
PHYSICAL REVIEW E 90, 012305 (2014)

Phase behavior of a fluid with a double Gaussian potential displaying waterlike features
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Pair potentials that are bounded at the origin provide an accurate description of the effective interaction for many
systems of dissolved soft macromolecules (e.g., flexible dendrimers). Using numerical free-energy calculations,
we reconstruct the equilibrium phase diagram of a system of particles interacting through a potential that brings
together a Gaussian repulsion with a much weaker Gaussian attraction, close to the thermodynamic stability
threshold. Compared to the purely repulsive model, only the reentrant branch of the melting line survives, since
for lower densities solidification is overridden by liquid-vapor separation. As a result, the phase diagram of the
system recalls that of water up to moderate (i.e., a few tens of MPa) pressures. Upon superimposing a suitable
hard core on the double-Gaussian potential, a further transition to a more compact solid phase is induced at high
pressure, which might be regarded as the analog of the ice I-to-ice III transition in water.
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I. INTRODUCTION

One of the central problems in the statistical mechanics of
classical systems is understanding how the phase behavior of
particles is affected by the details of their mutual interactions.
Up until about a couple of decades ago, this appeared
as an essentially solved problem for at least monatomic
substances characterized by isotropic interactions. For such
systems the typical phase diagram was considered to be
argonlike, featuring a liquid-vapor critical point, a solid-liquid-
vapor triple point, and a melting temperature monotonously
increasing with pressure. These features are strictly related to
the essential ingredients of the interparticle forces in atomic
systems, namely (i) a harsh short-range repulsion caused by
the overlap of the outer electronic shells and (ii) an attraction
at larger separations arising from multipole dispersion forces,
as embodied, e.g., in the popular Lennard-Jones potential.

Starting from the early 1990s, the interest for new materials
such as fullerenes and soft matter (colloids, polymers, den-
drimers, surfactants, etc.) has led to the exploration of the phase
behavior of model potentials that do not fit the Lennard-Jones
paradigm. Pair potentials devoid of any physical meaning in
the context of microscopic interactions of atomic systems
would acquire a physical relevance when assumed to describe
effective interactions among macromolecules. In fact, due
to their molecular architecture, complex-fluid particles have
internal degrees of freedom which can be accounted for
in a coarse-grained fashion by an effective center-of-mass
potential [1,2]. It was found that deviations of the potential
from the typical argonlike form may yield surprising novelties
in the system phase diagram, such as (i) the disappearance
of the liquid phase for a hard-core repulsion augmented
with a sufficiently short-ranged attractive tail [3], (ii) the
existence of two distinct liquid phases with a liquid-liquid
critical point for “softened” interactions where a hard-core
potential is supplemented by a finite repulsive shoulder (see,
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e.g., Ref. [4,5,6]), and (iii) either a point of maximum melting
temperature followed by a line of reentrant melting or no upper
bound in the melting temperature and stable cluster crystals at
high pressure for bounded repulsions [7–9].

Here we investigate the behavior of a model system of
particles interacting through a bounded repulsion plus a weak
attractive tail, which is thought to be somehow representative
of the effective interaction between polymer coils in a not-
too-concentrated solution [10,11]. We consider the double-
Gaussian model (DGM), in which both the repulsive and
attractive components of the potential are chosen to be of
Gaussian shape. Moreover, the attractive well is shifted to
outside the repulsive core so the strength of the repulsion
is roughly unaffected by the attraction. Due to the finiteness
of the repulsion, when the attraction overcomes a certain
strength the system becomes thermodynamically unstable.
Conditions for thermodynamic stability were first derived by
Fisher and Ruelle [12,13] and then implemented by Heyes and
Rickayzen [14].

In a previous paper [15], we studied the equilibrium
behavior of a DGM system with an extremely weak attraction,
which could essentially be viewed as a small perturbation of
the repulsive interaction. This nonetheless, the phase diagram
turned out to be considerably more complex than for the
Gaussian-core model (GCM) (i.e., no attraction whatsoever)
[8], with four solid phases, two fluid phases, and two distinct
reentrant-melting lines. We hereby consider a 4-times-stronger
attraction, near the stability threshold of the DGM. This system
provides an example of an as-yet unexplored regime in which
a bounded repulsion coexists with a fairly strong attraction.
It would especially be interesting to see how effective the
finite repulsion can be with regard to condensation and
crystallization. Given the peculiar nature of the interparticle
forces, a number of questions arise concerning the location
and extension of the liquid-vapor (phase coexistence) region,
as well as the topology of the melting line and of the loci
of waterlike anomalies. Anticipating our results, we find that
a strong-enough Gaussian attraction causes the liquid-vapor
region to widen at the expense of the (bcc) solid phase, which
in the present case is found to always melt into a denser
liquid. The resulting scenario is vaguely reminiscent of water
phase behavior in the low-to-moderate-pressure regime. To
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strengthen the resemblance with water, a suitable hard core can
be added to the DGM potential in order to induce the transition
to a more compact solid phase at high pressure, somewhat akin
to the transformation occurring in water from ice I to ice III
at about 200 MPa, while the low-pressure behavior is left
unchanged.

The outline of the paper is as follows. After recalling the
model definition and briefly describing the simulation method
in Sec. II, we present and discuss our results in Sec. III. Some
concluding remarks are presented in Sec. IV.

II. MODEL AND METHOD

The general double-Gaussian potential has been defined in
Ref. [15] as

u(r) = ε exp{−r2/σ 2} − ε2 exp
{−(r − ξ )2/σ 2

2

}
, (2.1)

where r denotes the interparticle distance and ε and σ are
arbitrary energy and length units, respectively. In Ref. [15],
we considered a slightly perturbed GCM fluid by taking ε2 =
0.005 ε,σ2 = σ , and ξ = 3σ in Eq. (2.1). With this choice,
the repulsive core is barely affected by the attraction and the
high-pressure behaviors of the GCM and DGM systems are
similar. Indeed, save for reduced pressures lower than 0.0005,
the DGM melting line runs very close to that of the GCM
system, reaching a maximum value of about 0.010 ε/kB at
about the same density. Moreover, two distinct fluid phases
are found, liquid and vapor, which can coexist up to a critical
temperature of 0.0077 ε/kB .

As recalled in the Introduction, a problem of stability
may arise for a system of particles interacting through a
bounded repulsive potential endowed with an attractive tail.
If the attraction is too slowly decaying or too strong, in the
infinite-size limit the system collapses in a finite region of
space and no clearly defined thermodynamics is possible. To
figure out whether this is the case for the DGM potential, we
resorted to a pair of criteria originally put forward by Ruelle
[13] (quoted as Theorems 1 and 2 in Ref. [14]). If ũ(k) denotes
the Fourier transform of the potential, a sufficient condition for
instability is ũ(0) < 0. On the other hand, the positivity of ũ(k)
is enough to conclude that the system is stable. We showed in
Ref. [15] that, for σ2 = σ and ξ = 3σ , these conditions jointly
lead to a stable DGM system as long as ε2 < 0.026315 ε. For
the present study, we have chosen ε2 = 0.02 ε, i.e., 4 times
larger than in the previously investigated case; this would
now make the critical temperature Tc definitely larger than
the maximum melting temperature.

In order to perform the simulation study, we first need to
identify the relevant crystal structures. This is accomplished
through exact T = 0 total-energy calculations for the same
candidate structures as considered in Ref. [15]. We find that
the body-centered-cubic (bcc) crystal provides the lowest
chemical potential among all structures for all values of the
pressure P , any other structure being much higher in chemical
potential to be deemed relevant for nonzero temperatures.

The phase diagram of the DGM system was carefully
investigated by Monte Carlo (MC) simulation in the NPT

(isothermal-isobaric) ensemble, with N = 1024 particles and
periodic boundary conditions. In order to draw the liquid-vapor
line, we carried out Gibbs-ensemble simulations [16] of

samples ranging from 1000 to 4000 particles, depending on the
temperature. Typically, as many as 105 sweeps were generated
at equilibrium for each (T ,P ) state, which turned out to be suf-
ficient to obtain accurate statistical averages of the volume and
energy per particle. Much longer runs of 5 × 105 sweeps each
were performed in order to compute the chemical potential
of the fluid phase by Widom’s particle-insertion method [17].
The location of the melting transition was determined through
thermodynamic integration of chemical-potential derivatives
along isobaric and isothermal paths (see, e.g., Ref. [18]),
connecting the system of interest to a reference system whose
free energy is already known. While the reference state for
the fluid phase was a dilute gas, in the solid region we took
a low-temperature bcc crystal as the starting point of an MC
trajectory. In any such state, the Helmholtz free energy per
particle was computed by use of the Einstein-crystal method
[19,20].

III. RESULTS

We show in Fig. 1 the T -P phase diagram of the DGM
system with ε2 = 0.02ε, σ2 = σ , and ξ = 3σ , as derived from
our numerical free-energy calculations (in order to improve
the visibility of the low-pressure region, we have unevenly
stretched the scale on the pressure axis by reporting the square
root of P rather than P itself). The same DGM phase portrait
but in the ρ-T plane is displayed in Fig. 2, to highlight
the coexistence regions. Finally, we zoom on the triple-point
region in Fig. 3, which also shows a comparison between
the “exact” transition lines obtained from simulation and the

FIG. 1. (Color online) Numerical phase diagram of the DGM
system in the T -P plane. We show the liquid-vapor coexistence points
obtained from Gibbs-ensemble simulations (high-T black dots),
along with the estimated critical point (black asterisk); the solid-liquid
coexistence points obtained from the “exact” free-energy calculations
described in the text (low-T black dots); the structural-anomaly
locus (red open diamonds), the volumetric-anomaly locus (red open
triangles), the diffusion-anomaly locus (red open squares), and the
minimum-cP locus (red open inverted triangles). The lines through
the points are plotted as a guide for the eye. On the scale of the figure,
the bcc-vapor coexistence line is invisible.
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FIG. 2. (Color online) Numerical phase diagram of the DGM
system in the ρ-T plane. We show a number of points along the
liquid-vapor binodal line obtained by Gibbs-ensemble simulations
(black dots), along with the estimated critical point (black asterisk);
a number of points along the line (dubbed “HNC pseudospinodal” in
the figure) enclosing the region where the HNC equation could not be
solved (blue open dots); the solid-liquid coexistence points obtained
from the “exact” free-energy calculations described in the text (black
diamonds and squares); some points on the P = 0 isobar of the bcc
solid (black right-pointing triangles). The lines through the points are
plotted as a guide for the eye. Note that the low-density region of the
plot (i.e., the one enclosed in the red frame) is shown magnified in
the next Fig. 3.

approximate ones derived by a number of faster theoretical
approaches (see below).

Compared to the case investigated in Ref. [15], the critical
temperature of the present DGM system is much higher
(0.0657 vs. 0.0077 in reduced, ε/kB units), due to a stronger
attraction. The critical values of the number density and
pressure are estimated to be ρc = 0.0525 and Pc = 0.00102
(from now on, all quantities are given in reduced units). The
extent of the liquid-vapor region can be appreciated in Fig. 2;
interestingly, the region of liquid-vapor coexistence is well
correlated with the set of (T ,P ) points where the homogeneous
hypernetted-chain (HNC) equation could not be solved [21].

At variance with the equilibrium between liquid and vapor,
which is essentially dictated by the value of ε2, the location of
the melting line is less sensitive to the change in ε2 from 0.005
to 0.02, at least as long as ε2 � ε. Hence, the widening of the
liquid-vapor region with increasing ε2 goes at the expenses
of the regular-melting branch, which becomes accordingly
shorter. This is confirmed in Figs. 1–3, where we see that
the “regular” branch of the melting line is even absent in the
present case. Thus, the bcc crystal always melts into a denser
liquid at all temperatures below the triple-point temperature
(Tt = 0.01087). In Fig. 3, we show the melting point of a
metastable bcc crystal of negative pressure as well as data
for the bcc density along the sublimation line, computed
through P = 0 simulations in the crystal (the actual bcc-vapor
coexistence pressures are indeed smaller than 10−6). At Tt ,
the P = 0 bcc density is only slightly smaller than the liquid
density, which complies with the indication coming from

FIG. 3. (Color online) DGM phase diagram in the ρ-T plane:
Magnification of the low-density region. We show two points on the
liquid-vapor binodal line obtained by Gibbs-ensemble simulations
(black dots); two points along the line enclosing the region where the
HNC equation could not be solved (blue open dots); a few solid-liquid
coexistence points obtained from the “exact” free-energy calculations
described in the text (black diamonds and squares); some points on the
bcc sublimation line, obtained from MC simulations of the bcc crystal
at P = 0 (black right-pointing triangles); the HUIM melting points
obtained by heating (in steps of �T = 0.0002 close to melting) an
originally perfect bcc crystal along isochoric and isobaric paths until it
melted (blue plusses and crosses, respectively); the variational-theory
(VT) coexistence points (blue open diamonds and squares); the locus
of zero-�s points (blue open triangles). The lines through the points
are plotted as a guide for the eye. The yellow-shaded regions denote
two-phase coexistence regions. In the inset, a zoom on the triple-point
region is provided.

our free-energy data. In Fig. 3, we have also included the
melting and freezing points obtained, at various temperatures,
through the variational theory introduced in Ref. [15], as well
as a number of bcc melting points estimated by the so-called
heat-until-it-melts (HUIM) method, also described in Ref. [15]
(the degree of solid overheating is 13% near the triple point but
much larger—about 23%—at the highest probed pressures).
Qualitatively speaking, the agreement of both approximations
with the MC points is fairly good.

The phase behavior illustrated so far calls to mind water
near its triple point. As discussed many times in the literature,
in liquid water the hydrogen bond brings forth two (open
and compact) local structures in competition with each other.
At a coarse-grained level, this interplay may be described
through a two-body soft-core repulsion, which may then be
called responsible for the anomalous slope of the melting
line, whereas the behavior for larger pressures (say, above
100 MPa) would only probe shorter-length features in the
effective pair potential. In the past few decades, isotropic pair
potentials with two repulsive scales were the leading paradigm
for understanding water at a simplified level, especially with
regard to its many thermodynamic, structural, and dynamic
anomalies [4,5,22–26]. However, it is worth recalling that
anomalies are also observed in the phase behavior of particles
interacting through a one-scale bounded potential like the
GCM potential [27–29].
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For a better quantitative comparison of the present DGM
system with water, we note that the DGM value of Tc/Tt is
6.05, to be contrasted with the water value of 2.37 (since
it is difficult to extract Pt from our data, we have no
reliable estimate of Pc/Pt for the DGM system; however, its
order of magnitude is the same as for water). On a more
physical ground, it would be crucial to ascertain whether
the morphology of waterlike anomalies in the DGM liquid
is similar to that of water. To this end, we have monitored
the maximum of the density ρ as well as the minimum
of the isobaric specific heat cP as a function of pressure
(see Fig. 1). In the DGM liquid, the volumetric anomaly
occurs beyond a certain pressure only, at distinct variance
with liquid water where a maximum-density point is found
only below a certain pressure [30]. We safely exclude that,
upon lowering the pressure below P = 0.03, the maximum-
density line eventually bends towards higher pressures, thus
revealing the existence of a density-minimum locus deep inside
the solid region [29,31] (in cooling the liquid, we kept on
recording density data until the solid nucleated spontaneously;
therefore, the maximum-density line terminates just where
it intersects the liquid spinodal line). The continuation of
the maximum-density locus on the high-pressure side would
likely go similarly as in the GCM, where the temperature
of the maximum-density point attains a maximum slightly
above P = 1 and then decreases for higher pressures [27].
The specific-heat minimum of the DGM liquid shifts to higher
temperatures as the pressure increases, again contrary to water
where the specific-heat minimum moves to lower temperatures
upon compression [32]. Next, we computed the so-called pair
entropy s2 (see, e.g., Ref. [18]) along a number of isotherms,
and the pressure points at which −s2 attains its maximum are
reported in Fig. 1. Like for many softly repulsive potentials, the
locus of the −s2 maximum (“structural anomaly”) is found to
originate near the point of maximum melting temperature (the
triple point here), pointing towards higher temperatures upon
compression (the finiteness of the potential here forbids the
further possibility of a −s2 minimum). Finally, we investigated
the anomalous behavior of the self-diffusion coefficient D, as
computed from the mean-square displacement of a particle in
a molecular-dynamics run. In a normal fluid D is expected
to steadily decrease upon isothermal compression, whereas
in an anomalous liquid a clear-cut minimum (followed by
a maximum for higher pressures) is found. However, for
particles interacting via a bounded potential a maximum value
of D is never reached and only a minimum is detected. The
(T ,P ) locus of the minimum-D points is plotted in Fig. 1. Like
in the GCM [28], the line of diffusion anomaly lies between
those of structural and density anomalies.

We have seized the opportunity offered by a particle
system with a precisely known phase diagram to test the
efficacy of a popular criterion of ordering, based on the calcul-
ation of the residual multiparticle entropy (RMPE) (see, e.g.,
Ref. [33] and references therein). The RMPE weighs up
the contribution of multiparticle (threefold and more) spatial
correlations to the configurational entropy of the fluid—see,
for instance, Refs. [34,35]. As originally discussed in Ref. [36]
in the context of hard spheres and later observed for other
interactions, too, the zero-RMPE condition provides a useful
method to unveil hidden tendencies to ordering in a fluid

FIG. 4. (Color online) DGM-system RMPE, i.e., �s = sex − s2,
defined as the difference between the excess and two-body entropies
per unit particle, plotted as a function of the density along a number
of isotherms (see legend).

phase (i.e., a positive RMPE would be strong evidence of
a highly structured liquid prone to freezing). The density
evolution �s(ρ) of the RMPE within the liquid phase is plotted
in Fig. 4 for various temperatures T , ranging from slightly
below Tt to Tc and beyond. There are two separate ranges of
densities where �s approaches zero value from below: one
connected with the condensation transition and another, at
lower temperature, instead related to freezing. For T > Tc, the
RMPE is always negative but �s(ρ) shows a sharp maximum,
only slightly negative, roughly on top of the continuation of
the liquid-vapor coexistence line (i.e., on the Widom line).
For lower densities, �s becomes increasingly negative on
entering more and more deeply into the vapor phase, as a result
of the increasing loss of correlations between the particles.
Below Tc, �s(ρ) is slowly varying inside the liquid phase,
remaining negative as the density approaches the boiling-point
value and probably also in the whole metastable-liquid region.
This is in marked contrast with the expectation, based on
integral-equation theories, of Ref. [37] that the RMPE blows
up to +∞ when the liquid-vapor spinodal line is approached
from the liquid side. Slightly below Tt , the RMPE eventually
vanishes upon decompression, along a line that lies not far
from the freezing line (like the freezing temperature, also
the zero-RMPE temperature is a monotonously decreasing
function of the pressure). Similarly to the GCM case [33],
the locus of points where the RMPE vanishes lies entirely
within the solid region.

To expand the contact between the present model system
and water far beyond the triple-point region, the DGM
potential should be deeply modified in the inner core. For
example, if a suitably short-ranged hard core is added to the
DGM potential, a phase transition to a more compact crystal
phase will eventually be induced at higher pressure, with
reasonably little influence on the low-pressure characteristics.
Since a proof of concept is enough here, we decided to locate
the liquid-vapor binodal line by the simple HNC equation
(roughly as the temperature locus within which no solution
is found to the HNC equation) while employing the simple
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FIG. 5. (Color online) Schematic phase diagram of the DGM
fluid with ε2 = 0.02ε (left) and of the modified DGM (mDGM)
system defined in the text (right). These diagrams were obtained
using the HNC approximation in combination with a Lindemann-type
criterion of melting [34]. The region delimited from above by the
black dots is the (ρ,T ) set of points where the HNC equation has
no solution. It turns out that this region is almost insensitive to the
inner part of the core. The lines are tentative melting loci for the fcc
(blue dotted line), the bcc (red solid line), and the hcp crystals (cyan
dashed line). More realistically, the actual values of Tm are roughly a
half of those shown. The inclusion of an inner “hard” core has led to
the stabilization of the fcc crystal at high pressure.

criterion introduced in Refs. [38,39] to draw the melting line
Tm(ρ). The latter criterion combines the standard Lindemann
rule with a description of the solid phase as an elastic
continuum; the alleged melting locus is the upper envelope
of the melting lines drawn for each single crystal lattice.
Past experience has shown that the melting line predicted by
this criterion is qualitatively accurate, even though the Tm

values are typically overestimated by a factor of two. With this
procedure, we obtain the schematic phase diagrams shown in

Fig. 5. They refer to the present DGM fluid (left panel) and to
a modified DGM (mDGM) system where the DGM potential
has been augmented with an inverse power of the distance
(right panel)—for our demonstration, we took a diverging
repulsion of the form ε(σ ′/r)24 with σ ′ = σ . We see that the
change in the potential only affects the high-density behavior
(say, ρ > 0.3); moreover, the modification is precisely that
expected, with the bcc phase being eventually overcome in
stability by both the hcp and fcc phases, the latter phase
being the most stable for high densities (as it is already
for T = 0). The overall phase portrait is now more closely
reminiscent of water, with the bcc-fcc coexistence line nicely
mimicking the locus of points separating ice I from ice III
(the bcc-fcc line moves to higher pressures upon lowering
σ ′/σ ). Clearly, the resemblance of the mDGM fluid to water
is only superficial, lying exclusively in the similar appearance
of the phase-transition lines. This similarity is not even perfect,
considering the apparent nonmonotonicity of the melting line
of the low-pressure mDGM solid.

IV. CONCLUSIONS

In this paper, we have analyzed the phase behavior of a
system of particles interacting via a DGM potential with a
fairly strong attraction, close to the thermodynamic stability
threshold. Compared to a similar system with a more modest
attraction strength [15], there is a unique solid (bcc crystal)
phase which always melts into a slightly denser liquid, with a
much higher Tc/Tt ratio of about 6. Hence, there is a whole
range of temperatures where, under isothermal compression,
the (vapor) system is led to condensate but not to eventually
become solid. The ensuing scenario is reminiscent of water
behavior at low pressure, though waterlike anomalies do not
occur in similar terms in the two systems. In particular, the
slope of the maximum-density locus of the DGM liquid has the
wrong sign compared to water. In order to build up an isotropic
fluid with more resemblance to water, we have supplemented
the DGM potential with a further length scale by adding a
suitably chosen hard core, showing that this generates a further
phase transition at higher pressure to a more compact fcc
crystal.
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