hits the saturated

L2 line close to Tt (we have to say more on this later). As ηc
is approached more and more closely, the L2-L1 and

L2-vapor regions become increasingly wider, pushing the

FIG. 2. Pressure versus density for the quantum DG model with

η ¼ 0.0935 at T ¼ 0.08. The gray bands are phase-coexistence

regions, located by applying the equal-area rule to the P vs 1=ρ
curve. Inset: PCF of L1 and L2 at a few densities (between 1 and

1.75 for L1; between 3 and 3.75 for L2).

FIG. 3. Phase diagram of the two-dimensional quantum DG

model for Λ ¼ 0.02 and three values of η: 0.093 (a), 0.0935 (b),

and 0.0938 (c). In panel (d), Λ ¼ 0.04 and η ¼ 0.0935. The

circles are coexistence points which are colored differently

depending on the phase and the transition involved (see text).

Black dots refer to distinguishable particles. Also shown are the

straight lines T ¼ Λρ (see text). A few points on the BKT line are

plotted as triangles. The solid phase, if it exists at all, would only

be stable at temperatures lower than 0.01.
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entire saturated L2 line toward higher densities. This

feature is enhanced in a system with more significant

quantum effects, i.e., characterized by a greater value of Λ

[panel (d)]. An analysis of the structure and superfluidity of

L2 droplets in vapor is reported in [38]. Furthermore, we

found no trace of cluster solids, in accordance with

numerical simulations of Gaussian-core bosons in 2D [51].

A first-order LLPT is unusual for one-component Bose

fluids with isotropic interaction, if not even novel. It is an

exquisitely quantum phenomenon made possible by par-

ticle indistinguishability and favored (at temperatures

slightly larger than Tt) by the disparity in structure between

a normal liquid of nonoverlapping particles (L1, ρ ≈ 1) and

a denser, almost structureless liquid (L2). As long as cluster
crystals are absent, we expect that a LLPTwill be a generic

occurrence in a Bose fluid near collapse.

Next, we explore the quantum nature of the L2 liquid as

a function of temperature, by computing the superfluid

fraction along a number of isochores. Typical results are

plotted in Fig. 4, reporting fs data for a few sizes in the case

η ¼ 0.0935, Λ ¼ 0.04, and ρ ¼ 4. The standard way of

estimating the superfluid transition temperature TBKT is by

using the BKT recursive relations [see, for instance,

Ref. [49]). In two different cases (corresponding to the

two lower panels in Fig. 3) we find that the BKT line is well

approximated by the expression TBKT ≈ Λρ (reduced

units), which is based on the well-known “universal jump”

condition [52] and has been shown to afford quantitatively

accurate predictions of TBKT in rather different 2D Bose

systems, even in the presence of long-ranged interactions

[53,54]. This criterion suggests the BKT line will in some

cases intersect the saturated L2 line above Tt, e.g., for η ¼
0.0935 and Λ ¼ 0.04, where in a range of temperatures

above Tt the DG model would then exhibit a first-order

liquid-to-superfluid transition. This exciting finding raises

the prospect of a coexistence between normal-liquid and

superfluid states, which, to our knowledge, has hitherto

never been observed in a (real or model) quantum fluid.
As for the behavior of the model in the unstable regime,

we consider the case η ¼ 0.2. For the classical model, at
T ¼ 1 or larger we find the same phenomenology described
in Ref. [28], that is, the existence of a characteristic density
ρ×ðTÞ, increasing with T, marking the crossover from a
region of full-blown instability on the high-density side,
where the collapse of a fluid sample occurs very fast, to a
region of apparent stability, where the system remains
homogeneous for times longer than the duration of the
simulation (see more in [38]). Considering then the
quantum DG fluid at T ¼ 0.1, collapse of the sample into
a compact cluster invariably occurs, even at a density as low
as 0.0001. The final cluster looks indistinguishable from a
circular droplet in equilibrium, were it not for the scaling of
its size and energy with N: while the area of ordinary
droplets is an extensive property, the radius of the cluster
emerging from the decay of an unstable fluid is almost
independent of N; simply, the cluster grows in density
when N is increased, while its total energy scales as

N2 [38].

In conclusion, we consider a strongly interacting, two-

dimensional Bose fluid in the proximity of collapse. To

achieve this, the interparticle potential must be finite at the

origin and have an attractive component of adequate

strength. To prevent the occurrence of cluster crystals at

high density we assume a DG interaction (as representative

of a broader class of potentials with the same characteristics

[38]). We find that the phase behavior of the nearly unstable

system is unusual, in that it undergoes an unprecedented

type of LLPT. The denser liquid (L2) becomes superfluid

when cooled below the BKT line; on the other hand, the

low-density liquid (L1) is only stable above the BKT line,

therefore the BKT transition only occurs for L2. As the

interaction potential is tuned toward the stability threshold,

the L2 phase is shifted to higher and higher densities.

Finally, the physics of the DG fluid can be observed in a

system of ultracold bosons weakly dressed with a Rydberg

state; specifically, the atoms should be tailored, in a

range of distances well beyond the atomic diameter, with

a Qþ-type repulsion [37] and a short-range attraction of

generic shape. In this case, stability is recovered, but in an

interval of densities below freezing the liquid phase will

exhibit essentially the same features present in the DG

fluid. We look forward to seeing this scenario realized in

future cold-atom platforms.
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FIG. 4. Superfluid fraction vs temperature for η ¼ 0.0935, Λ ¼
0.04 and ρ ¼ 4. Data for various sizes are compared (see legend).

The dashed line is a fit through the data for the biggest size. The

continuous line is an extrapolation to infinite size based on

Kosterlitz-Thouless theory (see, e.g., Ref. [49]).
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SUPPLEMENTAL MATERIAL

This document contains further results on the two-dimensional DG model, both classical and quantum, with special
reference to inhomogeneous (droplet) states.

Classical model

First, we illustrate the behavior of the classical DG fluid for ¸ = 0.0935 in the liquid-vapor coexistence region at
T = 0.003, with the aim to characterize the structure of a liquid droplet at low temperature. After preparing the
system at Ä = 0.1, we compress it gradually in steps, waiting for the fluid to reach equilibrium at each density. In
Fig. 5 (top panels) we show typical configurations for Ä = 0.25, 0.4 and 0.45, where the particles are distinguished
based on the number of nearest neighbors. Clearly, the system forms a liquid droplet floating in vapor (the vapor
density is nearly zero at the temperature considered). Upon increasing Ä, the originally circular droplet grows in
area until, due to periodic boundary conditions and the requirement that the free energy (bulk + interface) be
minimum [39–41], it changes shape, becoming slab-like. A similar outcome is found at T = 0.001 (bottom panels),
where the vapor coexists with the triangular solid. Notice the difference in the spatial distribution of coordination
defects (disclinations) between the two temperatures: while point defects are diffuse in the liquid droplets, especially
far away from the surface, disclinations are less numerous in the solid droplets, where they preferentially form chains
of dislocations (grain boundaries).

We note that the density of the droplets in Fig. 5 is slightly below 1. In these conditions, the particle cores are
non-overlapping (i.e., the average distance between two neighboring particles is slightly larger than Ã), despite being

T
=

0
.0
0
3

ρ = 0.25 ρ = 0.40 ρ = 0.45

T
=

0
.0
0
1

FIG. 5. Two-dimensional classical DG model (N = 2500): system snapshots at T = 0.003 (top, inside the liquid-vapor region)
and T = 0.001 (bottom, inside the solid-vapor region), for three densities (from left to right, ρ = 0.25, 0.4 and 0.45). Each
particle is represented as a circle of diameter σ. Circles are colored according to the particle coordination z, as established via
the Voronoi construction: z ≤ 4 (green); z = 5 (cyan); z = 6 (red); z = 7 (grey); z ≥ 8 (yellow).
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FIG. 6. Two-dimensional classical DG model (N = 2500): local density vs (reduced) distance from the droplet center for two
liquid-vapor coexistence points. Left: T = 0.003 and ρ = 0.40. Right: T = 0.02 and ρ = 0.20. The data are reported using
bins of two different widths (in the legend).

penetrable; therefore, the core repulsion is quite effective at these densities. We need substantially higher pressures in
the liquid to see the cores overlapping significantly. Eventually, for Ä k 1 the liquid system becomes a “high-density
ideal gas” [37], i.e., a liquid with negligible correlations between the particle positions.

We then look at the profile of the local density, plotted as a function of the distance from the (current) center of
mass, in the liquid droplet at T = 0.003. By averaging over a large number of equilibrium configurations, the radial
profile in Fig. 6a finally emerges. As is also evident in the droplet portrayed in the top-center panel of Fig. 5, the crust
of the droplet has an onion-like structure with nearly perfect triangular order, propagating down to approximately
half of the droplet radius. On the other hand, in the core of the droplet (where most of the disclinations occur) the
local density is smoother, assuming in the center the same value of the density of the saturated liquid at T = 0.003
(≈ 0.95, see Fig. 1). In Fig. 6b, the same calculation is repeated for T = 0.02. The local density is now very smooth,
also near the surface, where the layering effect has almost disappeared.

Next, we investigate the evolution toward collapse in the two-dimensional DG system with ¸ = 0.2, using the method
of molecular dynamics. The sample is initially prepared in a fluid configuration of density Ä = 1.5 and temperature
T = 0.2. If the final state is to be a collapsed configuration of low temperature, the original configuration — of much
higher potential energy — is incompatible with a microcanonical dynamics. We have thus decided to put an upper
cutoff on the largest displacement that a particle can suffer in one time step, so as to ensure that the system can
gradually get rid of the excess potential energy, while keeping the variation in kinetic energy small during the run. An
example of system evolution is shown in the enclosed movies, which refer to N = 4000. Here, a homogeneous fluid is
seen to quickly transform in a few circular clusters of nearly equal radius; at this point, a slower process begins, akin
to Ostwald ripening, where the number of clusters is progressively reduced one by one through successive coalescing
events, until a unique cluster is finally left. In particular, when two clusters come close to each other, the particles of
one cluster are rapidly absorbed by the other cluster; however, the emerging cluster has still the same radius of the
two original clusters, hence its density is just the sum of the original densities.

Considering four different sample sizes (1000, 2000, 4000, and 8000), we confirm that the gyration radius of the final
cluster is 7.91(1), regardless of N , and the total potential energy U scales as N2 (Fig. 7a). For a cluster of N = 4000
particles, we plot in Fig. 7b the local density as a function of the distance from the cluster center. Surprisingly, wide
oscillations are superimposed to an overall decreasing profile, becoming sharper near the cluster surface.
We have verified that at Ä = 0.1 the system collapse proceeds more slowly, taking a time that is one-two orders

of magnitude longer than at Ä = 1.5, via the rapid formation of 10-20 clusters which will subsequently coalesce by
successive pair-collision events, until only one cluster survives. A similar phenomenology is observed in Monte Carlo
simulations.



3

FIG. 7. Classical DG system after collapse at T = 0.2 and ρ = 1.5 (η = 0.2): (a) Energy scaling of the total potential energy
per particle. (b) Local number density vs distance from the cluster center (N = 4000). The statistical uncertainties are smaller
than the size of the symbols.

Quantum model

Below the triple-point temperature Tt ≃ 0.07 for ¸ = 0.0935 and Λ = 0.02, a vapor of nearly zero density coexists
with the L2 phase. At very low temperature, say T = 0.01, the L2 phase is superfluid in the bulk, with a density
of about 3 at coexistence. In these conditions, we have run Quantum Monte Carlo simulations for various N values,
starting with a blob of particles and waiting for it to expand until forming a stable droplet. While we expect the
same outcome from the simulation of a homogeneous fluid in a very large box (Ä j 1), our procedure has the distinct
advantage of not being necessary to wait for the coalescence of many different condensation nuclei. In Fig. 8a we
plot the local density of four stable droplets as a function of the distance from the center. Unexpectedly, the density
profile is highly dependent on N , indicating a strong finite-size effect. In particular, the density value in the center of
the droplet is much lower than 3, but it increases with N . We have tried to guess the minimum N needed in order
that the density becomes 3 in the center, and concluded that this size is likely in the range from 104 to 105, by far

FIG. 8. Two-dimensional quantum DG model at T = 0.01 (η = 0.0935): (a) Radial profile of the local density for various N
values (see legend). In the inset, we show a magnification of the surface region, which demonstrates the close similarity between
the density modulations for different sizes. (b) Total and superfluid densities as a function of the distance from the center for
N = 500 and N = 1500. The horizontal segment marks the density ρ = T/Λ = 0.5 (see text).
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FIG. 9. Quantum DG model at T = 0.1 (η = 0.2). (a) Energy scaling of the total energy per particle. (b) Total and superfluid
densities for two collapsed configurations (left: N = 1000; right: N = 8000).

too much for a direct verification with simulation. Looking at Fig. 8a, we also see a modulation of the density near
the droplet surface, occurring in the same terms for all N .
We now turn to consider the nature of the liquid phase in the droplet at T = 0.01. We plot in Fig. 8b the total

density and the superfluid density as functions of the distance from the droplet center for two distinct sizes, marking
with a segment the density level corresponding to the fulfillment of the condition T = ΛÄ. In spite of the noise
affecting the superfluid density data in the droplet core, we clearly recognize that the superfluid fraction is roughly 1
above the segment, while dropping to much lower values below. Hence, we see here reproduced under inhomogeneous
conditions the same scenario discussed in the main text: in the region below the locus T = ΛÄ on the Ä-T plane (i.e.,
for densities larger than T/Λ), the liquid acquires superfluid character.

Finally, we take the case of an unstable bosonic fluid at T = 0.1 (¸ = 0.2). We have verified that, like in the
classical-system case, (a) the size of the collapsed configuration (a circular cluster) is independent of N and (b) the
total energy per particle scales as N (Fig. 9a). We have also looked at the radial profiles of the total and superfluid
densities in the clusters with N = 1000 and N = 8000 particles (Fig. 9b). Despite the number of particles being
quite different, and up to a factor of 8 (= 8000/1000) difference, the profiles of both densities are largely overlapping
between the clusters. Similar to Fig. 7b, the density profile is modulated, particularly near the surface; with the
only visible exception of a thin surface layer for N = 1000, where the local density takes small values, the superfluid
fraction is practically one at every distance, implying that the collapsed system is entirely superfluid.

On the degree of generality of DG behavior

As we argue below, the same physics of the DG fluid also applies for core repulsions other than Gaussian. When
the Fourier transform of the short-range repulsion is positive-definite, the Fourier transform of the total potential
function will be positive as well, as long as the attractive part is weak enough, which is the prerequisite for an exact
evaluation of the stability threshold based on the two theorems mentioned in the text.

For example, the behavior of the DG model also belongs to a system of bosons interacting through a modified Van
der Waals (mVdW) interaction given by ϵÃ6/(r2 + Ã2)3, plus the same attraction as in (1). The mVdW potential is
a more realistic shape of softly repulsive core [15] than the Gaussian potential. For any non-negative integer n, the
two-dimensional Fourier transform of ϵÃ2(n+1)/(r2 + Ã2)n+1 is (2ÃϵÃ2/n!)(kÃ/2)nKn(kÃ), where Kn(x) is a modified
Bessel function of the second kind (notice that Kn(x) > 0 and (x/2)nKn(x) ∼ (n − 1)!/2 for x → 0 and n > 0).
The stability threshold of the potential combining the mVdW repulsion (n = 2) with the attractive component of
(1) is exactly half of the DG threshold. It is worth observing that, at variance with the mVdW repulsion, the
two-dimensional Fourier transform of a repulsive core modeled as ϵÃ6/(r6 + Ã6) [15] has no definite sign.


