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Anomalous phase behavior of a soft-repulsive potential with a strictly monotonic force
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We study the phase behavior of a classical system of particles interacting through a strictly convex soft-
repulsive potential which, at variance with the pairwise softened repulsions considered so far in the literature,
lacks a region of downward or zero curvature. Nonetheless, such interaction is characterized by two length
scales, owing to the presence of a range of interparticle distances where the repulsive force increases, for
decreasing distance, much more slowly than in the adjacent regions. We investigate, using extensive Monte
Carlo simulations combined with accurate free-energy calculations, the phase diagram of the system under
consideration. We find that the model exhibits a fluid-solid coexistence line with multiple re-entrant regions, an
extremely rich solid polymorphism with solid-solid transitions, and waterlike anomalies. In spite of the iso-
tropic nature of the interparticle potential, we find that among the crystal structures in which the system can
exist, there are also a number of non-Bravais lattices, such as ¢/16 and diamond.
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I. INTRODUCTION

In typical models of effective pairwise interaction be-
tween particles, the repulsive force steadily increases, with
an ever-increasing rate, as particles get more and more closer
to each other. This behavior, which is typical of, e.g., the
Lennard-Jones potential, is originated by the harsh quantum
repulsion that is associated with the overlapping of electronic
shells. However, effective classical interactions, where the
repulsive component undergoes some form of softening in a
range of interparticle distances, are relevant for many physi-
cal systems. Most of them belong to the realm of the so-
called soft matter (solutions of star polymers, colloidal dis-
persions, microgels, etc.) [1,2] but also the adiabatic
interaction potential (electronic in origin) of simple atomic
systems under high pressure is manifestly of the soft-core
type [3,4].

The effects of particle-core softening on thermodynamic
behavior were first investigated by Hemmer and Stell [5],
who analyzed the possible occurrence of multiple critical
points and isostructural solid-solid transitions. These authors
considered pair potentials with a hard core augmented with a
finite repulsive component in the form of a square shoulder
or a linear ramp, features that may be pertinent to some pure
metallic systems, metallic mixtures, electrolytes, and colloi-
dal systems. Few years later, Young and Alder [6] showed
that the hard-core plus square shoulder potential gives origin
to an anomalous melting line similar to that observed in Cs
or Ce. Later, Debenedetti et al. [7] showed that systems of
particles interacting via potentials whose repulsive core is
softened by a curvature change are capable of contracting
when heated isobarically (a behavior known as “density
anomaly”). More recently, intense investigation of the phase
behavior of potentials with a softened core has shown that
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these models can yield, even for isotropic one-component
systems, unusual properties such as a melting line with a
maximum followed by a region of re-entrant melting, poly-
morphism both in the fluid and solid phases, and a rich hier-
archy of waterlike anomalies [8-20].

The common feature of all the softened-core potentials
investigated so far is that in a range of interparticle distances
r, the strength of the two-body force f(r)=-u'(r) reduces or
at most remains constant as two particles approach each
other, u(r) being the repulsive part of the pair potential. In
this interval of distances, u(r) shows a downward or zero
concavity, i.e., u”(r) =0. Assuming that the repulsion is hard-
core-like at small distances and goes to zero sufficiently fast
at large distances, the above behavior makes it possible to
identify two distinct regions where the repulsive force in-
creases as r gets smaller: an inner region, associated with the
impenetrable particle core, and an outer region at large dis-
tances. Such potentials are thus endowed with two repulsive
length scales: a smaller one (“hard” radius), which is domi-
nant at the higher pressures, and a larger one (“soft” radius),
being effective at low pressure. In the range of pressures
where the two length scales compete, a system governed by
soft-core interactions behaves as a “two-state” system, a sim-
plified viewpoint that nonetheless provides an explanation
for re-entrant melting and, in the presence of an additional
attractive long-range force, for the existence of a liquid-
liquid transition [21].

Though core softening has been usually associated to a
repulsive force with a nonmonotonic behavior, the latter con-
dition might be an unnecessary requirement. This observa-
tion stems from an analysis of the mathematical expression
of core softening, which was put forward by Debenedetti et
al. [7] under the form A[rf(r)]<0 for Ar<0, in some inter-
val r; <r<r,, together with u”(r)>0 for r<r; and r>r,.
The above conditions are satisfied if, in the interval (ry,r,),
the product rf(r) (rather than just f) reduces with decreasing
interparticle separation. Hence, the core-softening property
may also be satisfied with a strictly convex potential, yield-
ing a repulsive force which everywhere increases for de-
creasing r, provided that in a range of interparticle distances,
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the increasing rate of f(r) be sufficiently small. On this basis,
we expect that the class of core-softened potentials is in fact
much wider than thought before.

We hereafter study the phase diagram of a model potential
which is soft, according to Debenedetti’s formulation, though
being characterized by a strictly monotonic force for all dis-
tances [i.e., u”(r) >0 everywhere]. We find that this potential
exhibits the whole spectrum of anomalies that are usually
associated with soft-core potentials, including re-entrant
melting regions, solid polymorphism, and waterlike anoma-
lies. This paper is organized as follows. In Sec. II, we de-
scribe the model system, which is the subject of our investi-
gation. In Sec. III, we outline the simulation method that is
used to map out the phase diagram. The simulation results
are presented and discussed in Sec. IV, while further remarks
and conclusions are postponed to Sec. V.

II. MODEL

We consider a purely repulsive pair potential modeled
through an exponential form, first introduced, about four de-
cades ago, by Yoshida and Kamakura (YK) [22],

2
u(r):eexp{a(l—é)—6<l—£_> ln<£)}, (1)

where € and o are the energy and length units, respectively,
and a>0. This potential behaves as ~° for small r and falls
off very rapidly for large r. The softness of the repulsion is
controlled by the a parameter. When a <1.9, the YK poten-
tial has a region with downward curvature, where the force
decreases as two particles get closer.

Approximate theoretical calculations [22] suggest that the
melting line of the YK potential might display a re-entrant
melting region for values of a that are larger than 1.9, i.e.,
even when no downward concavity is present. In order to
explore this possibility and discuss it in relation with other
anomalous behaviors, we have investigated the phase behav-
ior of the YK potential for a=2.1 through numerical simula-
tion. For this a value (as well as for all a’s falling in the
range 1.9-2.3) u(r) is strictly convex (see Fig. 1), i.e., its
second derivative is positive everywhere; hence the repulsive
force is strictly increasing for decreasing r, at variance with
the core-softened potentials considered so far. However, the
rate at which the force increases is not monotonous. By the
way, in a range of r that roughly corresponds to the local
minimum of u”(r), the repulsive force increases with de-
creasing r much more slowly than in the adjacent regions, in
such a way that the Debenedetti core-softening property is
still satisfied.

III. METHOD

A major problem, when drawing the phase diagram of a
model system of particles interacting through an assigned
potential, is to identify the solid phases. This is a critical
issue for soft-core repulsions since experience has shown
that many different crystal structures are stabilized for such
systems upon varying the pressure [4,16,19,23]. In the
present study, we consider as candidates for the solid phase
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FIG. 1. (Color online) Yoshida-Kamakura potential u(r) for a
=2.1 (black solid line, expressed in € units), two-body force f(r)=
—u'(r) (blue dashed line, €/ o units), product rf(r) (green dotted
line, € units), and second derivative of the potential «”(r) (red dash-
dotted line, €/ 02 units).

precisely those crystal structures that a previous investigation
of the same potential [4] showed to be stable at zero tem-
perature. These include the face-centered cubic (fcc), body-
centered cubic (bce), and simple hexagonal (sh) lattices, as
well as a number of non-Bravais lattices, i.e., the A7, dia-
mond, A20, and hexagonal close-packed (hcp) lattices. On
increasing pressure, each of these structures gives, in turn,
the most stable structure at 7=0. The sequence of stable
crystals for increasing pressures was found to be [4]

063 126 229 255 491 546 1207 1568
fcc— bec— sh— A7 — diamond — sh— A20 — hcp — bece
5275 13828 365.65
— fcc — hep — fec, (2)

where the numbers above the arrows indicate the transition
pressures expressed, to within a precision of 0.01, in units of
€/a>. Where pertinent, the values of the internal parameters
of the phases listed in Eq. (2) are reported in Ref. [4]. Al-
though the above sequence of phases resulted from a careful
scrutiny of about 30 crystal structures, we cannot exclude
that some relevant structures might have been overlooked. In
general, we may expect that the same crystals that are stable
at T=0 also give the underlying lattice structure for the solid
phases at 7> 0. Anyway, if more crystals exist at 7=0 with
nearly the same chemical potential x in a pressure range,
each of them represents a potentially relevant solid phase. In
our case, this occurs for P~2.4, where the ground state is of
A7 type but some 0oC8 and cI16 crystals have only slightly
larger chemical potentials. Hence, we include also these lat-
tices in our list of solid candidates.

We calculate the phase diagram of the YK model for a
=2.1 by performing Monte Carlo (MC) simulations in the
isothermal-isobaric NPT ensemble (i.e., at constant tempera-
ture T, pressure P, and number N of particles), as well as in
the canonical NVT ensemble, using the standard Metropolis
algorithm with periodic boundary conditions and the nearest-
image convention. In the solid phases, the number of par-
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ticles is chosen so as to guarantee a negligible contribution to
the interaction energy from pairs of particles separated by
half the minimum simulation-box length. With this choice,
we checked in a number of cases that the exact location of
phase boundaries is only negligibly affected by the finite size
of the sample. More precisely, our samples consisted of 500
particles in the fcc phase, of 432 particles in the bce phase, of
800 particles in the sh phase, of 512 particles in the diamond
phase, of 1024 particles in the cI16 phase, of 1152 particles
in the A7 phase, and of 768 particles in the oC8 phase.
Depending on the solid phase with which the fluid is com-
pared to in order to assess its relative stability, we consider
fluid samples of 500-800 particles. At given T and P, sample
equilibration typically took from 20 000 to 50 000 MC
sweeps, a sweep consisting of one average attempt per par-
ticle to change its position plus (for the NPT case only) one
attempt to change the volume through a rescaling of particle
coordinates. The maximum random displacement of a par-
ticle and the maximum volume change in a trial MC move
are adjusted every sweep during the equilibration run so as to
obtain an acceptance ratio of moves close to 50% (afterward,
during the production session, they are maintained fixed).
Thermodynamic averages are computed over trajectories
from 3 X 10* to 10° sweeps long.

In a typical NPT simulation, we generate a sequence of
simulation runs along an isobar, starting from the cold solid
on one side and from the hot fluid on the other side (a chain
of NVT runs along an isotherm at a sufficiently high tem-
perature provides the link to a dilute-fluid state). The last
configuration produced in a given run is taken to be the first
of the next run at a slightly different temperature. The start-
ing configuration of a “solid” chain of runs is a low-
temperature perfect crystal whose density is set equal to its
T=0 value at that pressure. In the case of a structure with
internal parameters, the same 7=0 optimal parameters are
chosen in the preparation of the crystal sample. Usually, a
series of runs is continued until a sudden change is found in
the difference of energy/volume between the solid and the
fluid, so as to avoid averaging over heterogeneous thermo-
dynamic states. The density of a solid phase ordinarily varies
very little with increasing temperature along an isobar. A
sudden density change thus indicates a mechanic instability
of the solid in favor of the fluid; hence it signals the approxi-
mate location of melting. In fact, this so-called “heat-until-
it-melts” (HUIM) procedure allows to locate the maximum
overheating temperature 7,,, which may however be substan-
tially higher than the fluid-solid coexistence temperature 7,,.

In order to compute the difference in chemical potential
between any two equilibrium states of the system (say, 1 and
2) belonging to the same phase, we use the standard
thermodynamic-integration method. This allows to obtain a
thermodynamic potential as an integral over the simulation
path of a calculated statistical average (energy, density, or
pressure, depending on the path followed). To be specific, we
use

P2dp( P(T,
fex(TvPZ)_fex(Tspl)szTJ _p(M_ 1) (3)
o P\ pkgT

along an isothermal NVT simulation path, f,, being the ex-
cess Helmholtz free energy, while we use the formulas
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IU‘(T’PZ) - IU'(T’PI) =J de(T’P) (4)
P

and

w(T5,P) (T}, P) f & dTu(T,P) + Pu(T,P) )

T, g 7
along an isothermal and isobaric NPT path, respectively, u
and v being the specific values of energy and volume. To
prove useful, the above equations require an independent es-
timate of f., or w in one reference state for each phase. For
the fluid, a reference state can be any state being character-
ized by a very small system density since then the excess
chemical potential can be accurately estimated through Wi-
dom’s particle-insertion method [24]. In order to calculate
the excess Helmholtz free energy of a solid, we resort to the
Frenkel-Ladd method [25] (see Ref. [26] for a full descrip-
tion of the method and of its implementation on a computer).
The solid excess Helmholtz free energy is calculated through
a series of NVT simulation runs at a fixed state point, i.e., for
fixed density and temperature.

IV. RESULTS AND DISCUSSION

We arbitrarily restrict our analysis of the phase diagram to
pressures P smaller than 5 (in reduced units), which corre-
sponds approximately to the upper limit of stability of the
diamond crystal at T=0 [4]. For a number of pressures, we
first calculate the fluid-solid coexistence temperature 7, by
employing the “exact” free-energy method described above.
By estimating the maximum overheating temperature 77,
through the HUIM method, we find that the difference be-
tween T, (P) and T,(P) is always small in relative terms
(less than 15%) and is significant only at the highest pres-
sures P. Hence, we use the more rapid HUIM approach to
derive the overall trend of the melting line. The investigated
system shows a rich solid polymorphism at 7>0 (see Fig.
2), which is closely related to the alternation of crystal
phases at zero temperature. In the low-pressure region (P
<1), upon increasing pressure at low temperatures (7T
<0.04, in €/kg units) the fluid freezes first into a fcc solid,
which then undergoes a transition into a bce solid. At higher
temperatures, in a narrow 7 interval, the sequence of phase
transitions undergone by our system with increasing pres-
sures is fluid-bce-fce-bee. This behavior is similar to that
observed for the Gaussian core model [27] and occurs from
T, to T=0.05, T;,=< 0.045 being the fluid-bcc-fece triple-point
temperature. For 0.05<7'<<0.06, the fcc phase ceases to be
stable and the fluid freezes directly into a bcc solid. The
bce-fluid coexistence line shows, at P=0.6, a maximum
melting temperature; above this pressure, the d7/dP slope of
the bcc melting line is negative. Thus, the bec solid under-
goes, for not too low temperatures, re-entrant melting into a
denser fluid.

At low temperatures, the bce solid transforms, for pres-
sures around 1.3, into a solid with a sh structure. Hence,
there should be a fluid-bce-sh triple point, which terminates
the bec re-entrant melting line. This is illustrated in detail in
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FIG. 2. (Color online) Phase diagram of the Yoshida-Kamakura
interaction model (a=2.1). Pressure P and temperature T are ex-
pressed in units of €/ and €/kg, respectively (kg being Boltz-
mann’s constant). The phase-transition points obtained by exact
free-energy calculations are represented as full symbols (different
colors refer to different solid structures; errors are smaller than the
size of the symbols). The data points lying on the 7=0 axis are
exact solid-solid boundaries [7]. The solid lines through the transi-
tion points are tentative phase boundaries drawn following the trend
of thresholds of maximum solid overheating, hereby reported as
open dots. The location of the dashed line delimiting the A7 region
from the above is uncertain since we did not carry out any exact
free-energy calculation for the A7 solid. The dashed line connecting
crosses is the locus of density maxima in the fluid phase. Curves A
and B connect points of maximum and minimum values of —s,,
respectively (see Fig. 6). The open region between A and B is the
structurally anomalous region. The black dotted line is the melting
line as estimated in [22]. All lines in the figure are guides for the
eyes.

Fig. 3, where we show the calculated chemical potentials of
the three phases along the 7=0.03 isotherm. Upon further
increasing pressure, a c/16 solid with internal parameter x
=0.125 becomes stable (see Ref. [4] for a definition of x).
This can occur only for high enough T since, in the pressure
interval 2.30<<P<<2.55, a certain A7 crystal has a lower
chemical potential than cI16 at T=0 (we have checked that
no oC8 solid is stable in the same temperature range). In
other words, a small A7 basin exists below 7=0.01. Follow-
ing the c/16 phase, another solid phase arranged according to
the diamond structure becomes stable in a broad pressure
range, starting from P=2.6.

Within the precision of our calculation, the overall melt-
ing line exhibits, in addition to the first (bce-fluid) re-entrant
region, other portions with negative d7/dP slope, though
less pronounced than the first. The alternation of solid phases
at low temperatures goes on beyond P=35 until, eventually,
the system sets in a fcc solid that coexists with the fluid
phase at arbitrary high temperatures, the coexistence line be-
coming asymptotically the same as for the 7~® potential. The
complex phase behavior shown in Fig. 2 is absent in the
theoretical calculation of Yoshida and Kamakura [22], where
only the possibility of a fcc solid was taken into account.
With this limitation, only one region of re-entrant melting is
predicted and the high-pressure fluid can be stable even at
zero temperature. Moreover, the height and width of the low-
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FIG. 3. (Color online) Chemical potential u of the bee and sh
solids at T=0.03, taking the fluid phase as reference: bee (solid red
line), sh (dashed blue line), and fluid (dotted line). The stable phase
is the one with lower w, hence, the equilibrium system is fluid
between 1.226 (bee-fluid transition pressure) and 1.357 (fluid-sh
transition pressure). Note the existence of a minimum in the w
difference between sh and fluid at P==1.8, which roughly corre-
sponds to the pressure at which the sh melting temperature is
maximum.

density solid region are largely overestimated by the theory
as compared to the simulation results here presented.

Our results show that the model system here considered,
though described by a spherically symmetric potential, can
exist under the form of stable non-Bravais crystals. The rich
polymorphism observed follows from the peculiar depen-
dence of the interatomic force with distance, which leads to
the existence of two incommensurate length scales. In the
pressure and temperature regimes, where these lengths com-
pete with each other, compact arrangements such as the fcc
and bcc lattices are frustrated and low-coordinated arrange-
ments are preferred. Our results are relevant for those physi-
cal systems that are characterized by a certain softness of the
repulsive interaction. These include intrinsically soft materi-
als, such as colloids, polymers, etc., but also atomic systems
at extremely high pressures. Phase diagrams with solid poly-
morphism and multiple re-entrant melting have been ob-
served at high pressures in some elements such as Sr [28]
and predicted by ab initio simulation for others [29]. Con-
cerning model systems, a phase behavior with features simi-
lar to those noted above was found for the hard-core plus
repulsive step potential [16] and for Hertzian spheres [19].

Some insight into the mechanisms that give origin to the
complex phase behavior observed can be got from analyzing
the radial distribution function g(r). We computed g(r) for
various pressure values, at a temperature slightly larger than
the maximum melting temperature 7,,==0.06 of the bcc solid
(Fig. 4). At very low pressure, the first peak of g(r) is cen-
tered around r=<2 (in units of o). As P increases up to P
=~().50, this peak moves upward while its position shifts to-
ward r==1.5. For further pressure increase, its height de-
creases while its position remains almost unaltered. At the
same time, a new peak develops around r=1, whose height
grows with P. This behavior is significantly different from
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FIG. 4. (Color online) Pair distribution function g(r) for T
=0.07: P=0.15 (cyan dash-dotted line); P=0.49 (blue solid line);
P=0.99 (green dashed line); P=1.56 (black dash-dot-dotted line);
and P=3.02 (red dotted line).

that of simple fluids, where all peaks of g(r) get higher with
pressure when keeping 7 constant, and is consistent with the
gradual penetration of particles inside the inner core. Thus,
the analysis of g(r) points to the existence of two competi-
tive scales of nearest-neighbor distance, i.e., a larger soft
length fading out with increasing pressure in favor of the
smaller hard length. The soft-repulsive distance falls ap-
proximately at r=1.5, which is where the second derivative
of the potential has a local maximum, while the hard length
scale remains defined by the extremely rapid increase in the
short-range repulsive force around r=1.

Thermodynamic, dynamic, and structural anomalies have
been observed in a number of substances (such as water,
silica, silicon, carbon, and phosphorous) [21]. These uncon-
ventional features are usually referred to as waterlike anoma-
lies. Although these substances are all characterized by local
tetrahedral order, in the last years waterlike anomalies have
been found also in systems with spherically symmetric po-
tentials, provided that the repulsion is of the softened-core
type [8-20] In order to investigate the existence of anomalies
in our system, we first analyzed the behavior of the number
density in the fluid phase above the melting line. We find that
in the region lying approximately above the re-entrant por-
tion of the bce-fluid coexistence line, decreasing temperature
at constant pressure leads first to a density increase and
then—contrary to standard behavior—to a density decrease
for further cooling (Fig. 5). The anomalous behavior of the
density can be interpreted in terms of the existence of two
repulsive length scales: as T reduces at constant pressure, the
larger soft scale becomes favored with respect to the smaller
hard one. Thus, compact local structures are less favored
than open ones, which causes a decrease in the number of
particles within a given volume. The P-T region where the
density behaves anomalously is bounded from the above by
the locus of points where the density attains its maximum
value, i.e., by the temperature of density maximum (TMD)
line, while its lower bound is the limit of stability of the fluid
phase, namely, the bee-fluid coexistence line (see Fig. 2).
Within the region of density anomaly, the system expands
upon cooling under fixed pressure. Consistently, the thermal-
expansion coefficient ap=(1/V)(dV/dT)p is negative, van-
ishing along the TMD line (Fig. 5).
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FIG. 5. Reduced number density p (upper panel) and thermal-
expansion coefficient ap (lower panel) plotted as a function of tem-
perature for P=1. The solid lines are polynomial fits of the data.
Note that ap vanishes approximately where p is maximum.

A series of studies have shown that thermodynamic (and
dynamic) anomalies are strongly correlated with anomalous
trends in the structural order of the system [30]. A measure
of this quantity is provided by the pair entropy per particle,

k
§p=- EBPJ ’r[g(r)In g(r) - g(r) + 1], (6)
which describes the contribution of two-body spatial corre-
lations to the excess entropy of the fluid [31]. For a com-
pletely uncorrelated system, g(r)=1 and then s,=0. For sys-
tems with a long-range order, spatial correlations persist over
large distances and s, become large and negative. Thus, —s,
can be taken as an indicator of structural order. This param-
eter yields information about the average relative spacing of
the particles, i.e., it describes the tendency of particle pairs to
adopt preferential separations. In the investigated system, the
structural order initially increases upon compression (Fig. 6),
similarly to simple fluids. However, as pressure is further
increased, —s, attains a maximum value and then decreases,
i.e., the fluid loses structural order upon compression (struc-
tural anomaly). At sufficiently high density, after attaining a
local minimum, —s, recovers a normal trend, increasing mo-
notonously with pressure. Upon increasing the temperature,
the structural anomaly becomes less and less marked (i.e.,
the difference between the local extrema of —s, gets smaller).
As seen in Fig. 2, the region where the fluid has a structur-
ally anomalous behavior embraces the density anomaly re-
gion; a similar relationship between the structural and den-
sity anomalies holds for water and for a number of model
systems [30,32-34].
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FIG. 6. Structural order parameter —s, plotted for N=500 as a
function of the reduced pressure at different temperatures: from top
to bottom, 7=0.05, 0.07, 0.1, 0.12, 0.15, 0.2, and 0.50. The inset
shows a magnification of —s, for 7=0.05 (dashed line: N=500;
solid line: N=800).

Though, from a thermodynamic point of view, phase co-
existence is determined solely by the equality of the Gibbs
free energy in the two phases, an incoming phase transition
may induce a number of modifications in the involved phases
(the analysis of such changes provides the basis for the so-
called “one-phase” criteria for phase transitions). Here, we
investigate to what extent the rich solid polymorphism
shown by our system at low temperature is reflected in the
fluid lying at higher temperatures. The structural order, as
measured by —s,, offers interesting insight about this point.
The behavior of —s, shows that the low-density bcc region
casts an imprint on the surrounding fluid, under the form of a
marked increase in the structural order near the pressure of
maximum melting temperature of the solid. On the contrary,
the detailed shape of the melting curve at intermediate den-
sities does not significantly affect the structural order of the
fluid, which shows a steady enhancement with pressure. In
order to observe an appreciable modification of this behavior,
it is necessary to examine the fluid very close to the solid.
Only the lowest —s, isotherm at 7=0.05, i.e., just at the
lower edge of the fluid phase, shows a modest bump reflect-
ing the fine details of the melting line (see Fig. 6). These
results suggest that the influence of low-coordinated solid
structures on the structural order of the neighboring fluid is
much weaker than for compact lattices. From the analysis of
the g(r), it clearly appears that the soft-repulsive scale looses
efficacy in the pressure range corresponding approximately
to the re-entrant region of the bcc solid, where both density
and structural anomalies occur. Beyond P=1.5, the second
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FIG. 7. (Color online) Pair distribution function g(r) for T
=0.05: P=1.95 (black solid line); P=2.75 (blue dotted line); P
=3.67 (green dash-dotted line); and P=4.71 (red dashed line).

peak of g(r) changes only slightly (decreasing with increas-
ing density), while the first peak builds up significantly with
pressure, which is the main reason for the steady increase in
—s, at intermediate pressures (this is related to the gradual
increase in local order with compression, until the fluid crys-
tallizes into a fcc structure at very high pressures, out of the
range shown in Fig. 2). The third peak undergoes, with in-
creasing pressure, subtle but significant changes, splitting in
two minor peaks (Fig. 7). Such changes mirror the alterna-
tion of the solid structures at low 7' but, being small modifi-
cations of the g(r), they scarcely affect the structural order of
the fluid, at least that quantified by —s5.

V. CONCLUDING REMARKS

The occurrence of anomalous phase behavior within the
class of isotropic one-component classical potentials was, up
to now, thought to be possible only for potentials with a
region of downward or zero curvature, where the repulsive
force decreases or is at most constant as two particles get
closer. Here, we have shown that anomalous phase behaviors
can actually occur also for a system of particles interacting
through a strictly monotonic repulsive force provided that in
a range of interparticle distances the force increases more
slowly, with decreasing r, than in the adjacent regions. This
condition gives origin, in spite of the convexity of the poten-
tial, to two distinct repulsive length scales, a feature that
seems instrumental for the occurrence of re-entrant melting
and the related waterlike anomalies. From the present results,
we may expect that the real systems effectively characterized
by isotropic interactions and able to show that unusual phase
behaviors are more numerous than previously believed.
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