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We present a Monte Carlo simulation study of the phase behavior of two-dimensional classical particles

repelling each other through an isotropic Gaussian potential. As in the analogous three-dimensional case,

a reentrant-melting transition occurs upon compression for not too high temperatures, along with a

spectrum of waterlike anomalies in the fluid phase. However, in two dimensions melting is a continuous

two-stage transition, with an intermediate hexatic phase which becomes increasingly more definite as

pressure grows. All available evidence supports the Kosterlitz-Thouless-Halperin-Nelson-Young scenario

for this melting transition. We expect that such a phenomenology can be checked in confined monolayers

of charge-stabilized colloids with a softened core.
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In two dimensions thermal fluctuations do not allow
the existence of a true crystalline order; in fact, only a
quasi-long-range translational order is possible while
bond-angular order is truly long-ranged. This opens the
way to a two-stage melting transition through an intermedi-
ate ‘‘hexatic’’ phase with short-ranged translational order
but extended bond-angle correlations. In the celebrated
Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)
theory of two-dimensional (2D) melting [1], the hexatic
phase is promoted by the thermal unbinding of dislocation
pairs, followed by the proliferation of free disclinations on
entering the normal fluid. The KTHNY theory predicts
melting to be continuous. In two dimensions, when the
energy of the dislocation core is sufficiently small, a first-
order melting transition is more likely, driven by the sponta-
neous generation of grain boundaries [2,3]. Hexatic phases
have been observed in various types of colloids [4–12],
and found also in some classical [13–17] and quantum
simulations [18]. Moreover, nothing prevents the hexatic
phase to be just metastable, as observed, e.g., in Ref. [19].

Observing the KTHNY scenario is notoriously difficult
because of the existence of important finite-size effects and
long equilibration times. Also, the usually narrow tempera-
ture extent of the hexatic phase makes it hard to distinguish
a two-stage melting from a single weakly first-order
transition. Particularly severe is the situation for hard-core
particles, where enormous samples and huge simulation
times are required in order to discriminate between the
various transition scenarios [20], while less demanding
may be state sampling for systems of ‘‘soft’’ particles
whose steric constraints are less pronounced.

We hereby inquire into the existence of a hexatic phase
for the 2D Gaussian-core model (GCM) pair potential [21],
vðrÞ ¼ � expð�r2=�2Þ with � > 0, which is somewhat
representative of a whole class of systems of interpenetrat-
ing particles (e.g., dilute dispersions of polymer chains)
[22]. In three dimensions, this system is known to exhibit

reentrant melting (i.e., melting upon compression at con-
stant temperature) [23] as well as waterlike anomalies [24].
Except for a 30-year-old canonical-ensemble investigation
[25] with inconclusive answers, we do not know of any
simulation study of the melting behavior of 2D systems
of particles with bounded interactions with a focus on the
quest for a hexatic phase. Furthermore, it would be inter-
esting to know about the interplay between anomalous
melting (that is, melting of the solid into an anomalous
fluid) and the modality of decay of bond-angle correla-
tions, an issue that has never been addressed before. As
discussed in more detail below, the melting of the 2D GCM
is indeed continuous and two-staged, with an extremely
narrow hexatic region whose properties comply with the
predictions of the KTHNY theory. The complete phase
diagram is plotted in Fig. 1, together with a number of
anomaly loci in the fluid phase.
Particles interacting through a repulsive Gaussian po-

tential are expected to exhibit reentrant melting and a
maximum melting temperature [26]. By examining all the
five Bravais lattices and the honeycomb lattice, we first
checked that the most stable state of the GCM at zero
temperature is a triangular crystal for any pressure P.
This gave us confidence that the triangular lattice provides
the structure of the solid phase also for nonzero tempera-
tures. We carried out isothermal-isobaric Monte Carlo
(MC) simulations of N-particle samples (with N up to
6048) in order to locate melting for a number of selected
pressures (0.05, 0.2, 0.4, and 0.6, in reduced, �=�2 units).
Our method consists in running simulations in a sequence,
starting from the cold triangular solid on one side of the
chain and from the hot fluid on the other side. Then, the
solid was gradually heated (the fluid was cooled) in tem-
perature steps of �T ¼ 0:0005 (in reduced, �=kB units),
until we observed the abrupt melting (freezing) of the
system. With this protocol, we found the same shape of
the melting line as in the three-dimensional GCM, with a
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maximum melting temperature Tm of about 0.0115 for
P ¼ Pm & 0:2. We plot in Fig. 1 the melting line with three
other curves which encompass regions in the fluid phase
where an ‘‘anomalous’’ behavior occurs. On increasing the
density, one first meets the so-called structural anomaly
(which is where the absolute pair entropy reaches its maxi-
mum) [27], followed by the diffusion-anomaly locus (where
the self-diffusion coefficient [28] attains its minimum),
and by the density-anomaly line (where the particle-number
density attains a local maximum). The same succession of
anomaly loci is found in three dimensions [29].

To disentangle first-order from continuous melting, we
performed another series of runs across our earlier guess of
the transition point, now with a 5 times larger T resolution
and also allowing for much longer equilibration times
(106 sweeps, that is a million MC moves per particle)
and production runs (5� 106 sweeps). A typical result is
shown in Fig. 2, where we report the average specific
energy u and particle-number density � for various system
sizes as a function of T for P ¼ 0:6. A continuous path
joins the solid and fluid branches with no evidence of
hysteresis, which points to a smooth transition between
the solid and fluid phases. Moreover, the energy and vol-
ume histograms have a simple Gaussian shape with no
trace of bimodality within the relevant temperature range.
As we are going to show in the following, the intermediate
region between the solid and the (normal) fluid can be
qualified as hexatic.

We measured two different order parameters (OP),
which are separately sensitive to the overall translational
and orientational triangular order, with their respective
susceptibilities and correlation functions. The translational
OP is taken to be

c T ¼ 1

N

���������
X
i

eiG�ri
��������
�
; (1)

where the sum is over the particle labels and G is any first-
shell reciprocal-lattice vector of the triangular crystal.
From its very definition, it follows that c T is sizeable
only in a triangular solid that is oriented in a way consistent
with the length and direction of G. Hence, c T is only
measured on heating, where memory of the original crystal
orientation is preserved as long as the system is large and
remains solid. We anyway checked—through the location
of the main peaks of the structure factor—that the orienta-
tion of the solid never changed from one run to the next. A
sharp drop of c T signals the melting of the solid into a
fluid, be it hexatic or normal; concurrently, the correspond-
ing susceptibility
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shows a distinct peak whose location is an unambiguous
estimate of the melting transition point. At regular intervals
during the simulation, we made use of the Voronoi con-
struction in order to identify the ncðiÞ nearest neighbors
(NN) of each particle i, together with the orientation �NN of

FIG. 2 (color online). Total energy per particle (top) and
particle-number density (bottom) for three different sizes (N ¼
1152, yellow; N ¼ 2688, red; N ¼ 6048, blue) for P ¼ 0:6. We
show results for both heating (squares) and cooling (dots) trajec-
tories (1� 106 MC sweeps of equilibration plus 5� 106 sweeps
of data accumulation). The solid and fluid branches (dotted and
solid lines, respectively) are computed with N ¼ 1152 and much
smaller statistics. The arrows mark the estimated transition points
(see Fig. 3). The small hysteresis observed upon cooling for N ¼
2688 indicates that much longer runs are needed in order that
the solidifying system may get rid of the extra defects.

FIG. 1 (color online). Phase diagram of the 2D GCM with
anomaly loci. Plotted in black is the melting line, with red dots
at the computed solid-to-hexatic transition points. The black
squares (with error bars superimposed) give the upper stability
threshold of the solid when heated isobarically in steps of �T ¼
0:0005. The inset shows a magnified portion of the melting line
with an adjacent (magenta) strip corresponding to the hexatic
region. The dotted curves mark the boundary of anomaly regions
(structural anomaly, red; diffusion anomaly, blue; density anom-
aly, black). Observe that the red and blue curves, which appear
indistinguishable on the scale of the figure, depart from each
other at much higher temperatures.
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each neighbor bond with respect to a reference axis.
Whence, the orientational OP follows as

c 6¼ 1

N

���������
X
i
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: (3)

The orientational susceptibility �6 is then defined in a way
analogous to Eq. (2), with �6ðriÞ replacing expðiG � riÞ.
c 6 undergoes a sudden drop at the hexatic-fluid transition,
i.e., at a temperature larger than the one where c T van-
ishes. Finally, the local bond-angular OP �6ðriÞ enters the
definition of the orientational correlation function (OCF):

h6ðrÞ¼��2

�X0
i;j

�3ðri�RÞ�3ðrj�R0Þ�6ðriÞ��
6ðrjÞ

�
; (4)

where the prime over the sum excludes i ¼ j and r ¼
jR�R0j. The KTHNY theory predicts an algebraic

r��ðTÞ large-distance decay of the OCF in the hexatic
phase, which should be contrasted with the exponential
asymptotic vanishing of angular correlations in a normal
fluid. Another prediction of the theory is � ¼ 1=4 at the
hexatic-to-normal fluid transition point.

In Fig. 3, we plot the two OPs and susceptibilities for
P ¼ 0:6 (an analogous behavior was observed for all the
other pressures). We see that c T vanishes at a slightly

smaller temperature than c 6, which implies that the hex-
atic phase is confined to an extremely narrow T interval not
wider than 0.0002–0.0003, as also witnessed by the max-
ima of the two susceptibilities occurring at slightly differ-
ent T values. The estimated width of the hexatic region
compares well with the temperature range of the bridging
region between the solid and fluid branches in Fig. 2. While
the size scaling of �6 is a clear imprint of a second-order
hexatic-to-normal fluid transition, the solid-to-hexatic
transition might even be first-order, were this not in con-
trast to the smooth behavior of u and �. Upon reducing the
pressure, the width of the hexatic phase gradually shrinks
until, for P ¼ 0:05, it becomes comparable to the tempera-
ture resolution. However, even in this case we tend to
exclude the disappearance of the hexatic phase for low
pressures since this would imply the existence of a triple
point for which we currently have no independent evi-
dence. Finally, it is worth mentioning the case P ¼ 0:2
(a pressure above Pm but outside the density-anomaly
region), where the hexatic fluid shows a density anomaly
while the normal fluid does not; in no other way could the
density branch of the normal fluid have hooked on a solid
branch that lies at a lower density level.
A more direct evidence of the hexatic phase emerges

from the large-distance behavior of the OCF. We plot
this function in Fig. 4 at various temperatures across the
hexatic phase for P ¼ 0:6. It appears that the OCF decays

FIG. 3 (color online). Order parameters and susceptibilities for
P ¼ 0:6 in theT range across themelting transition.Upper panels:
the orientational order parameter c 6 and its susceptibility �6 for
three system sizes (color codes as in Fig. 2).Dots and squaresmark
data obtained by cooling and by heating, respectively. Roughly,
the difference between the two estimates gives a clue about the
statistical uncertainty associated with each data point. Lower
panels: the translational order parameter c T and its susceptibility
�T for the same sizes on heating. The nonzero value of c T in the
solid phase is actually a finite-size effect, made possible by the
use of periodic boundary conditions in the simulations, since
for a 2D infinite solid quasi-long-range translational order implies
c T ¼ 0. Moreover, �T is expected to diverge in the solid phase
of an infinite-size system. Similar considerations apply for the
behavior of c 6 and �6 in the hexatic phase.

FIG. 4 (color online). Orientational correlation function h6ðrÞ
at selected temperatures across the hexatic region for P ¼ 0:6.
We plot h6ðrÞ on heating for two sizes, N ¼ 2688 (red) and N ¼
6048 (blue). Top: log-log plot; bottom: log-lin plot. Upon
increasing T from 0.0054 to 0.0059 there is a qualitative change
in the large-distance behavior of h6ðrÞ, from constant (solid) to
power-law decay (hexatic fluid), up to exponential decay (nor-
mal fluid). Note that, consistently with the KTHNY theory, the
decay exponent � is less than 1=4 (i.e., the slope of the dotted
curve) in the hexatic phase.
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algebraically in a T region of limited extent, which roughly
corresponds to the middle of the bridging region in Fig. 2.
Moreover, the decay exponent in this hexatic region is
smaller than 1=4, becoming larger only on passing to the
normal fluid.

We finally checked a further KTHNY prediction con-
cerning the behavior of a 2D triangular solid which is about
to melt into a hexatic phase. The elastic instability that
signals the onset of dissociation of dislocation pairs, prel-
uding to the stabilization of the hexatic phase, is heralded
by the value of

K ¼ 4a2

kBT

�ð�þ 	Þ
2�þ 	

(5)

becoming equal to 16
 [1,30]. In Eq. (5), 	 and � are the
Lamé coefficients (as renormalized by the thermal fluctua-

tions) while a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð ffiffiffi

3
p

�Þ
q

is the lattice parameter.	 and�

are, respectively, given by c12 þ P and c44 � P, in terms of
the elastic constants c12 and c44 which can be computed as
canonical-ensemble averages fromvirial-like formulas [31].
We found an impressive confirmation of the theory for
P ¼ 0:6 while the threshold value of K=ð16
Þ (before its
drop to zero) turned out to be a bit larger than 1 (1.1–1.2) for
the other investigated pressures. This further indicates that
the overall KTHNY picture deteriorates with reducing pres-
sure, probably because the formation energy of a dislocation
becomes smaller and smaller with increasing average inter-
particle distances.

In conclusion, we have provided the first unambiguous
evidence of the occurrence of two-stage continuous reen-
trant melting via a hexatic phase in the 2D Gaussian-core
model, taken as prototypical of the phase behavior of
bounded model potentials. We have validated a number
of KTHNY predictions, though larger samples and more
statistics will be necessary in order to ascertain the real
nature of melting at low densities. The present discovery
of reentrant-hexatic behavior in the GCM is relevant for
many soft-matter systems. For instance, one can engineer
colloidal particles interacting through a temperature-
modulated softened repulsion, which will likely exhibit
GCM-like reentrant melting in a range of packing fractions
well below the density at which hard-core crystallization
occurs (see [32] for a 3D realization of this scenario). Such
systems would be natural candidates where to detect (e.g.,
by video microscopy [33]) a reentrant-hexatic phenome-
non of the kind illustrated here.
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