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Markov state modeling of sliding friction
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Markov state modeling (MSM) has recently emerged as one of the key techniques for the discovery of
collective variables and the analysis of rare events in molecular simulations. In particular in biochemistry this
approach is successfully exploited to find the metastable states of complex systems and their evolution in thermal
equilibrium, including rare events, such as a protein undergoing folding. The physics of sliding friction and
its atomistic simulations under external forces constitute a nonequilibrium field where relevant variables are in
principle unknown and where a proper theory describing violent and rare events such as stick slip is still lacking.
Here we show that MSM can be extended to the study of nonequilibrium phenomena and in particular friction.
The approach is benchmarked on the Frenkel-Kontorova model, used here as a test system whose properties are
well established. We demonstrate that the method allows the least prejudiced identification of a minimal basis
of natural microscopic variables necessary for the description of the forced dynamics of sliding, through their
probabilistic evolution. The steps necessary for the application to realistic frictional systems are highlighted.

DOI: 10.1103/PhysRevE.94.053001

I. INTRODUCTION

Despite the relevance of friction between solids from the
macroscale to the nanoscale, its physical description still needs
theoretical basis and systematic understanding. There is at
present no theory of friction, one that should be based on a
small number of relevant degrees of freedom and on some
governing equation of motion. Even the simplest, classical
atomistic nanoscale sliding simulation has too many degrees
of freedom, with no available method for the unprejudiced
identification of a handful of collective dynamical variables,
suitable for a mesoscopic description of the sliding evolution
and its relevant events, such as stick slip [1].

In the totally different field of equilibrium biomolecular
simulations, powerful tools have been developed, aimed at
identifying the metastable conformations, reactions paths,
and rates associated to transition events between them. In
particular, Markov state models [2–6] (MSMs) have emerged
as a key technique, with clear theoretical foundations and great
flexibility. In that approach, the phase space trajectory of a
large collection of molecular entities is projected onto a much
smaller discrete set of states that are deemed typical, and the
dynamics is reduced to Markovian jumps between these states.
So far MSMs were mostly applied to systems at equilibrium,
where a stationary measure is defined, detailed balance holds,
and the Markov description is natural. In friction on the other
hand one deals with a strongly nonequilibrium dynamics,
characterized by violent events, and where even in steady-state
sliding, detailed balance is broken. Application of MSMs to
nonequilibrium systems is still in its infancy, with just a few
instances related to periodic driving [7] or cycle detection [8].

*Corresponding author: tosatti@sissa.it

Here we show that the MSM framework can be extended, de-
spite the difficulty represented by a time-growing phase space,
to describe the forced dynamics of steady-state sliding friction.
The resulting procedure, including the identification of the few
slow collective variables (“excitations”) relevant to steady-
state sliding, the recognition of Markovian behavior, and the
transfer matrix time evolution of probabilities, represents in
our view a first step towards formulating a theory of friction,
a methodological advance which we deem quite important.

To illustrate concretely this idea while keeping complica-
tions down to a minimum, we choose the simplest atomistic
tribological model, the one-dimensional Frenkel-Kontorova
(FK) model [9] in its atomic stick-slip regime [10,11]. For this
model we explicitly show how the MSM construction leads to
the identification of a handful of macrostates within which the
basic frictional dynamics can be described.

II. MARKOV STATE MODELING

The normal procedure to build a MSM starts from running a
long, “ergodic” molecular dynamics, exploring all the relevant
configurations in phase space a sufficiently large number of
times. By coarse-graining phase space, one then classifies
all the configurations explored in this dynamics in a finite
number of microstates. Each microstate is assumed to contain
only structurally similar configurations. The classification in
microstates is normally achieved by a clustering technique,
such as k-means [12], or by performing a geometric partition of
the configuration space, for example, by Voronoi tessellation.

These partitioning techniques require a metric, that is, a
quantitative measure of the similarity and distance between
configurations; the quality of the partition strongly depends on
this choice. Only in very simple model systems can one use a
metric taking into account all the coordinates of the system; in
real world applications one must define the metric in a subset
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of the coordinates (for example, the coordinates of the solute).
The choice of the metric is the single really arbitrary step in
the procedure, to be done with utmost physical care.

Once the microstates are built, one estimates from the
molecular dynamics trajectory the transfer operator �τ ,
namely, the transition probability matrix between pairs of
microstates in a time τ . If the dynamics is ergodic and an
equilibrium distribution is sampled, the matrix �τ has a
single eigenvalue equal to one, with all its other eigenvalues
being smaller than one. The components of the eigenvector
associated with the eigenvalue one are proportional to the
long-time probability of observing each microstate. The
eigenvectors of �τ associated with eigenvalues close to one are
associated with the slow modes of the system, while the smaller
eigenvalues correspond to fast, irrelevant modes of motion.
If there is a clear gap in between high and low eigenvalues
in the spectrum of �τ , one can represent the dynamics in
the reduced basis of the eigenvectors associated with the
eigenvalues before the gap. This dimensional reduction can
be carried out keeping under control the error it introduces by
using standard techniques [13,14]

In order to apply this conceptual framework to the study of
nonequilibrium problems, particularly of friction, the normal
procedure must be modified and extended in several points. In
short, the frictional dynamics does not reach an equilibrium,
but only a steady state. The configuration space that is explored
grows (approximately) linearly with the simulation time,
which makes its sampling and subsequent clustering problem-
atic. The solution is dividing the long evolution into intervals,
deemed equivalent between them, so that results from each
interval can be added on top of each other. The final test of
whether the procedure is meaningful is the stability of results
against extension of the interval size. This manner of building
the microstates is possibly the crucial conceptual novelty
which allowed us to deal with nonequilibrium steady states.

Since the metric is defined by a large number of microscopic
variables, we did not build the microstates by the tessellation
techniques used in standard MSM [15]. We built them instead
by means of a recently proposed clustering algorithm [16],
which associates each microstate to each meaningful peak of a
(possibly multidimensional) probability distribution. Further
coarse graining into an even smaller, minimal number of
macrostates can then be implemented using standard methods
[13,14], finally yielding the most compact MSM description
of friction. In the space of these few macrostates, the time evo-
lution of observables such as frictional work and displacement
still reproduced the main features of the original frictional dy-
namics, represented in the FK model by the kink-antikink pop-
ulations. This procedure and these steps are applicable to slid-
ing systems of higher and generic complexity, which we expect
to be described by similar, yet to be built, MSM approaches.

III. THE FRENKEL-KONTOROVA MODEL

The one-dimensional FK model, Fig. 1(a), our test case,
consists of a chain of particles dragged over a sinusoidal
potential V (x) = A cos(2πx/a). Nearest neighbor springs of
stiffness k link L classical particles of mass m and positions xi

whose spacing a is commensurate with the periodic potential.
Each particle is dragged by a spring of constant κ moving with
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FIG. 1. (a) Schematic of the FK system. (b) Sample of steady-
state motion of L = 10 particles with parameters k = 0.04, A = 0.1,
a = 1.5, m = 1, γ = 1, β = 500, κ = 0.01, and vext = 0.001. The
white and gray backgrounds represent stick and slip time domains,
respectively.

constant velocity vext. Particle motion obeys an overdamped
Langevin dynamics (large damping γ ), in a bath of inverse
temperature β = 1/kBT :
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√
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where f t is an uncorrelated Gaussian distribution and dt is
the elementary time step (here dt = 10−2). Our input for the
MSM procedure is a long steady-state trajectory of the chain,
obtained by integrating these equations, mostly for the simplest
case of L = 10 (but also L = 15,20) and a sufficient duration
of 106 time units.

As is well known [10], in a wide range of parameters the
chain sliding alternates long sticking periods during which
particles are close to their respective potential minima with
fast slips during which one or more lattice spacings are gained.
This kind of atomic stick-slip motion is well established
for, e.g., the sliding of an atomic force microscope tip on
a crystal surface [17] – of course, involving in that case
three-dimensional displacements of larger complexity. A slip
event involves the formation of kink-antikink defects (large
deviations of the interparticle distance from the equilibrium
value) that propagate along the chain and enable the global
movement. A sample of steady-state sliding evolution can be
seen in Fig. 1(b), showing the finer details of each particle’s
motion for a few slip events.

Based on the long steady-state trajectory in the original
positional phase space, the building of the MSM involves the
following steps: definition of the transfer operator and transfer
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matrix (TM), choice of phase space metric, clustering into
microstates, and construction of macrostates and their reduced
TM dynamics.

IV. THE TRANSFER OPERATOR

Our MSM analysis is based on the transfer operator (TO)
formalism [5]. Denote by �τ (X → X′) the probability to go
from a configuration Xt = X at time t to Xt+τ = X′ at time
t + τ . While �τ is a continuous operator which takes infinite
time to sample, we built a coarse-grained TO by partitioning
the configuration space into microstates (ensembles of similar
configurations) {cα,α = 1, . . . ,nc}. Between these microstates
the restricted TO is a finite nc × nc transfer matrix with the
generic element �τ

αβ = ∫
X∈cα

∫
X′∈cβ

dX dX′P (X)�τ (X →
X′), the probability to go from cα to cβ in time τ . This
TM contains less detail than �τ . Being simpler, it is more
informative and can be sampled with satisfactory statistics
in finite time. In general �τ

αβ depends on the lag time τ ,
but there are techniques to control these variations. (See
Sec. 1.1 of the Supplemental Material [18].) We calculated
the eigenvalues {λi} and left eigenvectors { �χi} of the TM.
Because we are not in equilibrium, detailed balance does
not hold, the TM is not symmetric, and the eigenvalues are
not necessarily real. However, they still satisfy |λi | � 1 by
the Perron-Frobenius theorem. The largest (modulus-wise)
eigenvalue is exactly 1, and if the evolution is ergodic there
is only one such eigenvalue. The eigenvector �χ1 represents
the invariant, steady-state distribution, endowed with nonzero
sliding current. The eigenvectors �χi with |λi | � 1 form the
so-called Perron cluster [13]. They characterize the long-
lived excitations of the steady state, which decay with long
characteristic times τi = −τ/ ln |λi | � τ , while oscillating
with period τ/ arctan(Imλi/Reλi).

V. CHOICE OF THE METRIC

The phase space explored under steady sliding does not
possess a preexisting metric; it also grows linearly with
time and is thus very poorly sampled (except for variables
internal to the slider). To overcome the sampling problem, the
natural prescription is to break up the dynamics into many
long intervals between which memory is lost and Markovian
behavior can be verified, while at the same time good statistics
can be accumulated within each interval. For the building
of a viable metric there is no systematic approach, and the
choice must be guided by physical considerations; even if
arbitrary, one should then try to make that choice as judicious
as possible. In the FK model, we took our metric to include
internal variables, the bond lengths bt

l = (xt
l+1 − xt

l − a)/a,
and an external variable, the center of mass coordinate (CM):
xt

CM = 1
Na

∑L
l=1 xt

l . The sampling of xCM can be improved
by considering multiple independent slices (intervals) of the
steady-state evolution, each long enough that all relevant
events have occurred (here, frictional slips), setting then
“absorbing” boundary conditions for any transition from and
to the outside of each range. While this route could be followed
without problems, we preferred here to set artificial periodic
boundary conditions for this slice of phase space, a choice
which provides a more compelling picture of steady-state

sliding, and where the error involved in the transition rates
can anyway be reduced at will by extending the slice size.
In the FK model one can exploit in addition the substrate
periodicity and differences in xCM are taken modulo na for a
chosen integer n > 1. Under slow driving, we found that n = 2
is sufficient for a correct description of slips by a (atomic slip),
and states divide into even and odd xCM. If slips of 2a, 3a or
more became frequent, we would simply choose a larger n. The
full set of steady-state sliding data was used to generate many
independent configurations, all treated in the same manner.
Summing up, the metric we adopt defines the distance between
configurations at times s and t as

dst = [(
xs

CM − xt
CM

)
mod 2

]2 +
L−1∑
l=1

(
bs

l − bt
l

)2
. (2)

We stress again that the choice of metric and the handling
of phase space growth are by no means unique and must
be decided case by case. Yet we believe that a very similar
physical description would emerge from different choices, so
long as they are made on sensible physical grounds. In that
broad sense, our description is minimally prejudiced.

VI. MICROSTATES

In the next step, configurations whose relative distance
is small were collected together, in nc microstates. Mi-
crostates were built by the Density Peak algorithm [16],
which efficiently traces them as maxima of the probability
density in phase space. Given a distance dst between two
configurations Xs and Xt we estimate the local density ρs

in Xs by counting the number of configurations within a
cutoff dc, ρs = ∑

t θ (dc − dst ), where θ is the step function.
One then computes the distance δs between Xs and the
closest configuration of higher density, δs = minρt>ρs dst and
identifies the microstate centers as the nc points with the
highest product δsρs . All remaining points are assigned to
the microstate of highest local density. This clustering tech-
nique allows finding microstates of variable volume in phase
space and well-defined cluster centers (configurations often
visited), both desirable features in building a MSM.

We used samples of N = 105 configurations (separated by
the lag time τ ) and clustered them using the metric (2). The
optimal lag time τ was determined by studying the evolution
of the spectrum of the clustered TM with τ (see Sec. 1 of
Ref. [18]). We found a plateau around the value τ = 10 =
1000dt (dt being our time unit) showing that the dynamics
is Markovian in this range. With τ = 10, the algorithm
detected about nc � 100 microstates (clusters). Below the
largest eigenvalue λ1 = 1, the spectrum of the nc × nc TM
is characterized by a second eigenvalue λ2 (see Fig. 2),
corresponding to a relaxation time of � 600, separated by a
gap from other eigenvalues with shorter relaxation times. The
significance of the eigenmodes χi is clarified by considering
the probability distribution P (O,t) of an observable O at
time t , starting from a system prepared in the mixed state
P 0

α (probability vector to be in cα at t = 0). We have

P (O,t) = P ss(O) +
∑
i>1

figi(O)e−t/τi , (3)
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FIG. 2. (a) Characteristic time scales and eigenvalues (in the inset,
imaginary part in white) of the TM (averaged over 10 realizations with
N = 105 each). (b), (d), and (f) Probability distribution g1(xCM) and
perturbations gi(xCM) for the first three eigenvectors of the TM. (c),
(e), and (g) These same functions for the bonds bl , gi(bl) (spaced
vertically for clarity).

where fi = ∑
α χα

i P 0
α /P ss

α accounts for the initial condition,
and

gi(O) =
∑

α

χα
i P (O|α), (4)

where P (O|α) is the probability distribution of O in microstate
α, P ss(O) = g1(O) the steady-state distribution of O, and P ss

α

the steady-state probability to visit microstate α. The gi(O)
for i > 1 represent “perturbations” of P ss(O), each decaying
within the lifetime τi .

These functions provide a direct insight into the slow
eigenmodes: we now consider the first three eigenstates in
detail and the observables contained in our metric; any other
observable could be similarly analyzed to inspect its relevance
to the slow eigenstates. In Figs. 2(b), 2(d), and 2(f) we
plot gi(xCM): the steady state χ1 consists of one large peak
per period plus nine smaller peaks, corresponding to the
relaxed chain state and defect combinations, respectively. The
second eigenvector χ2 presents exactly the same features,
except for a factor −1 in the second period: combinations
χ1 ± χ2 represent the chain CM sticking either in an odd or
even position (the global sign of an eigenvector is arbitrary).
The second eigenvector is thus representative of the main
advancing motion of the chain, namely, the slip. Indeed,
t2 = −τ/ log(λ2) � 600 is about half the sticking time, which
is the average jump time (see Fig. 1). In Figs. 2(c), 2(e), and
2(g) we plot gi (i = 1,2,3) for the bonds lengths bl . In the
steady state χ1 each bond length has high peaks around its
value at rest (0) and smaller ones around b � ±0.9, reflecting
the infrequent appearance of excitations, which are kinks

or antikinks. The second mode χ2 shows a flat distribution,
since all the difference with χ1 lies in the CM degree of
freedom, xCM. In fact, χ3 displays small central peaks and more
pronounced lateral ones, corresponding to the creation (and
destruction for negative contributions) of a kink or antikink
(depending on the sign of bl) [10], excitations with shorter
lifetimes. Indeed, t3 � 100 is comparable to the half-lifetime
of kinks and antikinks (the next eigenstates exhibit similar
time scales and features, not shown). Furthermore, we can see
how the peaks are around b � 0.9 for the first bl and around
b � −0.9 for the last ones, implying that the chain tends to be
elongated in its head and compressed in its tail. This shows that
kink-antikink pairs are more likely to be formed in the center
of the chain, intrinsic to the slip mechanism for this system.
At this stage one can already identify the kink and antikink
populations as the relevant collective variables of sliding,
together with xCM. While the basic features of commensurate
FK stick slip are already contained in the first few long-lived
eigenmodes, there are still too many large eigenvalues for
an extensive analysis to be possible (no gap is apparent). A
more accurate description must involve a sharper definition
and quantitative analysis of the whole Perron cluster.

VII. MACROSTATES

The number of microstates must be reduced for a reasonable
coarse-grained theory. In the next and final step, the nc

microstates were coarse-grained and grouped into macrostates,
according to the kinetics of intermicrostate jumps. The idea is
that microstates that have different structures but are very well
connected kinetically should belong to the same macrostate.
A well-established approach for that is the (Robust) Perron
Cluster Cluster Analysis (PCCA+) [13,14] (see also Sec. 2.1
of Ref. [18] and Ref. [19]). For technical reasons, and strictly
for this purpose, we symmetrized the TM, thus temporarily ne-
glecting the nonequilibrium breaking of detailed balance (the
exact asymmetrical TM could also be used if necessary; see
more recent developments [20,21] and Sec. 2.1 of Ref. [18]).
We found that relevant macrostates could be further reduced
from nc ∼ 100 down to as little as ñc = 6. Moreover, whereas
nc grows with system size L, ñc = 6 is much more stable
against L: we found a consistent description of the system
with ñc = 6 also for L = 15 and L = 20, and the detection of
the optimal ñc consistently yielded ñc ∈ [5,9] (see Ref. [18]
and Figs. 3 and 4). In Fig. 3 we present the six macrostates
{c̃α}, displaying some of the configurations (microstate cluster
centers) which they contain.

Macrostates c̃1 and c̃4 include the relaxed chain microstates,
along with some single excitations at the tips; c̃2 and c̃5

contain mostly single kinks, while c̃3 and c̃6 contain mostly
antikinks. The microstates with (kink, antikink) pairs are
spread between groups, with neighboring pairs belonging to
c̃1,4 and extended pairs to others. The only difference between
the triplets of c̃1,2,3 and c̃4,5,6 is in the value of xCM, respectively,
xCM ≈ 0.15 and 1.15. Overall, this description provides a
qualitative understanding of the basic mechanisms of slips
complementary to that of our kinetic analysis and allows us to
directly read the kink and antikink populations as the collective
variables describing sliding (not relying on any choice of
distance). In Fig. 3(b) observation of the 6 × 6 TM �̃αβ
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FIG. 3. (a) Selection of microstates inside the six macrostates
identified with PCCA+: the atoms positions relative to potential
minima (black dots) display kinks (red circles) and antikinks (blue
squares). For clarity, the probability P ss

α is multiplied by 100, and
we show only 12 of the ∼100 microstates. (b) Representation of the
reduced transition matrix �̃αβ (gray scale proportional to magnitude).

(a)

(b)

FIG. 4. Comparison of (a) work gi(W ) and (b) center of mass
gi(xCM) distributions for i = 1,2,3 (blue, red, green). Solid lines: raw
data; dashed lines: ñc = 6 macrostate results. Inset: Blowup of gi(W ),
highlighting the excess probability for W > 0, signaling the positive
frictional work. Note how i = 3 (green) is the excitation of the steady
state (blue) that populates the W > 0 tail. Note how (b) is similar to
Figs. 2(b), 2(d), and 2(f).

reveals, e.g., that motion (looping through states c̃1;4) occurs
only through excited states c̃2,3;5,6. Additional details about the
role of each macrostate is given in Sec. 2.3 of Ref. [18].

VIII. SLIDING FRICTION DESCRIBED BY MACROSTATE
EVOLUTION

The coarse-grained model thus found with PCCA+ pro-
vides a probabilistic (Markovian) description of friction as
a MSM. In the macrostate representation, the probabilities
P t

α = P (Xt ∈ c̃α) evolve in time as P t+τ
α = �̃αβP t

β . For the
whole construction to be satisfactory, this coarse-grained
frictional evolution should reproduce the quantitative aspects
of raw data.

We compare in Fig. 4(a) the distribution of frictional work
P ss(W ) in the raw data (using all individual configurations)
with that computed in our MSM, i.e., the steady state g1(W )
relative to �̃αβ . For that, to each macrostate c̃α we associated
its distribution P (O|α), i.e., the distribution of O restricted to
the individual configurations of macrostate c̃α . Using Eq. (4),
we could obtain any gi(O) of our MSM �̃αβ . The average
particle current in the reduced basis is 〈J 〉 = 6.82 × 10−4,
close to the exact value 〈J 〉 = 6.66 × 10−4 = vext/a. Similar
agreement was found for the steady state of xCM. Strikingly,
not only the steady state but also the excitations gi(xCM)
within our MSM reproduced well those of the nc states
description; see Fig. 4(b) and Fig. 4 of Ref. [18]. The lifetimes
corresponding to these modes, and more precisely the decay of
the correlation functions of various observables also matched
well the respective correlation functions evaluated on the raw
data (not shown).

We conclude that MSM provides a viable description of
sliding friction in the FK model, including all the important
excitations and slow events that govern the phenomenon.
The remaining fast variables and more ephemeral excitations
are in this manner systematically integrated away to the best
possible level.

IX. CONCLUSIONS

The Markov State Model method, so far developed for the
equilibrium evolution of large-scale molecular systems, can
be naturally extended to nonequilibrium dynamics under the
action of external forces. Among nonequilibrium phenomena,
the physics of sliding friction is in desperate need of a
description, with coarse-grained variables and their time
evolution constructed in the least prejudiced manner. We
formulated and carried out the first analysis of frictional sliding
through the MSM method extended to nonequilibrium, whose
result is just that.

Starting with a steady-state dynamical simulation, the main
initial step is, as in all MSM applications, the choice of a
metric in phase space, after which the approach built without
further bias or approximations the microstates that track the
effective dynamical variables of frictional sliding. As needed,
the number of microstates could be reduced down to a handful
of macrostates by successive application of standard methods
such as PCCA+.

In the FK model, chosen for this first demonstration, the
coarse graining is sharp enough to capture not only overall
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steady-state observables such as average dissipated power or
average current, but also their modes of excitations and their
correlations, as shown by the excitations gi(O). This brings
all the important, slow dynamical features under control in
a manner which, as far as we know, is unprecedented for
violent and nonlinear frictional motion. All these steps are
generically applicable to more complex and realistic slid-
ing problems. Further developments could introduce biased
sampling favoring exploration of rare transitions, to improve
the statistics more efficiently [22]. Summing up, this work

introduces a theoretical approach to friction not limited to
nanoscale sliding but potentially extendable to other driven
systems.
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