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Confinement can have a considerable effect on the behavior of particle systems and is therefore an

effective way to discover new phenomena. A notable example is a system of identical bosons at low
temperature under an external field mimicking an isotropic bubble trap, which constrains the particles to a

portion of space close to a spherical surface. Using path integral Monte Carlo simulations, we examine the
spatial structure and superfluid fraction in two emblematic cases. First, we look at soft-core bosons, finding

the existence of supersolid cluster arrangements with polyhedral symmetry; we show how different
numbers of clusters are stabilized depending on the trap radius and the particle mass, and we characterize

the temperature behavior of the cluster phases. A detailed comparison with the behavior of classical soft-
core particles is provided too. Then, we examine the case, of more immediate experimental interest, of a

dipolar condensate on the sphere, demonstrating how a quasi-one-dimensional supersolid of clusters is
formed on a great circle for realistic values of density and interaction parameters. Crucially, this supersolid

phase is only slightly disturbed by gravity. We argue that the predicted phases can be revealed in magnetic
traps with spherical-shell geometry, possibly even in a lab on Earth. Our results pave the way for future

simulation studies of correlated quantum systems in curved geometries.

DOI: 10.1103/PhysRevLett.132.026001

Computing the equilibrium properties of quantum many-
body systems remains a main objective of contemporary
physics. In this respect, ultracold atoms provide a frame-
work where geometry and interactions can be tuned almost
at will, allowing one to test fundamental many-body
theories [1,2]. A system of atoms (loosely) confined to
an ellipsoidal surface [3,4] represents a typology that only
recently has started to be explored. To achieve this goal, a
quantum gas is loaded into a shell trap, where atoms
are subject to a quadrupolar field “dressed” by a radio
frequency (rf) field [5–9]. In the limit of slow atomic
motion in a strong magnetic field, the effective potentials of
the internal states are the position-dependent eigenvalues of
the Hamiltonian consisting of the bare potentials and the
coupling term [10]. For atoms in the upper dressed state,
resonance is reached at the surface of an ellipsoid.
However, to let atoms explore the full surface, experiments
must be performed in outer space [11–13] or adopt some
gravity compensation mechanism [14,15]. Coherent and
isotropic shells of atoms slowly expanding in microgravity
can be generated too [16].

The realization of shell-shaped condensates has fueled a
renewed interest in the problem of quantum particles in
curved geometries [17], and particularly in the quantum
phases that free and interacting bosons can exhibit. Several
recent works have investigated Bose-Einstein condensation
as well as the superfluid-to-normal fluid transition on a
sphere [18–22], while others have studied the dynamics and
thermodynamics of the condensate itself [23–26]. Most of
these works have considered weakly interacting particles,
although some have looked into the condensed phases
arising from dipolar interactions [26–29].
While experiments have so far been performed in the

same dilute limit, bubble traps open the exciting prospect of
investigating the physics of strongly correlated quantum
particles in curved spaces, with all the advantages brought
by ultracold-atom setups. For example, ultracold atoms
may serve as quantum simulators to test fundamental
physics; therefore, studying the effects of curvature in a
controlled environment can be of interest to other fields
ranging from cosmology to biology [30,31]. Similarly, we
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can envisage the possibility to control the self-assembly of
a many-body system through a convenient choice of the
confining surface, i.e., of the shape of the ensuing geo-
metric potential [17]. Equally important is to figure out
experiments on curved many-body systems that could be
accomplished on Earth, i.e., without the necessity of
compensating gravity [32]. In this respect, the most awaited
developments concern dipolar atoms [33], which have
already been examined in flat space and harmonic traps
[34,35] and are known to give rise to supersolid phases
[36–39]. At the same time, it will be interesting to see
whether the confined geometry of bubble traps can stabilize
the supersolid phase in small systems of Rydberg-dressed
atoms [40–44].
In this Letter, we use the path integral Monte Carlo

(PIMC) simulation method to give a first glimpse of the
equilibrium phases that can arise in a shell-trapped system
of identical bosonic particles. In particular, we will provide
the first compelling evidence of supersolid order for two
distinct instances of the interaction potential. First, we look
at the penetrable-sphere model as an example of soft-core
potential and a paradigmatic interaction in condensed
matter physics that gives rise to both superfluidity and
clusterization [45–48]; for this interaction, we compare our
results with various benchmarks. Then, we investigate the
effects of a dipole-dipole interaction, more closely related
to experiments, and we show, for a realistic choice of
parameters, that a supersolid cluster phase indeed occurs in
shell geometry. Remarkably, this supersolid is resistant to
the gravity of Earth.
To keep contact with the experiments, we simulate

spinless bosons in three-dimensional space under the
constraint of an external potential analogous to that realized
in the lab. For N particles with mass m, the Hamiltonian
reads

H ¼
X

N

i¼1

ð−λ∇2
ri
þ uextðjrijÞÞ þ

X

i<j

vintðri − rjÞ; ð1Þ

where ri is the position of the ith particle, λ ¼ ℏ
2=2m, vint

is the (possibly anisotropic) interaction potential, and

uextðdÞ ¼ ðu0=ΩÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd2 − ΔÞ2=4þΩ2

q

− u0 ð2Þ

is the external potential appropriate to a spherically
symmetric bubble trap [24] centered at the origin. In
Eq. (2), Δ and Ω are square-length parameters related to
the detuning and Rabi frequency of the rf field, respectively,
while u0 characterizes the harmonic trap prior to dressing.
The potential (2) interpolates between the filled sphere and
the spherical shell [see Fig. 1(g)]. In the thin-shell limit, uext
becomes harmonic around the minimum at

ffiffiffiffi

Δ
p

, which thus
defines the radius R of the reference sphere. As R increases,
the potential minimum gets more and more pronounced,

until particles become effectively confined to a spherical
surface.
In our PIMC simulations [49], we employ the worm

algorithm [50] to sample the equilibrium statistics of
bosons at finite temperature and estimate the superfluid
fraction, fs [51]. To deal with the strong spatial constraint
due to (2), we introduce a biased version of the PIMC
method [51]. We also perform classical Monte Carlo (MC)
and molecular dynamics (MD) simulations to probe the
classical limit in the soft-core case.
We begin by considering bosons interacting through the

soft-core potential:

vintðrÞ ¼ ϵθðσ − rÞ; ð3Þ

where ϵ > 0, and σ is the core diameter. In the discussion of
the soft-core model, ϵ and σ are taken as units of energy and
length, respectively; temperatures are expressed in units of
ϵ=kB. Because of the peculiar nature of the repulsion, at
high density particles are gathered in droplets or clusters
[77]. Employing mean-field theory at T ¼ 0, the authors of
Ref. [78] explored various possible arrangements of clus-
ters on the sphere, finding the configuration of lowest
enthalpy as a function of the radius. The evidence of super-
solid phases is, however, not conclusive: Condensation of
clusters is assumed, not derived, while there is no guarantee
that the true ground state has been identified. Using, for the
first time, ab initio PIMC simulations, we provide for the

FIG. 1. Soft-core bosons in an isotropic bubble trap. (a)–
(c) Particle density for N ¼ 120, T ¼ 0.125, R ¼ 1.4, u0 ¼ 2,
Ω ¼ 0.0441, and λ ¼ 0.5 (a), 0.16 (b), 0.01 (c). The size of the
points is proportional to the density averaged along the radial
direction, and the shading is a guide for the eye: Brighter points
are closer to the observer. (d)–(f) Area-preserving projections of
the densities in (a)–(c). Brighter colors indicate a larger density
(log scale). (g) External potential (2) for u0 ¼ 2,Ω ¼ 0.0441, and
R ¼ 0.84 (brown), 1.05 (red), and 1.4 (gold). (h) Pair distribution
function for the same parameters in (a)–(c): λ ¼ 0.5 (blue dotted
line), 0.16 (blue dashed line), 0.01 (purple solid line).
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same interaction (3) conclusive evidence of supersolid
order. Moreover, we show how the supersolid withstands
finite temperature in a realistic bubble trap, i.e., beyond a
purely two-dimensional setup.
First, we investigate the behavior of the system at a

temperature T ≪ 1, choosing Ω ¼ 0.0441 (an arbitrary
value much smaller than Δ; see below). In Figs. 1(a)–1(f),
we give a graphical account of the structures found for
decreasing λ at T ¼ 0.125, which are indicative of a
superfluid-supersolid-insulator “transition,” similar to what
occurs on a plane [79]. Specifically, we perform a size
scaling analysis of fs at fixed N=ð4πR2Þ ¼ 4.87 for two
strengths of the trap potential to see how the system
approaches the planar limit. On a plane, the phases were
characterized in terms of the dimensionless interaction
strength α ¼ mρσ4ϵ=ℏ2 ¼ ρσ4ϵ=ð2λÞ (for a number density
ρ ¼ 4.4), finding that the superfluid-supersolid transition
occurs at α ≈ 13, whereas the system becomes insulating at
α ≈ 22 [79]. In both two and three dimensions, the former
transition is marked by a jump in fs [45]. Our results are
reported in Fig. 2. In the strongly confined case (u0 ¼ 50,
top panel), the planar behavior is already recovered forN ¼
120 particles, while for smaller sizes we find a smooth
crossover. For a weaker external potential (u0 ¼ 2, bottom
panel), the transition to supersolid is milder and shifted
toward higher α values; moreover, convergence to the
planar limit is much slower. In both cases, the system is
a density wave at large α; as α is reduced, quantum
fluctuations increase, eventually leading to a disruption
of polyhedral order which is faster when more freedom is
given to particles in the radial direction, i.e., for u0 ¼ 2. The
same sequence of transitions is reflected in the shape of the
pair distribution function gðrÞ [see Fig. 1(h) and [51] ]. As

long as fs > 0, gðrÞ is nonzero at any distance, which is
consistent with a condensate wave function being nonzero
everywhere on the sphere. Instead, in a normal solid near
zero temperature, gðrÞ would ideally be zero in the
interstitial region between two successive shells of neigh-
bors. The deviations from this behavior at moderate to large
distances are a temperature effect, ultimately due to the
finite extension of the clusters.
Next, we fix the number N of particles (120) and the

temperature T (0.5), and set u0 ¼ 2 and Ω ¼ 0.0441 [we
require Ω ≪ 1, so as to have uextð0Þ ≈ Δ=Ω ≫ 1 for
R ≈ 1]. We collect in a diagram the equilibrium arrange-
ments for various λ and R [Fig. 3(a)]. On account of the fs
value and the evidence or not of polyhedral order, we can
reasonably distinguish between superfluid, supersolid, and
normal-solid states. Throughout the “solid” regions, the
number Nc of clusters may vary, but clusters are invariably
found at the vertices of a regular or semiregular polyhe-
dron: for example, an octahedron for Nc ¼ 6, a square
antiprism forNc ¼ 8, and an icosahedron forNc ¼ 12 [51].
For some ðλ; RÞ pairs, the cluster structure agrees with
those predicted in [78] (for example, the icosahedral
structure at λ ¼ 0.16 and R ¼ 1.4). However, for several
other pairs, the equilibrium configuration is a novel cluster
phase not seen before. Moreover, contrary to the mean-field
prediction, we see that decreasing λ at fixed R leads to

FIG. 2. Superfluid fraction across the superfluid-supersolid-
insulator transition plotted as a function of α for T ¼ 0.125 [the ρ
entering the expression of α is N=ð4πR2Þ]. (a) u0 ¼ 50.
(b) u0 ¼ 2. Different symbols correspond to different system
sizes: N ¼ 40 and R ¼ 0.808 (circles), N ¼ 80 and R ¼ 1.143
(diamonds), N ¼ 120 and R ¼ 1.4 (squares). The dashed lines
refer to the planar limit [80].

FIG. 3. (a) A diagram showing for N ¼ 120 and T ¼ 0.5 the
number Nc of clusters as a function of λ−1 and R. The blue dots
are state points where the system is superfluid. Open circles and
squares mark supersolid and normal-solid states, respectively.
When λ and R are both small,Nc depends on the initial conditions
(see more in [51]); therefore, no number is printed in the symbol.
(b) Superfluid fraction fs plotted as a function of R at fixed
λ ¼ 0.16 and u0 ¼ 50 for T ¼ 0.5 (red squares), 0.25 (purple
diamonds), and 0.125 (blue circles). (c) T dependence of fs for
R ¼ 1.4 and λ ¼ 0.16.
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transitions between equilibrium configurations with differ-
ent numbers of clusters. As we increase the radius, the
supersolid region shrinks, while the number of clusters
grows. At large radii, the particles assemble in smaller
clusters, making it more difficult for the system to sustain
superfluidity; eventually, above a certain R the system is so
dilute that clusters are washed away for every λ.
In the T → 0 limit, the superfluid phase is stable at all

large radii. Upon heating, similar to flat space, a superfluid-
to-normal-fluid transition eventually occurs. This is
illustrated for λ ¼ 0.16 in Fig. 3(b), where we plot the
superfluid fraction as a function of R at different temper-
atures. As T goes up, fs is gradually reduced until it
vanishes, starting from larger R values. At high enough
temperatures, fs is also depleted for the supersolid, as we
show in Fig. 3(c) for R ¼ 1.4 and λ ¼ 0.16: Interestingly,
however, polyhedral order is preserved throughout the
range of temperatures.
When λ → 0, the number of clusters approaches a value

dependent on R; this regime corresponds to the classical
limit, regardless of R and T > 0. To make sure that this is
indeed the case, we have considered the classical counter-
part of the quantum problem. The first observation of
cluster phases in classical particles on a sphere goes back to
Ref. [81], where density-functional-theory calculations are
presented. Here, to keep the same level of accuracy of the
quantum treatment, we carry out extensive MC and MD
simulations of classical soft-core particles, using the same
parameters of the quantum simulations. The results
expressed in terms of the number and final arrangement
of clusters are reported in [51] for various R values. Except
for small radii, where the uncertainty in Nc is large, the
aggregates formed by quantum particles have a compara-
tively smaller number of clusters. This is an effect of
quantum delocalization, which causes the effective diam-
eter of bosons to be larger than σ.
We now move to examine the behavior of dipolar bosons

in the thin-shell limit. As is common in experiments, we
assume atoms to be polarized along ẑ. We work with a
number density on the sphere of about 4 μm−2, of the same
order as that used in experimental realizations [11]. The
(anisotropic) interaction potential reads

vintðrÞ ¼ vHSðrÞ þ
μ0d

2
m

4π

1 − 3 cos2 θ

r3
; ð4Þ

where μ0 is the vacuum permeability, dm ¼ 9.93μB is the
magnitude of the dipole moment of a 164Dy atom, μB is the
Bohr magneton, and cos θ ¼ r̂ · ẑ [82]. Finally, vHSðrÞ is
the hard-sphere potential with core diameter equal to the
scattering length a [51].
We simulate the system for various a, considering values

up to 103a0, with a0 the Bohr radius, thus much smaller
than the sphere radius taken to be R ¼ 2.6 μm (or
R ≈ 50 × 103a0). Our results for N ¼ 360 and T ¼ 1 nK
are illustrated in Fig. 4. As is clear from Eq. (4), particles

attract each other along the z direction and repel each other
along x and y. As long as a is much smaller than R,
particles move away from the poles of the sphere and bunch
together around the equator. Indeed, up to a ≈ 150a0,
particles form clusters lined up along the equator, as seen
in Figs. 4(a) and 4(b). At variance with what is observed for
dipolar clusters in trapped Euclidean geometries [36], the
cluster phase on the sphere excludes zigzag configurations:
In Figs. 4(a) and 4(b), clusters remain on the equator due to
the lack of a significant repulsion along z that could
counteract the mutual attraction. Unless a is very small,
the superfluid fraction for rotations around z is finite and
significantly larger than fs for rotations around x and y,
thus qualifying this state as supersolid [Fig. 5(a)] [83]. For

FIG. 4. Dipolar atoms on a sphere. (a)–(c) Particle density for
N ¼ 360,T ¼ 1 nK, andR ¼ 2.6 μm, ata=a0 ¼ 5 (a),a=a0 ¼ 50

(b), and a=a0 ¼ 350 (c). The density increases with the size of the
points, while colors are a guide for the eye. (d)–(f) Area-preserving
projections of the densities in (a)–(c). (g)–(i) Effect of gravity.
Brighter colors indicate larger values of the density (log scale).

FIG. 5. (a) Superfluid fractions fðxÞs (blue circles), fðyÞs (green

diamonds), and f
ðzÞ
s (red squares) as a function of a. (b),(c)

Thermal behavior of fðzÞs and f
ðxÞ
s , for a=a0 ¼ 5 (pink and light

blue), 50 (red and blue), and 350 (brown and purple).
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larger a, due to the increased particle exclusion, clusters
grow in size and merge together forming a ribbon wrapped
around the sphere; see Figs. 4(c) and 4(f). This specific
configuration is consistent with the density profile seen in
[26,27]. Beyond a ≈ 200a0, the ribbon is homogeneous;
however, between a ¼ 150a0 and a ¼ 200a0, there is a
wide crossover region where the clusters are still present
as azimuthal density modulations. The modulated-to-
unmodulated transition is shifted to slightly larger a
compared to other trapped geometries (see, e.g., [85]
and references cited therein) because of the enhanced
stability of spherically confined clusters. The superfluid
fraction along z is still significantly larger than in the other
directions. Finally, for very large values of a > 500a0, a
homogeneous superfluid state emerges, similar to the one
shown in Figs. 1(a) and 1(d). Simulations at different values
of N but fixed density show no significant scaling, a strong
indication that the same supersolid phase persists at larger
numbers of particles, up to experimental values. The
temperature analysis indicates that the supersolid behaves
differently from the superfluid ribbon [see Figs. 5(b) and

5(c)]. In the former case, fðzÞs remains nonzero up to ≈5 nK
due to a nonzero superfluid signal of the system around z.

As for fðxÞs , the signal is smaller and substantially constant
as a result of the thickness of the supersolid in the
latitudinal direction. Instead, the ribbon remains superfluid
up to much higher temperatures, while keeping its aniso-
tropic character for all T.
Figures 4(g)–4(i) depict simulations carried out by

including the effect of gravity on 164Dy atoms. Interes-
tingly, for small enough a the atoms still form a ring of
clusters perpendicular to z, although their center of mass is
no longer at z ¼ 0, but slightly shifted downward. For larger
values of a, even though part of the atoms are found near the
south pole, a shifted superfluid ribbon is still evident. This is
to be contrasted with what happens when we remove the
dipolar component of the interaction, but still keep the hard-
core repulsion: In this case, all particles are pushed by
gravity to the bottom of the trap [51].
To conclude, we have investigated the equilibrium

phases of identical bosons in a shell trap. As the bubble
expands, the system switches from three to two dimen-
sional in a continuous fashion. In this peculiar setting, the
PIMC algorithm needs an ad hocmodification that we have
discussed at length in [51]. With this tool at hand, we have
considered two species of bosons, i.e., soft-core atoms and
dipolar atoms, providing evidence at small nonzero temper-
ature of two unconventional supersolid behaviors. We have
argued that the realization of these phases is within reach of
present-day technology. Very significantly, we have shown
that the dipolar supersolid on the sphere is robust to the
effects of gravity. This surprising result indicates that it
could be probed experimentally even without sending the
apparatus to space. More generally, the ideas underlying
our original implementation of the PIMC algorithm on the

sphere can profitably be replicated for other curved
surfaces, allowing us to gain insight into the peculiarities
of bosons in spaces where the geometric potential is
nonzero (see more in the last section of [51]).
In this Letter, we have focused on demonstrating the

existence of a supersolid phase on the sphere. Using the
same numerical techniques, it would be also possible to
investigate the nature of the superfluid phase on the sphere,
e.g., Berezinskii-Kosterlitz-Thouless behavior or reentrant
effects [85,86]. Our work might also be relevant to super-
solid phases in the crust of neutron stars [87]. The
dynamical properties of shell-trapped bosons are another
open problem and an active area of research [88]. For
example, it would be interesting to see whether the super-
fluid ribbon in Figs. 4(c) and 4(f) can support persistent
currents in the same way as does a superfluid ring [89–91].
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Weitenberg, S. Nascimbène, J. Dalibard, and J. Beugnon,
Quench-induced supercurrents in an annular Bose gas,
Phys. Rev. Lett. 113, 135302 (2014).

[91] Y. Guo, R. Dubessy, M. d. G. de Herve, A. Kumar, T. Badr,
A. Perrin, L. Longchambon, and H. Perrin, Supersonic
rotation of a superfluid: A long-lived dynamical ring, Phys.
Rev. Lett. 124, 025301 (2020).

PHYSICAL REVIEW LETTERS 132, 026001 (2024)

026001-8

https://doi.org/10.1088/1367-2630/12/3/033032
https://doi.org/10.1088/1367-2630/12/3/033032
https://doi.org/10.1103/PhysRevLett.126.233401
https://doi.org/10.1038/s41467-023-37207-3
https://doi.org/10.1038/s41467-023-37207-3
https://doi.org/10.1038/s42254-023-00648-2
https://doi.org/10.1103/PhysRevA.107.023319
https://doi.org/10.1103/PhysRevLett.99.260401
https://doi.org/10.1103/PhysRevLett.99.260401
https://doi.org/10.1103/PhysRevLett.113.135302
https://doi.org/10.1103/PhysRevLett.124.025301
https://doi.org/10.1103/PhysRevLett.124.025301


1

SUPPLEMENTAL MATERIAL

This document contains additional information on the
quantum simulation method, including a detailed de-
scription of our biased PIMC method. Some more de-
tails on classical simulations are also given. Finally, in
the framework provided by the Gross-Pitaevskii equa-
tion, we discuss the changes intervening in the Hamil-
tonian of a loosely constrained interacting system when
the original 3D description is reformulated in a lower-
dimensional curved manifold.

Path integral Monte Carlo

The application of the Path integral Monte Carlo
(PIMC) method to particles moving near the surface of a
sphere has prompted us to develop a specialized version
of PIMC that we illustrate in this section. For ease of
understanding, we first recall the foundations of PIMC
and its most common implementations, with a focus on
the proposal and acceptance of new configurations.

Basically, PIMC relies on Feynman’s path integral ap-
proach to the equilibrium statistical mechanics of quan-
tum systems [49, 67, 68]. In this framework, all relevant
information is contained in the canonical partition func-
tion, Z, which is the trace of the density matrix operator
e−βH , where H is the Hamiltonian and β = (kBT )

−1.
In the canonical ensemble, the partition function of N
identical bosons reads:

Z =
1

N !

∑

P

∫

dR ρ(R, PR, β), (5)

where

ρ(R,R′, β) = ⟨R|e−βH |R′⟩ (6)

is the density matrix and PR = (rP (1), rP (2), . . . , rP (N))
is a permutation of particle coordinates.

The path integral approach consists in breaking up
β into M (imaginary-)time slices of length τ = β/M ,
and rewriting the partition function as a convolution of
density matrices (viz., imaginary-time propagators) at a
higher temperature:

Z =
1

N !

∑

P

∫

dR0dR1 . . . dRM−1

× ρ(R0,R1, τ)ρ(R1,R2, τ) · · · ρ(RM−1, PR0, τ) ,

(7)

where Rj = (rj1, r
j
2, . . . , r

j
N ) is the vector of coordinates

at a given time slice j. Therefore, associated with each
particle i are M classical images r

j
i (also called beads),

forming its imaginary-time trajectory (also called a poly-
mer, path, or worldline). Using approximate forms for ρ
at small τ , the thermodynamic properties of the quantum

system can be obtained by sampling suitable estimators
on the Boltzmann distribution of a classical system of
polymers, with the equivalence being exact in the limit
τ → 0.
Worldline configurations can be sampled through a

number of Monte Carlo schemes. The one we use, called
the “worm algorithm”, was developed in order to effi-
ciently sample bosonic permutations; it works by open-
ing the worldlines, allowing them to retract and extend in
imaginary time [50], and, most importantly, to join with
each other. This may lead to the formation of paths span-
ning a number of particles, which provides the visual rep-
resentation of quantum coherence; sampling these paths
properly is essential to correctly compute expectation
values at low temperature.
Regardless of the scheme used, a crucial ingredient

in the implementation of the PIMC method is the free-
particle propagator. For simplicity, we specialize our dis-
cussion to the case of a single particle, but all concepts
can be generalized to the many-particle case in a straight-
forward way. In the absence of external and interaction
potentials, the density matrix for a single particle reads:

ρfree(r, r
′; τ) =

1

(4πλτ)d/2
exp

{

− (r− r′)2

4λτ

}

, (8)

whereas, when potentials are present, in the limit τ → 0
it can be approximated as

ρ(r, r′; τ) = ρfree(r, r
′; τ) e−τV (r) , (9)

called primitive approximation. In our simulations, we
adopt this approximation to model the soft-core potential
and the dipolar potential outside the core; the hard-core
part of the latter is instead treated with the Cao-Berne
propagator [69–71]. Convergence in τ is obtained for a
number of timeslices between 64 and 256 in all cases. In a
Monte Carlo scheme, new configurations are proposed by
sampling a product of free-particle propagators and ac-
cepted or rejected based on the changes occurred in the
external and interaction potentials. This is easily done
computationally because the propagator (8) between two
successive polymer beads has the form of a Gaussian
distribution with variance σ =

√
2λτ , for which well-

established sampling algorithms exist. In the context of
the worm algorithm, which works with open worldlines,
the simplest move is the propagation of the particle posi-
tion from time slice j to the next one. The displacement
of position rj+1 with respect to rj is drawn from the dis-
tribution ρfree(r

j , rj+1; τ) and accepted or rejected de-
pending on change in the potential, V (rj+1) − V (rj).
More generally, while updating the position of one bead
at a time results in a slow simulation process, much more
efficient moves are available: an essential ingredient of all
PIMC algorithms are multilevel moves [68], which update
an entire portion of worldline, open or closed, at once. Fi-
nally, moves that shift worldlines rigidly in space are also
routinely employed.
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More sophisticated techniques exist which, by relying
on better approximations to the potential term, build
upon the above procedure to improve the efficiency of the
acceptance step. When it comes to the external potential,
a special case is represented by the harmonic potential:
in this case, an analytic solution is available for the full
propagator

ρosc(r, r
′, τ) = ⟨r| exp

{

−τ p̂
2

2m
+
mω2r̂

2

2

}

|r′⟩ , (10)

requiring no separation between the kinetic and potential
terms. In general, however, the external potential must
be treated in the primitive approximation or through
higher-order approximations [72]. As we now explain,
this poses a problem for the bubble-trap potential, since,
for T → 0, it leads to reject almost every proposed con-
figuration.

The size of a free particle — as well as the average
diameter of the 3D polymer generated by sampling (8)
— is proportional to the thermal wavelength, and there-
fore increases as the temperature is reduced, eventually
becoming infinite when T = 0. It is immediate to real-
ize that, no matter how the confining potential is cho-
sen, most polymer beads will eventually lie in regions of
space that are energetically unfavorable. To avoid this,
it is necessary to work with a very large number of times-
lices and displace only a few beads at a time, so that the
displacements are on the same scale of the characteristic
length associated with the external potential; clearly, this
would make the simulation very slow. As we have seen,
in the case of a harmonic potential this problem can be
circumvented by using a harmonic propagator in place
of the free-particle propagator. However, this would not
hold for arbitrary confining potentials; for this reason,
the use of PIMC is usually limited to free or harmonically
confined interacting systems, or to bounded external po-
tentials such as those featuring optical lattices [73].

Biased PIMC method for bubble traps

The biased PIMC algorithm proposed herein gener-
ates new configurations according to a distribution that
is loosely tailored to fit the external potential. Compared
to the standard algorithm, we introduce the following
changes:

1) When attempting the propagation of a particle from
time slice j to time slice j + 1, instead of generating the
displacement from (8), we draw it from an anisotropic
Gaussian distribution. A radial displacement is pro-
posed with variance σr. An angular displacement is also
proposed, derived from drawing a length from a two-
dimensional Gaussian distribution with variance σθ. This
length must then be converted into an angle; there are
different ways to do this, so the specifics of the move can

vary, but this is not important since detailed balance will
take care that small differences in the generated paths are
smoothed out. For example, we can generate the length
of arcs along the sphere; in this case, we draw lθ from the
Gaussian distribution and set θ = lθ/R, leading to

P (∆r,∆θ) =
1√
2πσr

e
−

∆2
r

2σ2
r

1

2πσ2
θ

e
−

∆2
θ
R2

2σ2
θ . (11)

Another option is that lθ is the length of a chord, in which
case θ = 2arcsin (lθ/2R). We have tested both solutions
and found no significant differences in the results.
2) In a multilevel move, we construct successive posi-

tions along an arc rather than along a straight line.
3) Instead of proposing rigid shifts of a worldline in 3D

space, we make the move in two steps: a radial shift first
and then a rotation of the worldline around the center of
the sphere.
A move is drawn from a proposal kernel T (R → R′),

then accepted with probability W (R→ R′). In order for
detailed balance to be satisfied, we adopt the Metropolis
rule

W (R→ R′) = min

{

1,
T (R′ → R)

T (R→ R′)

π(R′)

π(R)

}

, (12)

where π is the equilibrium distribution.
In the standard algorithm, T (R → R′) ∝ ρfree(R

′),

and since π(R) ∝ ρfree(R
′)e−V (R′), the ρfree terms will

cancel out, leading to

W (R→ R′) = min

{

1,
e−V (R′)

e−V (R)

}

. (13)

In the biased algorithm, T (R → R′) is a different dis-
tribution and all terms in (12) must be computed ex-
plicitly. This may cause issues when σr or σθ are very
different from

√
2λτ , because large terms in the fraction

can lead to either very large or very small acceptance
rates depending on the move, especially in the worm al-
gorithm when beads are removed altogether. For this
reason, we employ symmetric moves where, whenever a
worldline segment is deleted, it is immediately replaced
by a new one. It is also possible to simulate the limiting
case where u0 → ∞ by simply setting σr = 0. The above
procedure is applied for both closed worldline configura-
tions and “worm moves” involving open worldlines. As
an illustrative example, in Fig. 6 we show the worldline
configuration at a single simulation step in equilibrium,
corresponding to the cluster supersolid in Fig. 1b.
To confirm that bosons are confined near the spheri-

cal surface, we look at the radial density profile, which
is the particle density integrated over the solid angle. In
Fig. 7, we show the radial density at three values of λ,
corresponding to the three cases of Fig. 1. Indeed, we
see that particles are lying near the spherical surface, as
expected from the implementation of our biased PIMC
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Figure 6. Snapshot of a typical configuration of the soft-core
system in the polymer representation at T = 0.5, R = 1.4,
and λ = 0.16. Each of the worldlines consists of M = 64
beads. The shades of blue distinguish between distinct groups
of connected worldlines. Top: u0 = ∞. Bottom: u0 = 2. In
either case the number of clusters is 12.

for bubble traps. Interestingly, when the effects of de-
localization are important (superfluid phase at λ = 0.5,
cyan dotted line; and supersolid phase at λ = 0.16, blue
dashed line), the distributions appear broader than in the
other case of the normal cluster solid (λ = 0.01, purple
solid line), which instead displays a sharper peak.

A key point to explore the effects of quantum statistics
through a PIMC simulation is the distribution of polymer

Figure 7. Radial density profile at N = 120, T = 0.125, R =
1.4, and λ = 0.5 (blue dotted line), 0.16 (blue dashed line),
0.01 (purple solid line). Here u0 = 2.

Figure 8. Relative frequency with which permutation cycles
of various lengths occur at N = 120, T = 0.125, R = 1.4,
and λ = 0.5 (blue dotted line), 0.16 (blue dashed line), 0.01
(purple solid line). Here u0 = 2.

lengths, which is intrinsically connected to the indistin-
guishability of the particles and reflects quantum coher-
ence as well as delocalization [74]. In this framework,
we consider the probability Pcycle to find polymer chains
involving Ncycle particles, which we call permutation cy-
cles (1 ≤ Ncycle ≤ N). This probability is obtained by
updating at each step a histogram of Ncycle. Fig. 8 re-
ports results for the same set of parameters in Fig. 1a-c.
In the superfluid regime (λ = 0.5, cyan dotted line) we
find permutations extending over groups of particles of
any number of particles. As the kinetic term decreases
(λ = 0.16, blue dashed line), the system enters a super-
solid regime where we still observe permutation cycles
over a considerably large amount of particles, again im-
plying global coherence among clusters. Finally, for small
λ values (λ = 0.01, purple solid line) permutations only
involve the bosons contained in the same cluster. Here
we have a normal solid phase, where quantum effects are
limited to the single droplet.
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Superfluidity and area estimator

A strong point of the PIMC method is the possibility
to identify a phase with a periodic modulated density as
supersolid [75]. Indeed, a characteristic feature of super-
solids is their response to a slow axial rotation [76], which
occurs with a reduced moment of inertia relative to an
ordinary solid of same mass. The superfluid fraction fs,
i.e., the relative reduction in the moment of inertia, can
be accurately estimated in a PIMC simulation.

In bubble traps, fs has been evaluated by sampling
the so-called “area estimator” [77]. This method draws
a direct connection between the area enclosed by tangled
paths of polymers in a finite system and the reduction of
the moment of inertia of the particles compared to the
classical case. For reasons of symmetry, we only inspect
the superfluid fraction along three orthogonal axes (k =

x, y, and z). When doing so, the formula for f
(k)
s reads:

f (k)s =
4m2

ℏ2
βI

(k)
cl

(

⟨A2
k⟩ − ⟨Ak⟩2

)

, (14)

where we keep the full definition by Sindzingre et al. in
Ref. [73, 77]. In this formula, Ak is the total area enclosed
by particle paths projected onto the plane perpendicular
to axis k, which can be written in terms of particle posi-
tions as

Ak =
1

2

N
∑

i=1

M−1
∑

j=0

(

r
j
i × r

j+1
i

)

k
, (15)

whereas I
(k)
cl is the classical moment of inertia around the

k axis.
For the isotropic soft-core fluid, the superfluid fraction

along any of the principal directions is the same within
errors; therefore, we only report data for fs = (fxs +fys +
fzs )/3. Conversely, in the dipolar case the anisotropy of
the interaction makes it so that fzs differs from fxs and
fys over a significant range of parameters; therefore, in
figures their values are reported separately.

The pair distribution function

For clarity, here we describe the method of computing
the pair distribution function, whose formal definition as
a thermal average is (for spinless particles):

g(r) = ρ−2⟨Ψ†(x)Ψ†(x′)Ψ(x′)Ψ(x)⟩ (16)

where r = |x − x′| is the Euclidean distance in three
dimensions, ρ is the number density, and Ψ and Ψ† are
field operators (an average over the direction of x − x′

is implied in (16)). In a PIMC simulation, g(r) is sam-
pled as a histogram. The interparticle distance r is di-
vided into bins, and a reference particle is chosen; at each

x/R
-1

1

y/R

-1

1

z/R

-1

1

0 2-1

1
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0 2

Figure 9. Non-interacting bosons (left) and bosons with hard-
core interaction, a = 50 a0 (right) in the presence of gravity.
In both cases, as expected, particles fall to the bottom of the
trap.

sampling step, the distance between the reference parti-
cle and each other particle is calculated, and the value
of the corresponding bin in the histogram is increased.
The resulting histogram is then averaged over sampling
steps. In Euclidean three-dimensional space, normaliza-
tion is accomplished by dividing by a factor of 4πr2; in
the present case, a number of different choices could be
made, but we decide to keep the same normalization. In
a PIMC simulation, sampling is done at each time slice
and further averaged over time slices.

Simulations with gravity

We have performed simulations in the presence of a
gravitational field with g = 9.81m/s

2
. In Fig 9, we show

results for the non-interacting and hard-core cases, con-
firming that the simulations give the expected result of
particles sagging to the bottom of the bubble trap.

Classical simulations

We herein present, with more detail than provided in
the main text, the results of Monte Carlo (MC) and
molecular dynamics (MD) simulations of classical pen-
etrable spheres of diameter σ, subject to the external
potential in Eq. (2). For simplicity, in MD simulations
we actually employ a continuous generalized exponen-
tial model potential with exponent 30, which would have
practically the same behavior of the penetrable-sphere
model. Simulations are performed at fixed N = 120, T =
0.5, u0 = 2, and Ω = 0.0441, while the reference radius
R is varied through ∆.
We employ the standard Metropolis MC algorithm

with local and non-local moves. At each MC step, after
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randomly selecting a particle i with position ri and dis-
tance di = |ri| from the trap center, a move is attempted
from ri to r′i, choosing between two equally likely possi-
bilities: 1) r′i is drawn at random from a cube of side 2δ
centered at ri; 2) r′i is an arbitrary point on the sphere
of radius di. As usual, δ is adjusted during the equili-
bration stage so as to ensure an average 40-50% accep-
tance of type-1 moves. In MD simulations, the timestep

is dt = 0.005
√

mσ2

ϵ , where m is the mass of the particles,

and the thermal bath is modeled by a Nosé-Hoover ther-
mostat with a temperature damping factor τ = 100 dt in
time units. As for the initial configuration, we consider
two possibilities: either the particles are placed at ran-
dom on the reference sphere, or they are homogeneously
distributed inside it (except for the case of the harmonic
trap, where they are all placed at R = 0). We gen-
erate hundreds of million MC steps and let the system
evolve for a similar number of MD timesteps, to reduce
the chance that the system might remain trapped in a
metastable state. In the case of MD simulations, the ini-
tial velocities are randomly selected according to a Gaus-
sian distribution. For R less than 1.5, the system invari-
ably relaxes to a clustered configuration. Once a stable
cluster phase has formed, jump diffusion events [78] be-
tween the clusters are extremely rare on the time scale
of the simulations. As a function of R, we observe a se-
quence of “transitions” between different cluster arrange-
ments (“phases”), which in MC simulations are all char-
acterized by equally populated clusters, until the spheri-
cal density becomes so small that a homogeneous fluid is
formed.

R classical quantum (λ = 0.16)

0 5 (3+2), 7 (5+2) 6 (OCT)
0.21 6 (OCT), 7 (5+2)
0.42 4 (TET), 5 (3+2), 8 (SAP) 6 (OCT)
0.63 4 (TET)
0.84 6 (OCT) 6 (OCT)
1.05 10 (SAP+2)
1.155 12 (ICO) 8 (SAP)
1.26 15
1.4 20 12 (ICO)

Table I. Number Nc of clusters and their spatial arrangement
as a function of R (see text). The list of abbreviations is as
follows. 4 (TET): 4 equivalent clusters at the vertices of a
regular tetrahedron (TET). 5 (3+2): 3 clusters at the ver-
tices of an equilateral triangle + 2 clusters on the axis of the
triangle, farther from the origin. 6 (OCT): 6 equivalent clus-
ters at the vertices of a regular octahedron (OCT). 7 (5+2):
5 clusters at the vertices of a regular pentagon + 2 clusters on
the axis of the pentagon, closer to the origin. 10 (SAP+2): 8
equivalent clusters at the vertices of a square antiprism (SAP)
with regular faces + 2 clusters on the axis of the antiprism,
at the same distance from the origin. 12 (ICO): 12 equivalent
clusters at the vertices of a regular icosahedron (ICO).

We report in Table 1 the final number Nc of clusters

and their overall arrangement for a few R values, includ-
ing for comparison also the available results of quantum
simulations for λ = 0.16. For the smaller R values, two
or three values of Nc are quoted in the table, since the
outcome of simulation showed a dependence on the sim-
ulation method and/or the initial configuration, suggest-
ing the existence of several long-lived states that are close
in free energy and are protected by high free-energy bar-
riers. Similar problems exist in quantum simulations for
small values of λ and R. As a rule, relaxation to equilib-
rium is faster the larger is R.

To demonstrate the difference in relaxation time be-
tween small and large R values, we have prepared two
MD movies [79]. In the first movie [80], we show four
segments from a MD simulation 5 × 108 timesteps long,
for the case R = 0 (harmonic trap). Each segment of
simulation lasts 5000 timesteps and particle configura-
tions are dumped every 10 timesteps, corresponding to
500 video frames. In the first segment, starting from
t = 0, we monitor the onset of a large cluster at the ori-
gin along with a few satellites made up of a single particle
each. Following this event, for several hundreds of thou-
sand MD timesteps we observe a system of four clusters,
where the largest cluster still lies near the origin, while
the remaining three clusters continue to grow. Only in
the last few million MD steps, we observe the formation
of a fifth cluster, initially consisting of a single particle,
and we report this event in the second segment of the
movie. In the third segment, we show the addition of
a new particle to the fifth cluster, whereas in the last
segment the addition of another particle makes the clus-
ter finally populated with three particles. Our reasonable
guess about the future evolution of the system is that the
growth of the less-populated clusters will continue until
the number of particles in all five clusters becomes nearly
equal. In the second movie [81], relative to R = 1.155,
we follow the simulation for 5000 timesteps, starting from
t = 0, with particle configurations still dumped every 10
timesteps. Starting from an initial configuration where
particles are randomly distributed over the spherical sur-
face, we monitor the quick formation of eleven clusters in
the first hundred timesteps. Then, after approximately
3 − 4 seconds of movie (about 1000 timesteps), we see
one of the clusters stretching and eventually breaking in
two distinct clusters, thus giving rise to the stable icosa-
hedral configuration referred to in Table 1. In summary,
in the case of the harmonic trap (R = 0), after 5× 108dt
a structure with five clusters is established, but many
more steps are likely needed in order that clusters become
equally populated. On the contrary, for R = 1.155, the
approach to equilibrium is extremely fast: it only takes
about 103dt for the clusters to assemble in an icosahedral
arrangement.

We further illustrate the features of cluster phases by
reporting in Fig. 10 results for two structural functions:
the pair distribution function g(r), r being the Euclidean
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Figure 10. Top: pair distribution function. Bottom: radial
density. In the bottom panel, the vertical lines mark the
various R values. The only case where n(d) shows two peaks
is R = 0 (Nc = 5). Observe that for R = 0.42 (Nc = 4) the
average distance of clusters from the origin is rather different
from R. Also notice that Nc = 10 for the R = 1.05 case shown
here.

distance of a particle from a reference particle, and the
radial density n(d), where d denotes the distance of a
particle from the trap center. As R grows, the transi-
tions between different “phases” are reflected in qualita-
tive changes of g(r). The profile of n(d) also changes,
from one characterized by two peaks at R = 0 to a sin-
gle progressively sharper peak for R > 0. For not too
small radii, the rationale behind the choice of the equi-
librium arrangement seems to be providing clusters with
the most efficient occupation of the available space or,
equivalently, with the highest coordination number Z.
Due to geometric frustration, i.e., to the obstruction of
triangular order due to curvature, this number cannot

be six. As R varies, the system adjusts the number of
clusters so as to keep the distance between neighboring
droplets always close to ≈ 1.25 (see top panel of Fig. 10);
in turn, this implies an increase of Z with R towards the
asymptotic value of 6.

Thin-shell limit

The quantization of a system of particles confined to
a curved surface raises formidable challenges that can be
pragmatically solved by regarding the constraint as the
limit of a large restoring force arising when the particle
coordinates deviate from their constrained values [82].
Atoms in a bubble trap provide a perfect representation
of this viewpoint, as confinement to a spherical surface
is here realized through an external potential that be-
comes progressively tighter as the radius R of the ref-
erence sphere S increases. When R is large enough
the external potential reduces to a narrow harmonic well
that constrains particles in the immediate neighborhood
of the S surface. The question then arises as to what
two-dimensional (2D) description is better suited to rep-
resent such a strong confinement. While simulation re-
sults remain the ultimate benchmark for the accuracy
of any theoretical proposal, some clues on the nature of
the reduced description are provided by zero-temperature
calculations. Dimensional reduction at the level of the
Gross-Pitaevskii (GP) equation has been considered in
various papers: depending on the geometry of the trap,
both one-dimensional (1D) [83–86] and 2D effective de-
scriptions [17, 87] can arise, where additional terms ap-
pear in the GP equation as a result of a strong (though
not infinitely strong) confining field. Specifically, com-
mon to all such approaches is that the motion of quan-
tum particles constrained to a curved surface is affected
by a curvature-induced geometric potential [88, 89]. By
elaborating further on the treatment put forth in [17], we
sketch below the derivation of the generalized GP equa-
tion for an arbitrary interaction between the particles,
and then specialize our discussion to the spherical sur-
face.
Let Σ be a regular surface and call R(u, v) the

parametrization of a small piece of Σ (“patch”). For
points r close to this portion of Σ, it is convenient to
switch from Cartesian coordinates, r = (x, y, z), to new
coordinates qi = (u, v, ζ) (parallel and orthogonal to Σ),
see e.g. Ref. [90]:

r = R(u, v) + ζn̂(u, v) , (17)

where

n̂(u, v) =
Ru ∧Rv

|Ru ∧Rv|
(18)

is the unit normal to Σ. Transformation (17) is one-to-
one sufficiently close to Σ. We will later consider the limit
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where the patch deviates only slightly from planarity,
meaning that the local radii of curvature are much larger
than the maximum allowed value of |ζ|. Moreover, we
denote Σ(ζ) the 2D manifold (“parallel” to Σ) obtained
by shifting all points of Σ by ζ along the normal direction.
The metric tensor Gij (with i, j = 1, 2, 3) relative to

the transformation (17) reads:

Gij ≡
∂r

∂qi
· ∂r
∂qj

=





guu guv 0
gvu gvv 0
0 0 1



 (19)

with

gαβ = Rα ·Rβ + 2Rα · ∂n̂
∂qβ

ζ +
∂n̂

∂qα
· ∂n̂
∂qβ

ζ2

≡ g
(0)
αβ + 2sαβζ + hαβζ

2 (for α, β = 1, 2) .(20)

In differential geometry, g
(0)
αβ and sαβ are respectively

known as the first and second fundamental forms of Σ.
The third fundamental form, hαβ , is related to the pre-
vious two by [91]

hαβ = −Kg(0)αβ + 2Hsαβ , (21)

H and K being the mean and Gaussian curvature of Σ,
respectively.

As usual (see, e.g., Ref. [53]), the GP equation is de-
rived by extremizing the grand potential per unit volume
at T = 0, ω[ψ], written as a functional of a trial conden-
sate wave function ψ:

ω[ψ] = ρ

∫

N

d3r ψ∗(r)

[

− ℏ
2

2m
∇2 + Vext

+
N − 1

2

∫

N

d3r′ u(|r− r′|)|ψ(r′)|2 − µ

]

ψ(r) ,

(22)

where Vext(r) is the confining field and N is the neigh-
borhood of Σ where particles are forced to lie. In order
to separate the tangential from the normal motion, the
above integral should first be written in terms of (u, v, ζ)
coordinates (for each single patch of Σ). Then, the idea
is to integrate out the ζ dependence everywhere, so as to
remain with a functional of the 2D wave function only.
After the change of coordinates, the kinetic-energy op-
erator is still −ℏ

2/(2m) times the Laplacian, for so it is
prescribed by canonical quantization. Now, in curvilin-
ear coordinates the Laplacian operator is given by

∇2 =
1√

detG

∂

∂qi

(√
detGGij ∂

∂qj

)

, (23)

as it follows from the Voss-Weyl formula for the diver-
gence operator. Since detG = det g and G3j = δj,3, we
immediately find:

∇2 = ∇2
ζ +

∂ ln
√
det g

∂ζ

∂

∂ζ
+

∂2

∂ζ2
, (24)

where

∇2
ζ =

1√
det g

∂

∂qα

(

√

det g gαβ
∂

∂qβ

)

(25)

is the Laplacian restricted to Σ(ζ).

Following the suggestion of [17] we write the wave func-
tion of the condensate as

ψ(u, v, ζ) =
1

4√
2πσ2

e−
ζ2

4σ2
φ(u, v)
4√
det g

, (26)

where σ (not to be confused with a particle diame-
ter) is a small variational parameter and ψr(u, v) =

φ(u, v)/
4
√

det g(0) represents the 2D wave function of the
system. The Gaussian function in Eq. (26) plays the role
of system ground state along the normal direction, where
the confining field acts as a harmonic potential:

Vext(ζ) =
1

2
mω2ζ2 . (27)

Assuming that the thickness
√

ℏ/(mω) of N is much
smaller than the minimum radius of curvature of the
patch, the normalization of (26) should be effectively read
as

1 =

∫

du dv |φ(u, v)|2 =

∫

du dv
√

det g(0)|ψr(u, v)|2 .
(28)

It is now straightforward, even though lengthy, to cal-
culate the Laplacian (24) of the ψ function in (26):

∇2ψ =

{[

ζ2

4σ4
− 1

2σ2
− 1

4

(

∂ ln
√
det g

∂ζ

)2

− 1

2

∂2 ln
√
det g

∂ζ2
− ζ

2σ2

∂ ln
√
det g

∂ζ

]

φ(u, v)
4√
det g

+ ∇2
ζ

φ(u, v)
4√
det g

}

e−
ζ2

4σ2

4√
2πσ2

. (29)

The next step is to approximate the first and second
derivatives of ln

√
det g by their ζ = 0 values, and sim-

ilarly replace the restricted Laplacian term with ∇2
0ψr,

so that decoupling of coordinates becomes possible. A
similar procedure yields for the interaction term:

∫

N

d3r ψ∗(r)

∫

N

d3r′ u(|r− r′|)|ψ(r′)|2ψ(r)

=

∫

du dv
√

det g(0)(u, v)|ψr(u, v)|2

×
∫

du′dv′
√

det g(0)(u′, v′)

×
∫

dζdζ ′ u(|r− r′|) 1

2πσ2
e−

ζ2+ζ′2

2σ2 |ψr(u
′, v′)|2 .

(30)
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The inner integral above is computed at the lowest order
in σ, obtaining:

∫

dζdζ ′ u(|r− r′|) 1

2πσ2
e−

ζ2+ζ′2

2σ2 = w(R−R′, n̂, n̂′) ,

(31)
where

w(x, n̂, n̂′) = u(x) + σ2

{

u′(x)

x

− 1

2

[

(n̂ · x̂)2 + (n̂′ · x̂)2
]

(

u′(x)

x
− u′′(x)

)}

+O(σ4) . (32)

Hence, the curvature modifies the interaction between
two particles, which acquires an additional dependence
of order σ2 on the normal vectors at the positions of the
particles.

In conclusion, the grand potential becomes a functional
of ψr:

ω[ψr] ≈ ρ

∫

du dv
√

det g(0)ψ∗
r (u, v)

{

− ℏ
2

2m
∇2

0

+
ℏ
2

4m

[

1

2

(

∂ ln
√
det g

∂ζ

)2

+
∂2 ln

√
det g

∂ζ2

]

ζ=0

+
ℏ
2

8mσ2
+

1

2
mω2σ2 +

N − 1

2

×
∫

du′dv′
√

det g(0)′ w(R−R′, n̂, n̂′)|ψr(u
′, v′)|2

− µ}ψr(u, v) . (33)

Upon imposing that the functional derivative of ω[ψr]
with respect to ψ∗

r is zero, we arrive at the GP equation
in reduced dimensionality:

µψr =

(

− ℏ
2

2m
∇2

0 + Vq +
ℏ
2

8mσ2
+

1

2
mω2σ2 + (N − 1)

×
∫

du′ dv′
√

det g(0)′ w(R−R′, n̂, n̂′)|ψr(u
′, v′)|2

)

ψr ,

(34)

where

Vq(u, v) =
ℏ
2

4m

[

1

2

(

∂ ln
√
det g

∂ζ

)2

+
∂2 ln

√
det g

∂ζ2

]

ζ=0

(35)
is the geometric potential [88, 89] and σ is to be adjusted
so that the functional derivative of (33) with respect to
σ vanishes too (the optimal σ would be of the order of
√

ℏ/(mω)). Clearly, Eq. (34) resembles the standard GP
equation, except for three additions: 1) a constant energy
shift; 2) a O(σ2) correction to the interaction between
two particles; and 3) a curvature-induced external field
Vq.

For the spherical surface of radius R, the natural co-

ordinates are the spherical angles θ and φ. Then, g
(0)
θθ =

R2, g
(0)
θϕ = g

(0)
ϕθ = 0, g

(0)
ϕϕ = R2 sin2 θ, while H = 1/R and

K = 1/R2. Using the general formula [17]

det g = det g(0)(1+4Hζ+(4H2+2K)ζ2+4HKζ3+K2ζ4) ,
(36)

we obtain

det g = R4 sin2 θ

(

1 +
ζ

R

)4

. (37)

It then follows from the latter equation that the geo-
metric potential (35) is identically zero for the spherical
surface [17].


