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Cluster phases of penetrable rods on a line
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Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, I-98166 Messina, Italy
and CNR-IPCF, Viale F. Stagno d’Alcontres 37, I-98158 Messina, Italy

(Received 6 August 2014; published 14 October 2014)

Phase transitions are uncommon among homogeneous one-dimensional fluids of classical particles owing
to a general nonexistence result due to van Hove. A way to circumvent van Hove’s theorem is to consider
an interparticle potential that is finite everywhere. Of this type is the generalized exponential model of index 4
(GEM4 potential), a model interaction which in three dimensions provides an accurate description of the effective
pair repulsion between dissolved soft macromolecules (e.g., flexible dendrimers). Using specialized free-energy
methods, I reconstruct the equilibrium phase diagram of the one-dimensional GEM4 system, showing that, apart
from the usual fluid phase at low densities, it consists of an endless sequence of cluster fluid phases of increasing
pressure, having a sharp crystal appearance for low temperatures. The coexistence line between successive
phases in the sequence invariably terminates at a critical point. Focussing on the first of such transitions, I show
that the growth of the two-cluster phase from the metastable ordinary fluid is extremely slow, even for large
supersaturations. Finally, I clarify the apparent paradox of the observation of an activation barrier to nucleation
in a system where, due to the dimensionality of the hosting space, the critical radius is expected to vanish.
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I. INTRODUCTION

It sometimes happens in physics that the study of one-
dimensional (1D) model systems, involving much simpler
mathematics than required in three dimensions, helps to shed
light on the properties of ordinary three-dimensional matter.
Two examples from one-particle quantum mechanics are the
Kronig-Penney model of electron energy bands in a crystal and
the tunneling through a 1D potential barrier that classically
could not be surmounted. Statistical mechanics makes no
exception, as illustrated, for instance, by the 1D model devised
by Kac and co-workers [1] in order to derive the van der Waals
theory of liquid-vapor transition from statistical mechanics; or
the continuous model invented by Burkhardt for the thermal
depinning of an interface bound to a 1D attractive substrate
[2]. More often, however, the 1D behavior is unlike the
three-dimensional one, and in this case it is worth unveiling
the mechanism by which space dimensionality makes the
difference. Examples of this sort are numerous; see, e.g., the
1D breakdown of the Fermi-liquid quasiparticle picture of
electron transport or the general critical-point behavior which,
as well known, is heavily affected by the dimensionality of the
hosting space.

The situation is apparently clear for the statistical mechan-
ics of homogeneous classical fluids with short-range interac-
tions between the particles, thanks to an old result by van
Hove which would rule out the possibility of phase transitions
in one dimension [3]. However, as carefully explained by
Cuesta and Sanchez [4], what is generally failed to mention
in this context is a crucial assumption behind van Hove’s
derivation, i.e., that particles have a hard core. This opens the
possibility of observing phase transitions in certain peculiar 1D
systems where this constraint is violated, like for instance in
systems of self-avoiding polymers flowing in a narrow channel
of size comparable with the gyration radius. In this case, a
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coarse-grained description may be adopted where the polymers
are viewed as point particles interacting through an effective
potential which stays finite at the origin, implying that particles
are in principle free to exchange position with each other within
the line. A 1D system of this sort has recently been investigated
by simulation, see Ref. [5], but here the outcome was that no
clear-cut phase transition exists in spite of a rich anomalous
thermodynamic behavior. In the latter paper the particles were
taken to interact via a simple Gaussian repulsion, which is
sufficient to induce crystallization on cooling in both two [6]
and three dimensions [7,8]. Here I show that, by only a slight
modification of the interaction law, that is by changing from 2
to 4 the power-law exponent of the interparticle distance in the
exponential argument, one succeeds in materializing several
distinct fluid phases (in fact, an infinite number) in a 1D system
of repulsive particles as a function of pressure. Note that any
exponent strictly larger than 2 would obtain the same effect.

The exp(−r4) model, also known as the generalized
exponential model of index 4 (GEM4), was extensively studied
in three dimensions [9–12] where it accurately describes the
effective repulsion between flexible dendrimers in a solution.
As anticipated in Ref. [13], a peculiarity of this system is
to undergo clustering at high pressure, to be intended here
as the formation of stable crystals with a mean number nc

of particles per lattice site larger than 1 (nc is an integer or
close to an integer only for very low temperatures). These
so-called cluster crystals may show a variable underlying
lattice structure, either fcc or bcc. Upon compression, a
cluster crystal initially resists by progressively reducing its
lattice constant, until it becomes favorable for the system to
eliminate lattice sites and thus transform into a different cluster
phase with a higher site occupancy. At low temperature this
process involves a first-order phase transition, which becomes
broadened for higher temperatures (see, e.g., Ref. [14]).

The main feature distinguishing a cluster crystal from
an ordinary crystal is the status enjoyed by the mean site
occupancy nc, which is not a fixed parameter but one that
undergoes thermal relaxation like any other unconstrained
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variable. This is evident close to a phase-transition locus,
where we observe a sizable deviation of nc from an integer
value, the more so the higher the system temperature. The new
variable nc has a conjugate thermodynamic variable associated
with it, μc, a sort of chemical potential, which spontaneously
adjusts to zero in equilibrium [10,15]. This fact considerably
complicates the numerical determination of the free energy
with respect to ordinary crystals, since a further minimization
of the free energy as a function of nc has to be accomplished
[10,12].

In this paper I carry out the study of the GEM4 system
in one dimension. Even though a genuine 1D crystal cannot
exist at any nonzero temperature, since it would be unstable
against thermal fluctuations according to Peierls’ argument
[16], nothing excludes the possibility of distinct fluid phases.
After providing a proof of the existence of stable cluster
crystals at zero temperature, I shall use Monte Carlo simulation
to draw the complete 1D GEM4 phase diagram, using the
method introduced in Ref. [10] for free-energy computations.
We will see that a distinct cluster fluid phase emerges out of
each stable zero-temperature cluster-crystal state. In addition,
a further standard (i.e., noncluster) fluid phase is stable for
low pressures. Depending on the temperature, this low-density
phase resembles more either a crystal or an ordinary fluid. One
major concern will be to describe how this phase dynamically
transforms into the two-cluster phase upon compression.

The outline of the paper is the following. After recalling in
Sec. II the definition of the model and the methods employed
to study it in detail, I show and discuss the simulation results
in Sec. III. Some concluding remarks are presented in Sec. IV.

II. MODEL AND METHOD

The model potential considered here is the same as
studied in [12], u(r) = ε exp{−(r/σ )4}, where ε > 0 and σ

are arbitrary energy and length units, respectively. In one
dimension, the GEM4 system can appropriately be described
as a fluid of penetrable rods of diameter σ , which can fully
overlap with a finite energy penalty (ε, rather than infinity as in
the case of hard rods). Since the particle ordering along the line
is not preserved by the dynamics, the 1D GEM4 has no simple
exact solution and it is thus necessary to study its collective
behavior by numerical simulation. The Fourier transform of
u(r), which in one dimension reads

ũ(q) = 2
∫ ∞

0
dx u(x) cos(qx), (2.1)

takes values of both signs; hence, in conformity with the
criterion introduced in Ref. [13], the system would support
stable cluster phases at high pressure. This will shortly be
confirmed by exact zero-temperature (T = 0) calculations.

Preliminary to the simulation study of the system is the
work of identifying the relevant phases, which can be done
through the exact determination of the chemical potential
μ as a function of the pressure P at T = 0. This was
accomplished through exact total-energy calculations for a
number of candidate states (regular lattice structures), as
described in the following. For any given structure and P value,
I computed the minimum of E + PV (where E is energy and
V is volume) over a set of variables comprising the density

FIG. 1. (Color online) Zero-temperature chemical potential of
various 1D lattices relative to the ordinary (1) crystal, �μ = μ − μ1,
plotted as a function of the pressure P . Solid lines: 2, blue; 3, cyan;
4, magenta; 5, red; 12, green; 23, yellow (see main text and Appendix
A for notation). Dotted lines: 112, blue; 122, red. Dashed lines: 1112,
blue; 1122, green; 1222, red. In the top right panel, the best 1122
crystal is a 2 crystal from P = 0.834 to P = 2.465, and a 3 crystal for
larger P ’s (eventually, for much higher pressures, the optimal 1122
becomes a 6 crystal). The vertical dotted lines mark the transition
pressures (see Table I). Note the abrupt change of slope of all �μ

curves at P � 1.46 (left panel), which is due to a jump in the density
of the stable ordinary crystal. On the other hand, the cusp seen in
μ2 − μ1 at P � 5.85 reflects a density jump of the best two-cluster
crystal.

ρ = N/V and, possibly, also a number of internal parameters
(see, e.g., Ref. [17]; more details appear in Appendix A). I find
that, on increasing the pressure, the lowest chemical potential
is sequentially provided by each n-cluster crystal of perfectly
overlapping particles (n = 1,2, . . .; see Fig. 1, left panel); the
transition from one state to the other always occurs with a jump
in the density, signaling first-order transition behavior. For low
enough pressures, the ordinary (nc = 1 or “1”) crystal has the
minimum μ by far. The “1” crystal is eventually superseded at
P = 0.834 (reduced units) by the two-cluster crystal (nc = 2
or “2” crystal), which represents the most stable phase up to
P = 2.465, and so on (see Table I).

TABLE I. Zero-temperature phases of the 1D GEM4 system (only
data the first four phases are listed). For each pressure range in column
1, the thermodynamically stable phase is indicated in column 3,
together with the respective values of the number density ρ (column
2).

P range (ε/σ ) ρ range (σ−1) Stable phase

0–0.833 0–0.8268 1
0.834–2.465 1.4149–1.5778 2
2.466–4.913 2.1701–2.3295 3
4.914–8.178 2.9228–3.0812 4
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We might reasonably expect that the sequence of stable
phases remains unchanged for sufficiently small nonzero
temperatures, were it not for the fact that Peierls’ argument
rigorously excludes perfect crystal order for any T > 0
(though in practical terms this is a mainly technical issue only
relevant for very large N values). A possibility is, as we shall
see later, that cluster phases indeed survive for T > 0 but in the
form of fluid phases, whose structure may nonetheless easily be
confused with that of a cluster crystal if temperature is not too
high. However, what about the existence of other phases at T >

0, different from cluster fluid phases with integer nc? This is a
possible occurrence only if at T = 0 some other phase is close
in chemical potential to the cluster crystals with integer nc.
Indeed, this is exactly what happens near each of the transition
pressures listed in Table I. As a matter of example, I have
plotted in the right panels of Fig. 1 the chemical potential of a
number of periodic structures with single particles and pairs in
various combinations (see Appendix A for notation), in a range
of pressures around P = 0.834. It appears that the chemical
potentials of all these crystals, including 1 and 2, become
nearly the same for P � 0.834. What is amazing is that crystal
states with vastly different nc values, all in the range 1–2,
are nearly degenerate near P = 0.834, suggesting a nontrivial
transition scenario for T > 0 characterized by a very slow
relaxation dynamics. I shall come back to this issue later, at the
end of Sec. III, where the kinetic pathways of the phase trans-
formation from 1 to 2 will directly be probed by simulation.

The phase diagram of the 1D GEM4 system was mainly
investigated by Monte Carlo (MC) simulation in the NPT

(isothermal-isobaric) ensemble, with not less than N = 400
particles and periodic boundary conditions (in a few cases
I checked that finite-size effects are negligible). Besides the
standard local particle moves, in order to speed up the MC
sampling an average 50% of the displacements were directed
towards randomly chosen positions in the simulation box.
Typically, for each (T ,P ) state as many as 2 × 106 cycles or
sweeps (i.e., moves per particle) were generated at equilibrium,
which proved to be enough to obtain accurate statistical
averages for the volume and the energy per particle (at least, far
from critical points). Much longer production runs of 5 to 50
million sweeps each were performed at closely separated state
points on a few isotherms in order to study the transformation
from 1 to 2 and vice versa (see Sec. III). A run of 5 million
sweeps at P = 0.5 and T = 0.1 turned out to be sufficient
to accurately compute the chemical potential of the 1 phase
by Widom’s particle-insertion method [18]. The location of
each phase transition was determined through thermodynamic
integration of chemical-potential derivatives along isobaric
and isothermal paths connecting the system of interest to a
reference system whose free energy is already known (see,
e.g., Ref. [19]). While the reference state for the 1 phase was a
dilute fluid, deep inside each cluster region a low-temperature
cluster fluid with integer nc was taken as the starting point of a
MC trajectory. In any such state, the Helmholtz free energy was
numerically computed by a variant [10] of the Einstein-crystal
method which is briefly described below.

In the original Frenkel-Ladd method [20,21], the free
energy of the system of interest is built up starting from the
known free energy of a system of independent harmonic
oscillators. This is realized by introducing a linear morphing

Uλ (0 � λ � 1) between the two potential energies, and
computing for each intermediate step λ the average energy
difference 〈�U 〉λ between the two systems in a NV T

simulation. To prevent 〈�U 〉λ from diverging at λ = 1
(corresponding to Uλ = U , the actual potential energy), all
simulations are performed under the constraint of a fixed
center of mass and the bias thus introduced is corrected at the
end of the calculation. In simulations of a crystal with multiply
occupied sites and itinerant particles ceaselessly hopping from
site to site, a more appropriate choice of reference system is an
ideal gas of particles diffusing in a landscape of well-separated
potential barriers centered on the lattice sites [10], and there
is no longer the need to constrain the center of mass. Note that
the same modified Frenkel-Ladd method can also be employed
to compute the chemical potential of a cluster fluid, the only
difference being that the morphing formula now relates
the free energies of two distinct fluid systems in the same
thermodynamic state. As conveniently argued in Ref. [11], in
order to improve sampling efficiency for λ = 1 on average one
MC move out of N was attempted to shift the system center
of mass to a totally random position. For other values of λ, the
trial moves were of the same type as considered for NPT runs.
Particular care was paid in the extraction of F from 〈�U 〉λ,
since the latter quantity exhibits a strong dependence on λ near
0 and 1 (see the typical low-T profile of this function in Fig. 2).

For noninteger nc values, a delicate issue is the choice of the
initial configuration of a NPT or NV T simulation. In a few
cases I found that an unfortunate arrangement of the particles
drives the GEM4 system to a long-lived out-of-equilibrium

FIG. 2. (Color online) Plot of 〈�U〉λ as a function of λ for nc = 2
(for T = 0.01,ρ = 1.5, and N = 400). The calculation was made
using a reference system of N independent particles moving in a
1D lattice of potential barriers [10] (barrier height: 10kBT ; barrier
width: 0.1). The red straight-line segments which are drawn over the
data points provide an independent estimate of the λ derivative of
〈�U〉λ, extracted from the average square fluctuation of �U . In the
insets, I show that the chemical potentials computed at T > 0 (open
dots) are fully consistent with the respective T = 0 (cluster-crystal)
values (full dots). Left: P = 0.5 path (1 phase). Right: P = 1.6 path
(2 phase).
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configuration characterized by an unphysical density wave.
For 1 < nc < 2, I eventually realized that the right choice is
to randomly mix, in the correct proportions, single particles
and fully overlapping pairs. On the contrary, the choice of
dropping N particles at random on M sites (with nc = N/M)
sometimes led to inefficient sampling.

Clearly, by the above outlined method one just computes the
Helmholtz free energy F (nc) of the system for a preset nc value
and a given state point. In principle, at each (P,T ) point one
should repeat the free-energy calculation for several nc’s and
eventually pick the nc value with the minimum associated μ.
This is a rather daunting task, which however can be avoided if
thermodynamic integration is employed judiciously: it would
actually be sufficient to compute μ at one reference state
for several values of nc and then generate a separate (either
isobaric or isothermal) chain of Monte Carlo runs for each nc.
The actual system chemical-potential curve along the given
(P,T ) path is the lower envelope of the various μ(nc) curves.
This is a correct procedure which, however, is doomed to fail if
nc abruptly changes along the path. Even in cases where nc is
perfectly conserved, one should nonetheless check—by, e.g.,
visual inspection on a random basis—that the spatial mixing of
1’s and 2’s is really random at each state point along the path.

A further tool employed to investigate the system phase
diagram at high temperature was density-functional theory
(DFT) in the mean-field (MF) approximation [9,22], which is
thoroughly presented in Appendix B. Here I just observe that
the efficacy of such a theory (indeed quite accurate in three
dimensions) typically diminishes on reducing the dimension-
ality of the system, but it will anyway be interesting to see how
the 1D theory performs compared to three dimensions.

III. RESULTS

A. Equilibrium phase diagram

The exact calculations of Sec. II only apply for T = 0. To
get some insight into the behavior of the 1D GEM4 at T > 0, I
carried out a series of concatenated NPT runs along a number
of isothermal paths, initially in large steps of �P = 0.1,
starting from a disordered configuration at low pressure and
from an ordered cluster-crystal configuration at high pressure.
I employed 2 million MC sweeps to compute equilibrium
averages at each state point, while another 2 million sweeps
were used to equilibrate the system from the last configuration
generated at the preceding state in the chain. In Fig. 3 the
system density ρ is plotted as a function of the reduced
pressure, for a few T values in the range 0.01–0.07. As neatly
shown by these graphs, upon compression the system crosses a
series of phase-coexistence lines at nearly the same transition
pressures as found at T = 0, with more and more extended
hysteresis loops as P grows. On increasing the temperature,
the transitions become rounded one after another in the same
order, suggesting that the coexistence loci all terminate with
a critical point (Tc � 0.02 for the 1 to 2 transition, Tc � 0.05
for the 2 to 3 transition, and so on), as if they were standard
liquid-vapor loci. In three dimensions, the critical point of
each isostructural nc ↔ (nc + 1) transition belongs to the Ising
universality class [23]. The eventual coalescence of curves
with a different attached nc index proves that the mean site

FIG. 3. (Color online) Isothermal-isobaric MC simulation runs
of the 1D GEM4 system: equilibrium number density ρ vs pressure
P along a number of isothermal paths. Each chain of runs refers to
distinct initial values for nc and pressure: nc = 1 and P = 0.3 or 0.4
(red full dots); nc = 2 and P = 2 (black open squares); nc = 3 and
P = 3 or 4 (blue open dots); nc = 4 and P = 6 (black open dots). In
each panel, the thin solid lines represent the zero-temperature density
curves for n-cluster crystals (n = 1,2,3,4). The observed density
jumps are associated with (metastable) T = 0 isostructural transitions
of the one- and two-cluster crystals (see also Fig. 1 caption). The
vertical dotted lines mark the transition pressures at T = 0 (see
Table I).

occupancy is not conserved along a chain of runs but rather
changes with pressure, at least across a phase transition. We
will see that the flexibility of nc is even more pronounced than
the above evidence indicates. As a matter of fact, nc promptly
reacts to any change of thermodynamic control parameters,
a circumstance that, rather than being a problem, actually
considerably simplifies the numerical determination of the
phase boundaries for the present 1D system.

Next I focused on the transition regions and accordingly
reduced the pressure step �P while leaving the rest of the
simulation schedule unchanged. By combining the free-energy
values obtained at selected reference states with the density
and energy data collected along a few isothermal and isobaric
paths on the (P,T ) plane, I eventually obtained the tentative
phase diagram schematized in Fig. 4 (lower panels). Overall,
this behavior conforms with the picture already emerged from
Fig. 3. In the upper panels of Fig. 4, I have reported the
outcome of the MF-DFT theory described in Appendix B,
which predicts a transition from fluid to cluster crystal (our
DFT calculations are blind to Peierls’ argument).

A closer look at Fig. 4 reveals a potential matching problem
between the high- and low-temperature behaviors: specifically,
what is the true nature of the transition predicted by DFT and,
moreover, where is the origin of the transition line derived

042306-4



CLUSTER PHASES OF PENETRABLE RODS ON A LINE PHYSICAL REVIEW E 90, 042306 (2014)

FIG. 4. (Color online) 1D GEM4 phase diagram on the P -T
plane (left) and on the ρ-T plane (right). In the upper panels, I
have reported some transition points between a standard fluid phase
and a cluster-crystal phase of varying nc, as computed through
the DFT theory illustrated in Appendix B (see also Fig. 16). As
argued in the text, this first-order line would actually be an artifact
since it is not confirmed by simulation. The coexistence points
reported in the lower panels were determined through the crossing
of chemical-potential curves constructed by the method explained in
the text. In the lower-right panel the extent of the coexistence regions
(yellow shaded regions) can be appreciated. Here, the inverse rate
of system compression or decompression was 2 × 106 equilibrium
sweeps per pressure (on isotherms) or temperature point (on isobars).
If the runs were much longer a different estimate of the critical point
had been obtained, see Sec. III. Farther from criticality the location
of the transition points is insensitive to the length of the runs.

from it? To find an answer I carried out a series of simulations
at T = 0.5, across the alleged phase transition point at P =
7.85. Assuming a stable cluster phase around this pressure, I
first tried to establish the equilibrium value of nc at ρ = 3.5
(corresponding to P � 11.91). To this aim I computed 〈�U 〉λ
for nc = 1,2, . . . 6. Notwithstanding, these curves are quite
different from one another (see Fig. 5), they all sum up to
practically the same μ (i.e., the same within ≈0.004 in the
whole P range 5–12), suggesting that the system is actually
not a cluster phase at these pressures but rather an ordinary
fluid. A close inspection into the typical system configuration
confirmed this: particles are nearly homogeneously dispersed
along the line, with no blobs or lumps at regular intervals
[i.e., in the radial distribution function (RDF) profile the r = 0
peak is not neatly disjoint from the next peak]. Hence, the
slight diversity of μ between the various nc’s would just be
due to the use of distinct N ’s for the different nc’s. In Fig. 6
I have reported the energy and density data computed for the
various nc’s, showing no clear sign of a phase transition (at
least up to P = 25). In the same Fig. 6 I have also reported the

FIG. 5. (Color online) Left: 〈�U〉λ plotted as a function of λ, for
T = 0.5 and ρ = 3.5 (nc = 2, blue; 3, cyan; 4, green; 5, magenta;
6, red). The arrow marks the direction of increasing nc. The small
black straight-line segments over the data points for nc = 5 are MC
estimates of the local slope of 〈�U〉λ, computed from the average
square fluctuation of �U (see Fig. 2). Right: Chemical potential for
T = 0.5, plotted as a function of pressure, for nc = 2, 3, 4, 5, 6 (top
to bottom). For making the comparison easier, the chemical potential
for nc = 1 has been subtracted from each curve (absolute μ1 values
go from about 4 to about 6.5 in the P range 5–12).

system density derived from MF-DFT. Apart from the cusp at
P = 7.85, which alludes to a nonexistent phase transition, the

FIG. 6. (Color online) 1D GEM4 system along the T = 0.5
isotherm: energy and density data for a number of nc values (nc = 1,
crosses; nc from 2 to 6, dots). The data points for nc = 2, . . . ,6 are
hardly distinguishable one from another. The red solid line in the
bottom panel is the MF-DFT estimate of the number density.
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FIG. 7. (Color online) RDF of the 1D GEM4 system at T = 0.01
and P = 1.6 (two-cluster fluid state), plotted as a function of r/ρ.
Top: linear-linear scale. Bottom: log-linear scale.

DFT density is not bad at all if compared with the MC results.
Clearly, for much larger pressures we might hit the coexistence
line for some high-index, nc ↔ (nc + 1) transition, and this
would clearly entail a jump discontinuity for ρ, which anyway
could be hard to locate considering hysteresis.

In conclusion, the phase diagram of the 1D GEM4 system
is as represented in the lower panels of Fig. 4, with an infinite
sequence of finite-length transition loci separating fluid phases
of increasing pressure; therefore, it will be possible to go from
one phase to another without ever crossing a first-order line.
Figure 7 shows the RDF of a N = 400 system at T = 0.01
and P = 1.6. This graph shows that at low temperature a two-
cluster fluid retains a sharp spatial periodicity up to relatively
large distances. Therefore, if temperature is not too high it
would be hard to distinguish a cluster-fluid system from a
cluster crystal only by looking at its local structure.

B. A closer inspection into the critical region

Among the transition points reported in the lower panels
of Fig. 4, those requiring a follow-up investigation are the
nearest to the critical points, since the asymmetry observed
near the top of the binodal line is a dubious feature which might
be the outcome of an insufficient equilibration. Therefore I
repeated the simulations at T = 0.016 (1-2 transition) and
T = 0.05 (2-3 transition), allowing for longer equilibration
and production runs.

The behavior of the 1D GEM4 system at T = 0.016
is best considered in comparison with that for T = 0.02
(Fig. 8, top). At the latter temperature, no hysteresis is
found: the energy and density data for a system initially
prepared in the 1 state do exactly overlap with those found
by gradually decompressing the system from a perfect 2 state.
The energy and density data do not even change when the
initial cluster-crystal state corresponded to nc = 1.9 or 1.8,

FIG. 8. (Color online) Number density of the 1D GEM4 system
along three isotherms: T = 0.02 (top), T = 0.016 (center), and
T = 0.01 (bottom). The data points refer to a number of compression
(dots) and decompression trajectories (squares). Different colors
denote different numbers M of sweeps produced per state point:
2 × 106 (red), 5 × 106 (magenta), 107 (cyan), 2 × 107 (blue), and
5 × 107 (black). The arrows in the center and bottom panels mark the
direction of increasing M . For each value of T , the data points for the
most accurate sampling have been joined by straight-line segments.
Plotted in green are the density values obtained from simulations of
cluster crystals prepared with noninteger nc values: 1.8 (crosses) and
1.9 (diamonds).

suggesting that the system is capable to fast reabsorb a few
randomly dispersed single-particle defects, thus adapting their
number to the thermodynamic conditions. In these T = 0.02
simulations the minimum number of MC sweeps per point
was 2 × 106, as before, plus an equal number of discarded
cycles used to equilibrate the system from the preceding
state. The outcome for T = 0.016 using the same number
of sweeps was totally different and more consistent with a
first-order transition. However, the true point is that the latter
scenario changes qualitatively when the simulation schedule
is different: I found that the compression and decompression
trajectories followed by the system at T = 0.016 are a function
of the number of sweeps generated per point; see Fig. 8, center.
When this number eventually overcomes 5 × 107, the 1 ↔ 2
transformation becomes perfectly smooth, implying that the
critical temperature for the 1 ↔ 2 transition is in fact smaller
than 0.016.

Another example is T = 0.01 (see Fig. 8, bottom): now
the behavior clearly points to the existence of a density jump
at the transition, but the size of the hysteresis loop (i.e., the
“diameter” of the spinodal region) reduces progressively as
the number of sweeps per point grows larger. Admittedly, the
system equilibration is extremely slow at low temperature, at
least near above and across a phase-transition line, in fact so
slow that it would be difficult to decide numerically where the
critical temperature of the 1 ↔ 2 transition is exactly located

042306-6



CLUSTER PHASES OF PENETRABLE RODS ON A LINE PHYSICAL REVIEW E 90, 042306 (2014)

FIG. 9. (Color online) Isobaric specific heat (top) and isothermal
compressibility (bottom) of the 1D GEM4 system along two
isotherms: T = 0.016 (5 × 107 sweeps per point, dashed blue lines)
and T = 0.02 (2 × 107 sweeps per point, solid red lines). Values of cP

and KT along both compression (dots) and decompression trajectories
(squares) are reported.

(let alone the value of the critical exponents). Summarizing, (1)
the critical temperature Tc for the 1-2 transition lies somewhere
between 0.01 and 0.016; (2) the diameter of the binodal region
stays roughly constant up to about T = 0.01, but it would then
shrink fast upon heating from 0.01 to Tc. To find some traces
of the criticality at Tc I have plotted in Fig. 9 the isobaric
specific heat cP and the isothermal compressibility KT as a
function of the pressure along the isotherms at T = 0.016
and T = 0.02. Notwithstanding the large statistical errors, the
reported behavior is clearly suggestive of the crossing of a
Widom line.

The smoothness of the system number density slightly
above Tc suggests a similarly smooth evolution for the mean
site occupancy nc, which is taken to be the average ratio of the
particle number N to the number of “sites” Ns . Rather than
estimating Ns for each system configuration, we may look at
the RDF peak centered at zero, which is present whenever
the number of paired particles in the system is nonzero on
average. When 1 � nc � 2, the number of particle pairs is
N − Ns , hence N − 2(N − Ns) = 2Ns − N is the number of
unpaired or isolated particles. If x0 denotes the width of the
first RDF peak, the average number N (r < x0) of particles
whose distance from a reference particle at the origin is less
than x0 is:

2ρ

∫ x0

0
dx g(x) = N (r < x0)

= 2Ns − N

N
× 0 +

(
1 − 2Ns − N

N

)
× 1

= 2

(
1 − Ns

N

)
≈ 2 − 2

nc

, (3.1)

FIG. 10. (Color online) Pressure evolution of the mean site occu-
pancy nc, computed by Eq. (3.1), along two isothermal paths at T =
0.02 (top) and T = 0.016 (bottom). Data from both the compression
(blue dots) and the decompression trajectory (red squares) for the
most accurate sampling are shown.

assuming that the distribution of Ns is sharply peaked.
Using the above formula, I estimated the values of nc

along the isothermal paths of Fig. 8 (top and center only),
finding a behavior very similar to that of the density; see
Fig. 10.

Next, I extended the above analysis to the transition
between 2 and 3 along the T = 0.05 path. Again, when
the simulation runs take a longer time, the transformation
that previously looked first order now slowly glides into a
continuous crossover; see Fig. 11. Here, the compression
trajectory for the most accurate sampling does not exactly
overlap with the decompression trajectory, but this could
simply be related to the difficulty in equilibrating the system
structure at these high pressures, which would require a much
smaller compression or decompression rate. The mean site
occupancy is reported in the bottom panel of Fig. 11; again,
its behavior closely follows that of the density. Note that
the relation of nc to N (r < x0) for 2 � nc � 3 is no longer
given by Eq. (3.1), since a different argument now applies.
Considering that the number of paired particles in a configura-
tion with Ns sites is N − 3(N − 2Ns) = 6Ns − 2N , it follows
that

N (r < x0) = 6Ns − 2N

N
× 1 +

(
1 − 6Ns − 2N

N

)
× 2

= 4 − 6Ns

N
≈ 4 − 6

nc

. (3.2)

C. Growth of the two-cluster phase from the fluid

Finally, I have considered the issue of nucleation and growth
in the formation of the two-cluster phase from the metastable 1
phase. In three dimensions, a first-order phase transformation

042306-7



SANTI PRESTIPINO PHYSICAL REVIEW E 90, 042306 (2014)

FIG. 11. (Color online) 1D GEM4 system along the T = 0.05
isotherm. The data points refer to both compression (dots) and de-
compression trajectories (squares). Different colors denote different
numbers M of sweeps produced per state point: 2 × 106 (red), 107

(cyan), and 2 × 107 (blue). The arrows in the top panel mark the
direction of increasing M . The data points for the latter case are
joined by straight-line segments. Top: number density. Bottom: mean
site occupancy for the most accurate sampling (compression route,
blue dots; decompression route, red squares).

(e.g., the freezing of a metastable liquid) typically occurs
via the nucleation and subsequent growth of a sufficiently
large embryo of the stable phase (solid nucleus) [24]. Indeed,
some free energy must be paid for the creation of the
interface between a cluster of solidlike particles (i.e., a
bunch of particles, not to be confused with a single blob of
nearly overlapping particles in a cluster phase) and its liquid
environment, which implies that the system has to overcome an
activation barrier in order that the solid can grow. The cluster
free energy �G (i.e., the reversible work of cluster formation)
is the difference between the free-energy cost of a liquid
with and without a solid cluster inside. This roughly amounts
to

�G = −|�μ|Ns + g0N
2/3
s , (3.3)

where Ns is the number of solid particles, �μ = μs − μl < 0
is the chemical-potential difference between the phases and
g0 is a O(kBT ) energy (“surface tension”). The function (3.3)
reaches a maximum at a nonzero (critical) value of Ns , N∗

s ∝
g3

0/�μ2, implying that the lifetime of the metastable liquid is
very long for low supercoolings.

Notwithstanding, Eq. (3.3) is in many cases inaccurate (see,
e.g., Ref. [25]), it captures most of the nucleation phenomenon.
The argument leading to (3.3) is easily adapted to other spatial
dimensionalities, simply by changing the exponent 2/3 into
1/2 (two dimensions) or 0 (one dimension). In particular, the
expected critical cluster size in one dimension would be N∗

s =
0, meaning that there would be no time delay for the growth of
the stable phase from within the parent phase after the quench.

By the way, note that for any dimensionality it is far more
convenient (at least sufficiently close to coexistence) that the
solid grows from a single nucleus rather than from many small
crystallites—this follows from the fact that if many, O(Ns)
independent clusters of size ncl form out of a number Ns of
solid particles, the surface term in Eq. (3.3) has to be replaced
with a larger g0Ns/n

1/3
cl term plus a positive O(Ns ln Ns) ideal-

gas free energy term [26].
The absence of an activation barrier to nucleation in one

dimension should not anyway be intended as an argument
for the promptness of the transformation of the parent phase
into the stable phase. This process will be fast only provided
also the growth of the stable phase meets no hindrance.
With specific regard to the formation of the two-cluster
phase from the 1D GEM4 fluid, the existence of many
configurations with nearly the same T = 0 chemical potential
as 1 and 2 but widely different nc values (see Sec. II) is
a sufficient condition for a very slow growth kinetics. This
has already been discussed in relation to Fig. 8, where the
way isotherms look slightly above Tc is strongly dependent
on the length of the simulation runs. Below Tc, the large
extension of the hysteresis loops indicates that the complete

FIG. 12. (Color online) Growth and coarsening kinetics of the
1D GEM4 system at T = 0.016 and P = 0.89. Top: plots of G(k)
(see text) for five different choices of the initial system configuration
(from left to right, this configuration was extracted from the
compression trajectory of Fig. 8 center with 2, 5, 10, 20, 50 million
equilibrium sweeps per state point, respectively). The different
colors denote MC time, increasing in steps of 5 × 107 sweeps
from red to black (i.e., roughly from left to right within each
panel). Bottom: fraction f2 of lattice sites occupied by particle
pairs, plotted as a function of MC time. The different colors now
denote the number of million sweeps generated per state point in
the compression trajectory from which the initial configuration of
the present run was extracted: 2 (red), 5 (magenta), 10 (cyan),
20 (blue), and 50 (black), increasing from bottom to top at
small t .
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FIG. 13. (Color online) Same as in Fig. 12, but now for T = 0.01
and P = 1.05. Top panels refer to four different choices of the
initial configuration, which were now extracted from the compression
trajectories seen in the bottom panel of Fig. 8 (from left to
right, the inverse compression rate is 2, 5, 10, 20 million sweeps,
respectively). Bottom: time evolution of f2 for the same four initial
configurations.

transformation from one phase to the other also takes very long
(simulation) time, in spite of the lack of a nucleation barrier to
climb up.

I studied the growth dynamics of the 1D GEM4 system
at two temperatures, T = 0.01 and T = 0.016, at pressures
where the relaxation to equilibrium occurs via the gradual
appearance of the 2 phase from within the 1 phase. Clusters of
the 2 phase in a prevalently 1 phase were defined as patches of
adjacent particle pairs, each “pair” representing two nearly
overlapping soft rods. Within a standard NPT simulation
run, the statistics of the cluster size k was computed as a
function of MC time at regular intervals of 5 × 107 sweeps,
by gathering together data from the last 5 × 107 sweeps, up
to a total time of 3 × 108 sweeps. Denoting N (k) the mean
number of k-sized clusters in the system, for fixed T and P I
have considered the time evolution of G(k) = − ln (N (k)/N ),
a quantity akin to a cluster free energy [27,28], starting from
the last configuration obtained in the original run and carefully
distinguishing between the various compression trajectories in
Fig. 8. To have a hint of the overall system structure, I also
computed as a function of the simulation time the total fraction
f2 of particle pairs in the system. Two cases were examined in
detail, T = 0.016, P = 0.89 and T = 0.01, P = 1.05, which
are illustrated in Figs. 12 and 13, respectively. At these values
of T and P , particles are either isolated or strictly paired (the
fraction of triplets is negligible) and the RDF peak centered
at the origin is well separated from the next peak. We see that
at T = 0.016 the system gradually and very slowly gets rid of
isolated particles until their number reduces to a small value
which is compatible with the nc value reported in Fig. 10,

FIG. 14. (Color online) Final system configuration of the 3 ×
108-sweeps-long runs that were produced at T = 0.016, P = 0.89
(top panel) and T = 0.01, P = 1.05 (bottom panel) in order to
investigate the growth dynamics of 2 from 1. The blue (i.e.,
darker) dots are isolated particles, whereas each cyan dot marks
a particle which is tightly bound to another particle, thus forming
a pair with it. The total number of particles here is N = 400,
and the particle coordinate increases from left to right and from
top to bottom. The numbers below each panel of eight 40σ -long
slices are abscissas in σ units for the last slice (note that periodic
boundary conditions are applied at the box boundaries, the box length
being V/σ = 297.0585 for T = 0.016 and V/σ = 280.3364 for
T = 0.01).

bottom. The quantity G(k) evolves differently with MC time
for the different compression trajectories, reaching eventually
the same positive, nearly constant slope as a function of k.
The outcome is similar at the lower temperature T = 0.01,
where again G(k) is an increasing function of k at all times.
This may sound strange, since the critical cluster size would
then be nonzero. The reason why these G(k) plots are not in
contradiction with the expectation of a zero critical-cluster
size has partly to do with our cluster definition, which is
not sufficiently flexible to envisage the possibility of defects
(i.e., isolated particles) within a cluster of the 2 phase. Note
that these defects would not cost too much, considering that
the mixing of isolated particles and pairs in any proportions
occurs at T = 0 with only a marginal increase of the chemical
potential. According to our cluster definition, very large
clusters are strongly suppressed since it seldom occurs that
defects are few and well concentrated in space (typical final
configurations of the runs are illustrated in Fig. 14). For reasons
related to the shape of the cluster-size statistics in a fully
uncorrelated mixture of 1’s and 2’s, also the occurrence of
small-sized clusters in the system gets enhanced from our
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cluster notion, with the result that no safe indication on the
cluster formation energy can be obtained from the G(k) plots
of Figs. 12 and 13. A more subtle explanation has to do
with the kind of configurations participating in the calculation
of G(k): rather than quasiequilibrium configurations like in
a metastable system before the first critical cluster forms,
all the states over which averages were computed are fully
nonequilibrium postnucleation states, which are not those
relevant for the calculation of the free energy of the nucleation
cluster.

IV. CONCLUSIONS

In the present study, the thermodynamic and growth
behaviors of the 1D GEM4 system were investigated by MC
simulation. The GEM4 potential is bounded at the origin,
hence it escapes the conclusions of van Hove’s theorem which
prescribes the lack of phase transitions in 1D homogeneous
classical fluids of hard-core particles with additional short-
range interactions between them. Specialized numerical free-
energy methods were employed in order to map out the
equilibrium phase diagram of the system, thus revealing an
endless sequence of cluster fluid phases beyond a low-density,
ordinary fluid phase. First-order lines ending with a critical
point separate adjacent phases in the sequence. In the present
1D system, the cluster phases have a pronounced crystal
character for not too high temperatures.

That said, the simulation also revealed interesting (and
partly unconventional) features of the system collective behav-
ior near a phase-coexistence line: (1) a very slow relaxation
to equilibrium slightly above Tc, maybe just a mark of the
closeness to criticality, which however may lead to confuse
a smooth crossover between the phases with a discontinuous
transition if MC trajectories are not long enough; (2) below Tc,
the decay of the metastable phase is extremely slow, even for
huge supersaturations, and occurs without a nucleation barrier
to overcome. The growth rate of the stable phase is very much
sensitive to the structure of the initial system configuration,
and even the cluster-size statistics is unorthodox, though this
would just be the effect of the naive cluster definition used
and, moreover, of the intrinsic nonequilibrium character of the
configurations involved in the averaging process. I surmise that
the kind of phenomenology here reported can in principle be
detected in systems of dissolved polymers confined in narrow
channels.
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APPENDIX A: ZERO-TEMPERATURE
CALCULATIONS

In this appendix, I provide some details on the calculation
of the P -dependent chemical potential of various 1D GEM4
lattice structures at T = 0. Strictly periodic configurations

permit the exact computation of the system chemical potential,
reducing it to seeking the minimum of a few-parameter
analytical expression. For n-cluster crystals (n = 1,2, . . .), the
chemical potential is easily found to be

μ = min
ρ

{
n − 1

2
ε + nε

∞∑
k=1

exp

[
−

(
n

k

ρ

)4]
+ P

ρ

}
, (A1)

where the first term within parentheses is the on-site energy
per particle while the second is related to interactions between
particles placed at different sites.

For more complex lattices, the unit cell contains two
or more sites and the energy calculation is more lengthy
though in principle still straightforward. For simplicity, I
only consider here 1D lattices interpolating between 1 and
2. For instance, in the lattice denoted 12, isolated particles
(1’s) occur regularly alternated with pairs of fully overlap-
ping particles (2’s) and the chemical potential turns out to
be

μ = min
ρ

{
1

3
ε + 4

3
ε

∞∑
k=0

exp

[
−

(
3

2ρ
+ 3k

ρ

)4]

+ 5

3
ε

∞∑
k=1

exp

[
−

(
3k

ρ

)4]
+ P

ρ

}
. (A2)

Note that the number density ρ is still the only parameter to
be optimized in the above formula.

The computational effort is higher for other simple lattices,
like 112 (where the succession of particles along the line is
· · · − 1 − 1 − 2 − 1 − 1 − 2 − · · · ) or 1112. For, e.g., 112,
two parameters (for example, the density and the distance d11

between two successive 1’s) should be tuned for each P , and
the chemical potential reads

μ = min
ρ

{
min

0<d11<4/ρ
μ(ρ,d11)

}
with

μ(ρ,d11) = 1

4
ε + 1

4
ε

∞∑
k=0

e−(d11+4k/ρ)4 + ε

∞∑
k=0

e−(d12+4k/ρ)4

+ ε

∞∑
k=0

e−(d11+d12+4k/ρ)4 + 1

4
ε

∞∑
k=0

e−(2d12+4k/ρ)4

+ 3

2
ε

∞∑
k=1

e−(4k/ρ)4 + P

ρ
, (A3)

where d12 = 2/ρ − d11/2.
The calculation of μ for 1122 is one step more difficult.

Now, we may assume the distances between two nearby
1’s (d11) and between two nearby 1 and 2 (d12) as addi-
tional parameters to be optimized besides the density ρ. In
terms of these parameters, the chemical potential is given
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by

μ = min
ρ

{
min

0<d12<3/ρ

{
min

0<d11<6/ρ−2d12

μ(ρ,d11,d12)
}}

with

μ(ρ,d11,d12) = 1

3
ε + 1

6
ε

{ ∞∑
k=0

e−(d11+6k/ρ)4 + 4
∞∑

k=0

e−(d12+6k/ρ)4 + 4
∞∑

k=0

e−(d22+6k/ρ)4

}

+ 1

6
ε

{
4

∞∑
k=0

e−(d11+d12+d22+6k/ρ)4 +
∞∑

k=0

e−(2d12+d22+6k/ρ)4 + 4
∞∑

k=0

e−(d11+2d12+6k/ρ)4

}

+ 2

3
ε

{ ∞∑
k=0

e−(d11+d12+6k/ρ)4 +
∞∑

k=0

e−(d12+d22+6k/ρ)4

}
+ 5

3
ε

∞∑
k=1

e−(6k/ρ)4 + P

ρ
, (A4)

where d22 = 6/ρ − d11 − 2d12.
The chemical-potential data for all the considered lattices

are reported in Fig. 1 and commented on at length in Sec. II.

APPENDIX B: DENSITY-FUNCTIONAL THEORY
OF THE GEM4

I hereafter report a number of MF-DFT calculations for the
GEM4, both in one and three dimensions, aimed at locating the
system phase boundaries at sufficiently high temperature. I will
mainly follow the presentation in Ref. [29], though I anticipate
that the results for the 3D system are substantially equivalent
to those reported in [9] where a slightly different formalism
has been developed–built around the NV T ensemble, rather
than the μV T ensemble employed here. I will also abstain
from the further approximations that were made in Ref. [9] in
an effort to obtain a closed-form expression for the free-energy
functional.

The premise of any DFT approach to the freezing transition
is to write an (approximate) grand-potential functional �μ of
the crystal one-point density n(x), the minimization of which
reveals the thermodynamics and structure of the periodic solid.
On general grounds, �μ[n] is written (in three dimensions) as

�μ[n] = F id[n] + F exc[n] − μ

∫
d3x n(x), (B1)

with separate, ideal (known) and excess (generally unknown)
contributions to the Helmholtz free-energy functional F [n].
In the so-called Ramakrishnan-Yussouff theory [30], the
two-point direct correlation function (DCF) of the crystal is
approximated with that, c(r; ρ), of the homogeneous fluid of
density ρ, and the excess free energy thus reads

βF exc[n] = βF exc(ρ) − c1(ρ)
∫

d3x[n(x) − ρ]

−1

2

∫
d3x d3x ′ c(|x − x′|; ρ)

× [n(x) − ρ][n(x′) − ρ], (B2)

where c1(ρ) = ln(ρ	3) − βμ is the one-point DCF of the
fluid, 	 is the thermal wavelength, and F exc(ρ) is the excess
free energy of the fluid. A further simplifying, MF-like
assumption is c(r) ≈ −βu(r), which gives F exc the more

compact form

F exc[n] = 1

2

∫
d3x d3x ′ u(|x − x′|)n(x)n(x′). (B3)

This completes our hierarchy of approximations.
Now let M and Ns denote the number of lattice sites and

the average number of solid particles, respectively (the two
numbers are distinct in a cluster crystal). In terms of the solid
density ρs = Ns/V and the unit-cell volume v0 = V/M , the
average site occupancy reads nc = Ns/M = ρsv0. A popular
ansatz for n(x) is

n(x) = nc

(
α

π

)3/2 ∑
R

e−α(x−R)2 = ρs

∑
G

e−G2/(4α)eiG·x,

(B4)

where the last equality transforms a direct-lattice sum into
a reciprocal-lattice sum. Plugging Eq. (B4) into (B1), one
eventually obtains the grand-potential difference ��μ[n] =
�μ[n] − �(ρ) between the crystal and the fluid as a function
of three parameters (v0, α, and nc), which has to be made
minimum for each ρ. For the given μ, V, T , the freezing
transition occurs where the minimum ��μ (≡ ��∗) happens
to be zero (the corresponding value of ρ is the freezing density
ρf ). An explicit expression of ��μ[n] is

β��μ

V
= 1

V

∫
d3x n(x) ln

n(x)

ρ
− (ρs − ρ)

+ β

2
(ρs − ρ)2ũ(0) + β

2
ρ2

s

∑
G �=0

e−G2/(2α)ũ(G)

(B5)

with

ũ(0) = 4π

∫ ∞

0
dr r2u(r) and

ũ(G) = 4π

∫ ∞

0
dr r2u(r)

sin Gr

Gr
. (B6)

In three dimensions, the high-precision evaluation of the
integral in Eq. (B5) can be made by the method explained
in [31] (see also Ref. [32]).

From the general formulas

c′
1(ρ) =

∫
d3x c(|x − x′|; ρ) = c̃(0; ρ) and
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FIG. 15. (Color online) DFT in the mean-field approximation for
the 3D GEM4 system. The data are for a number of temperatures
(from left to right, T = 0.1, 0.3, 0.5, 1) and are plotted as a function
of the reference-fluid density ρ. For each T , the two vertical dotted
lines mark the phase transitions (the leftmost is from fluid to bcc
cluster crystal, the rightmost is from bcc to fcc cluster crystal). Top left
panel: grand-potential difference between solid and fluid (fcc, blue
solid line; bcc, red dashed line). Top right panel: solid density. Bottom
left panel: α parameter. Bottom right panel: mean site occupancy.

FIG. 16. MF-DFT results for the 3D GEM4 system. Top: P -T
phase diagram. Bottom: ρ-T phase diagram. The width of the (cluster
bcc)-(cluster fcc) coexistence region is negligible on the scale of the
figure.

FIG. 17. (Color online) MF-DFT results for the 1D GEM4 sys-
tem. Data for a number of temperatures are shown (from left to right,
T = 0.3, 0.5, 0.7, 1) and plotted as a function of the reference-fluid
density ρ. For each T , the vertical dotted line marks the phase
transition from fluid to cluster crystal. Top left panel: grand-potential
difference between solid and fluid. Top right panel: solid density (the
thin red straight line is ρσ ). Bottom left panel: α parameter. Bottom
right panel: mean site occupancy.

βf exc(ρ) = − 1

ρ

∫ ρ

0
dρ ′(ρ − ρ ′ )̃c(0; ρ ′), (B7)

it follows in the mean-field approximation that

c1(ρ) = −βũ(0)ρ and βf exc(ρ) = βũ(0)

2
ρ. (B8)

Hence, the solid grand potential can be written as

β�[n]

V
= β��[n]

V
− ρ − βũ(0)

2
ρ2. (B9)

At equilibrium, the fluid and solid pressures are finally given
in terms of the fluid density ρ by

βPfluid = −β�(ρ)

V
= ρ + βũ(0)

2
ρ2 and

βPsolid = βPfluid − β��∗(ρ)

V
. (B10)

I report a few results for the 3D GEM4 system in Fig. 15 and
the resulting phase diagram in Fig. 16 (to be compared with
that in Fig. 4 of Ref. [9] and with the exact one in Ref. [12]).
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On the basis of the present theory, for all temperatures down to
T = 0.1 the phase sequence upon compression is fluid-(cluster
bcc)-(cluster fcc), in agreement with the exact MC results by
Zhang et al. [12]. Within each cluster phase, the density ρs , the
α value, and the mean site occupancy nc all increase almost
linearly with pressure.

Adapting the above DFT theory to the 1D case is a trivial
task [the Fourier transform is now defined by Eq. (2.1)].
Clearly, since no 1D crystal would truly exist, what I am
assuming here is that the thermodynamics and local structure

of a 1D cluster fluid are not too dissimilar from those of a
(fictitious) cluster crystal. I show some MF-DFT results for the
1D GEM4 system in Fig. 17. Again, the theory predicts a phase
transition from fluid to cluster crystal but, at variance with
the 3D case, freezing now occurs with no discontinuity in the
density (see top right panel). However, this phase transition is a
theory artifact since we know from the MC simulation that no
singularity is apparent in the GEM4 at very high temperature,
unless the pressure is really huge (cf. the case of T = 0.5
discussed in the text).
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