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We investigate a binary mixture of identical hard spheres, interacting through a square-well cross attraction.
Recently, we have shown that the equimolar mixture exhibits stripe order (i.e., a regular alternation of layers
filled with particles of mostly one species) in both solid and liquid phases [Prestipino et al., J. Chem. Phys.
159, 204902 (2023)]. Here, we extend our study to nonequimolar conditions. Using Monte Carlo simulations,
we find a rich self-assembly behavior with several forms of compositional order, depending on the departure
from equimolarity and the range of attraction. While stripes are still seen in the solid phase of the 30%/70%
mixture, for a larger concentration asymmetry we rather observe fcc ordering of the minority species, provided
that the range of attraction is long enough. Due to the possibility to adjust the concentration in the two phases,
compositional order is generally richer at solid-vapor coexistence than in the bulk solid: we observe solid droplets
with stripes, displaying either square or triangular in-plane order, as well as droplets with bcc structure and
honeycomblike order of the minority species in the matrix of the other species. Finally, at sufficiently low
temperature the increased concentration of minority particles in the solid droplet makes the cohesive energy
at coexistence systematically larger than in the bulk solid.
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I. INTRODUCTION

The spontaneous occurrence of regular patterns in soft-
matter systems is a fascinating phenomenon, taking place
by molecular self-assembly [1-3]. Through this mechanism,
supramolecular structures emerge in a large variety of systems
including, among others, colloidal dispersions [4—6], poly-
meric materials [7,8], amphiphilic systems [9,10], and protein
solutions [11]. In this field, computer-aided design offers the
unique opportunity to tailor the molecular “building blocks”
to a desired target structure [12,13].

Recently, we have shown by Monte Carlo (MC) simulation
[14] and density functional theory (DFT) [15] that ordered
arrangements spontaneously arise in a model as minimal as
a symmetric mixture of hard spheres, with a square-well
(SW) cross attraction of tunable width y. In particular, in
the low-temperature solid we have provided evidence for the
existence of stripes—patterns where layers rich in one species
are regularly alternated with layers rich in the other. For values
of y significantly larger than the particle diameter, stripes also
occur in the liquid phase. Interestingly enough, the larger the
y, the better defined and thicker the stripes. The origin of
this counterintuitive behavior is the maximization of contacts
between unlike particles. In particular, we have shown that
under equimolar conditions a striped solid is always more
stable than its compositionally disordered counterpart [15].
A remarkable consequence is that stripes are energetically

*Contact author: gianmarco.munao @unime.it

2470-0045/2025/112(2)/025413(10)

025413-1

favored even for y approaching zero. It goes without saying
that the above considerations only apply at low temperature,
where the entropic contribution to the free energy is hardly
relevant.

Interest in stripe phases stems from their utility in techno-
logical applications, including photonic devices and sensors
[16], Langmuir and lipid monolayers [17,18], as well as poly-
mer nanocomposites [19]. Yet the microscopic mechanisms
underlying the onset of stripes are not completely understood,
owing to the wide variety of systems where stripes are ob-
served, ranging from particles interacting via repulsive forces
[20-24] to fluids experiencing competing interactions [25-30]
and binary mixtures [31-37]. In the first type of system,
stripes typically arise when particles repel each other through
a two-scale (core-corona) potential. The mechanism at play is
different in fluids of particles characterized by a short-range
attraction and a longer-range repulsion. The resulting com-
petition between the two components of the potential causes
the appearance, at low temperature, of aggregates of various
sizes and shapes, including stripes [33,38,39]. The common
trait of all such systems is an absolute minimum at nonzero
wavevector in the Fourier transform of the interaction poten-
tial off the core, favoring spontaneous density modulations.
Finally, stripes are also found in binary mixtures where the
interaction between like particles is predominantly repulsive
and the interspecies force is attractive. In this case, arranging
the two species in alternating layers can be energetically ad-
vantageous over any other mixing of unlike particles.

The stripe phases discussed in Refs. [14,15] were observed
under equimolar conditions, for a quite extended range of
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densities, temperatures, and SW widths. On the other hand, we
know from previous studies on similar systems that changing
the relative concentration of the species substantially affects
the size and shape of aggregates in the mixture, as well
as the very existence of stripes [31,35]. The leading role of
concentration has already been recognized both for spherical
[40,41] and nonspherical particles [42,43]. Here, we carry out
a similar study for our model mixture, by systematically in-
vestigating through MC simulations the existence of complex
motifs away from equimolarity; the role played by the range
of SW attraction is examined as well.

The outline of the paper is as follows. In Sec. II we
introduce the model and describe the method used for its
investigation. Simulation results are presented and discussed
in Secs. III and IV, where moderate and large compositional
asymmetries are respectively addressed. The final section,
Sec. V, is devoted to conclusions and outlook.

II. MODEL AND SIMULATION METHOD

Our mixture is composed of two species of hard spheres
(labeled A and B) with equal diameter o, which mutually
interact through a SW potential uap of range (1 + y)o:

+oo ifr<o
upag(r)y =4 —¢ ifo<r<o+vyo, (D)
0 otherwise

r being the interparticle distance. From now on, all quantities
are expressed in units of o and €.

At variance with our previous studies [14,15], here we con-
sider concentrations y = Ng/N departing from equimolarity
(i.e., x # 0.5), N and Np being the total number of particles
and the number of B particles, respectively. We denote by p
the total number density in a volume V, i.e., p = N/V. In par-
ticular, by fixing N = 2048 we examine two cases, x = 0.3
and x = 0.1 (hence, the minority species is B). For each value
of x, we consider both y = 1 and y = 0.5.

We investigate the structure and energy of the mixture by
canonical MC simulations of samples enclosed in a cubic box
with periodic boundary conditions. In the high-temperature
(supercritical) regime, we typically perform 10° MC cycles to
equilibrate the system and the same number of cycles to com-
pute equilibrium data. In the subcritical regime, we employ up
to 5 x 107 MC cycles to equilibrate the system, followed by
5 x 10° cycles in the production stage. To speed up relaxation
to equilibrium, even near the close-packing density /2, we
implement swapping moves to interchange the identity of two
randomly chosen unlike particles.

Liquid-vapor equilibria are determined by Gibbs-ensemble
MC (GEMC) simulations—see, e.g., Ref. [44]—using two
initially identical simulation boxes. We typically carry out
runs of 10° cycles, one cycle corresponding to (an average
of) N displacements plus one volume exchange plus a few
hundred particle exchanges plus a few dozen swapping moves.

The amount of local crystalline order is quantified by the
Steinhardt orientational order parameters (OOPs) ¢4 and g¢
[45—-47]. Both quantities are nearly zero for a particle in a
liquidlike environment, whereas they are significantly nonzero
for a solidlike particle. The values of g4 and g¢ averaged over
all particles (g, and g4) can discriminate a liquidlike from a
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FIG. 1. GEMC liquid-vapor coexistence points (symbols) for
various x and y, in the legend. Data at equimolarity taken from
Ref. [14]. Lines are best fits based on the the law of rectilinear
diameters and the scaling law for the density difference; crosses
indicate the corresponding critical points.

solidlike droplet in vapor. When combined with visual inspec-
tion of selected system configurations, the density evolution
of g, and g4 provides a useful mean to sketch the phase
diagram. Finally, the structure of the mixture is also probed
by correlation functions (namely, radial distribution functions
and structure factors), as well as by the probability distribution
of the number of bonds.

III. MODERATE COMPOSITIONAL ASYMMETRY

Liquid-vapor coexistence curves for x = 0.3 are reported
in Fig. 1 for two values of y, along with the coexistence
curve for x = 0.5 and y = 1, taken from Ref. [14]. At each
temperature, GEMC simulations were started with p = 0.25
in both boxes. We remark that, at variance with the equimolar
mixture, for x # 0.5 the densities of the coexisting phases
depend on the total density chosen. This we checked explicitly
in the case x = 0.3 and y = 0.5 by performing simulations
(for T = 0.5) at three densities, namely, 0.15, 0.25, and 0.35:
as p increases, the coexistence curve shrinks, albeit slightly.
We reckon that, for the x and y considered here, the value
p = 0.25 is sufficiently near the critical density to allow for an
estimate of the critical points by extrapolation of the GEMC
data. To ascertain this point, we use the mean-field theory
(MFT) phase diagram [48] as a test bed, by implementing on
it the same procedure used on the GEMC results. Specifically,
we considered the MFT liquid-vapor coexistence curve in the
p-T plane for x = 0.3, y = 0.5, and p = 0.25 in a temper-
ature range similar to that of the simulation data, and fitted
it to the law of rectilinear diameters and the scaling law for
the density difference between liquid and vapor. The result-
ing estimates for the critical density and temperature p., T,
were found to differ from the actual MFT values p. = 0.276,
T. = 0.606 by 3% and 0.3%, respectively.

The MFT critical density is actually independent of y,
whereas this is not the case for the simulation results. For
x = 0.3 and y = 0.5, extrapolation of GEMC data to the

025413-2



COMPOSITIONAL ORDER OF A SYMMETRIC ...

PHYSICAL REVIEW E 112, 025413 (2025)

0.6

20 : :' T T T : T :' T T 20 T T T T T T T T T T T T T T T T
Ll © Lo L e A-Ap=130
i o R 105 - == B-B p=1.30

15F L L ¢—* T=03 15F +— A-A p=0.60 i
o i I B-B p=0.60

FIG. 2. Mixture for x = 0.3 and y = 1. (a) orientational order parameters g, (empty symbols) and g4 (full symbols). (b) excess energy
per particle. (c) total radial distribution function for p = 0.3 and two temperatures (in the legend). We recall that the ratio of second- (third-) to
first-neighbor distance is /2 (+/3) for fee (red dashed lines), while being 2/ V3 (2+/2/3) for bece (green dashed lines). (d) comparison between
A-A and B-B radial distribution functions at 7 = 0.3, for p = 1.3 and 0.6.

critical region gives p. = 0.308, 7. = 0.669. Since the es-
timated p. is farther from the value p = 0.25 used in the
simulations than the MFT result, the error with respect to the
actual critical point is probably slightly larger, but should not
exceed a few percent. On the other hand, for x = 0.3 and
y = 1 the same procedure gives p. = 0.252, T, = 1.373, the
estimated p. being now very close to p = 0.25. In this case,
we expect the error to be smaller than that obtained in MFT.

On all curves in Fig. 1, the lowest-T" data correspond to the
smallest temperature at which liquid-vapor equilibrium could
be established by GEMC; hence this T value can be taken as
a rough estimate of the temperature of the solid-liquid-vapor
triple point, which would plausibly fall immediately below.
We see in the figure that, moving away from equimolarity,
both the critical point and the triple point of the mixture are
shifted down in temperature, the more so the lower the y.
Moreover, it emerges from our data that the location of the
liquid-vapor region in the phase diagram is more affected by
the SW width than by concentration.

Next, we explore by MC simulations the behavior of the
mixture for y = 0.3. We examine only a few isotherms,
namely, 7 = 1,0.5, and 0.3, while thermalization at lower
temperatures proved difficult. Starting from a substitutionally
disordered fcc crystal at p = 1.4, we reduce the density in

0.02 steps, until reaching p = 0.1. By performing our runs in
a sequence we hopefully minimize the error associated with a
slow relaxation to equilibrium.

To qualify the global structure as solid or fluid we com-
pute g, and g,. We first consider y = 1 [see Fig. 2(a)]. For
T =1, g, and g, are significantly nonzero—and the mixture
is crystalline—down to p =~ 1.0. Upon reducing the density
further, the OOPs steadily decrease, suggesting that we are
crossing the solid-liquid region. The abrupt fall observed at
p =~ 0.70 indicates that the solid has eventually undergone
complete melting. All phase boundaries located in this way
are clearly only approximate, since being affected by hys-
teresis. For T = 0.5 and T = 0.3 the scenario is different.
Now, g, and g4 remain nonzero down to p = 0.1, pointing to
solid-vapor coexistence below p ~ 1.0. We have verified that,
across this range of densities, the shape of the solid droplet
changes according to the same universal pathway identified
for one-component fluids [49-51]. In conclusion, the triple-
point temperature falls between 7 = 0.5 and 1, which is
consistent with Fig. 1.

A curious feature seen in Fig. 2(a) is the nonmonotonic
temperature behavior of the OOPs. This can be explained
by the different structure of the solid droplet at T = 0.5
and 7 = 0.3. In fact, we have computed the total radial
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distribution function (i.e., the one blind to the particle species)
at p = 0.3 [see Fig. 2(c)] and found that the location of the
first three peaks is rather different at the two temperatures, and
indicative of the existence of local fcc (bec) order at 7 = 0.5
(0.3). The typical OOP values for these two structures [46]
are consistent with the values seen in Fig. 2(a). We deem it
remarkable that a solid droplet made of hard spheres with a
SW interspecies attraction exhibits a bcc structure. This can
only be ensured by an adequate compositional order (see more
below).

The structural difference between the droplet and the bulk
solid also emerges from the shape of the radial distribution
functions gaa(7) and ggg(r) for T = 0.3, plotted in Fig. 2(d)
for two densities. The location of peaks indicates that even the
species-resolved structure is fcc in the bulk solid, while it is
bcce-like in coexistence.

The excess energy per particle (Ee./N) for y =1 is re-
ported in Fig. 2(b). Its value is &~ —10.5 for all densities above
~1.1 and all temperatures. For T = 1, a gradual expansion of
the system causes the energy to increase monotonically, until,
at p &~ 0.7, an upward jump occurs in coincidence with the
abrupt fall of g, and gg. Such a jump is absent for 7 = 0.5
and 0.3, since at these temperatures solid and vapor coexist.

The excess energy for 7 = 0.3 has an intriguing fea-
ture: upon reducing p, the energy first increases and then,
at p ~ 1.0, starts decreasing, remaining lower than in the
bulk solid in a wide range of moderate densities. As we are
going to show in the following, this behavior reflects a dif-
ference in composition between the solid droplet and the bulk
solid.

To characterize in detail the composition of the mixture, we
have carried out a detailed visual inspection of microscopic
configurations, which for y =1 is summarized in Fig. 3.
Therein we see that, for T = 1 [Fig. 3(a)], the fcc solid for
p = 1.2 is a striped solid, i.e., made of alternating layers
filled with particles of the same species. In particular, B layers
consist of single planes, whereas A layers are made of two
planes; particles of both species display in-plane square order
(notice that a sample with N = 2048 particles is frustrated,
since one more plane of particles would be needed in the
box to fit the natural system periodicity at this density). This
structure is different from what is observed under equimolar
conditions [14,15], where A and B layers have the same num-
ber of planes (see, e.g., Fig. 3 of Ref. [[14]). Also notice that
x = 0.3 slightly deviates from the ideal 1/3 concentration of
the structure just described, meaning that the structure of the
sample contains additional spurious defects. For T = 0.5 and
o = 0.8 [Fig. 3(b)], the solid coexists with an extremely dilute
vapor, as typically occurs below p >~ 1.0. Under these condi-
tions, the solid droplet (in this case a slab) shows the same A
and B alternation of the bulk solid for 7 = 1. However, upon
further lowering T to 0.3, a change in compositional order—
hinted at by the behaviors of the OOPs and E..—occurs
below p ~ 0.7 [Fig. 3(c)]: away from the surface, we see
a diffuse honeycomblike arrangement of minority particles,
which admittedly is responsible for the bcc ordering of the
solid droplet mentioned before.

Now turning to y = 0.5 [Fig. 4(a)], when T = 0.5 we see
that the OOPs vanish below p ~ 0.8. Therefore, at variance
with y = 1 the system is still above its triple point for 7 =

S AL AAN N S AN

FIG. 3. A few snapshots of the mixture for x =0.3, y =1
and different thermodynamic conditions: 7 = 1.0, p = 1.2 (a);
T=05p=08®); T=03,p=0.4 (c). A and B particles are
colored in red and blue, respectively. In the right panels, A particles
have been removed to make it evident that B particles form ordered
structures.

0.5, again in agreement with the data in Fig. 1. The scenario
changes when the temperature drops to 0.3: now, g, and g,
are significantly nonzero also at low density, signaling that the
triple-point temperature has been crossed. The behavior of the
excess energy for y = 0.5 [Fig. 4(b)] is qualitatively similar
toy =1.

For x =0.5 and y =0.5, we know (from Fig. 11 of
Ref. [[15]) that the stripes in the solid consist of single planes
for both species, with triangular ordering of particles in the
planes. Also for x = 0.3 stripes are present in the bulk solid,
but in the planes hosting the B particles one sublattice out of
three is actually occupied by A particles; such an arrangement
would imply a concentration of 1/3, which reduces to the ac-
tual 0.3 in the presence of defects. We underline that this stripe
order only exists in the high-density regime, regardless of T,
becoming poorly defined already for p & 1.2, even though the
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FIG. 4. Mixture for x = 0.3 and y = 0.5. (a) orientational order parameters g, (empty symbols) and g, (full symbols). (b) excess energy
per particle. (c) snapshot of the mixture for ' = 0.3 and p = 0.3. (d) probability distribution of bonds at 7 = 0.3, for p = 1.3 and p = 0.6.

solid exists as a stable phase down to p & 1. For densities
lower than 1, some hints of stripe order are also found in the
dense liquid for 7' = 0.5, at least above p =~ 0.8. For T = 0.3,
the solid coexists with vapor in the whole interval 0.1 < p <
0.9 and again a different compositional order arises. Looking,
e.g., at the cylindrical droplet shown in panel (c) of Fig. 4, B
particles exhibit square (rather than triangular) order, which is
made possible by a concentration of B particles in the core of
the droplet larger than 0.3.

To summarize, it is clear that changes in compositional
order are essentially driven, at not too high temperatures, by
the associated energy gain. In turn, it is precisely the ability
of the two-phase system to self-organize differently from the
bulk solid that can make the excess energy of the droplet
lower. This is transparent in the behavior of the probability
distribution of bond number, P(N,), reported for each type of
bond in Fig. 4(d), for y = 0.5, T = 0.3, and two densities.
Two particles are considered “bonded” if their distance falls
within the range of SW attraction. Looking at the figure,
the distributions of A-A and B-B bonds are sharply peaked
in the bulk solid and less so in coexistence, as expected.
Much more interesting is the probability distribution of the
number of A-B bonds: while in coexistence (p = 0.6) each
B particle is typically bonded to 18 A particles, in the bulk
solid (p = 1.3) the number of bonds per B particle drops to
15. This demonstrates how a different compositional order

in the solid droplet can make the number of A-B bonds
larger than in the bulk solid and, consequently, how a more
favorable energetic condition is found in the former case.
The same behavior is observed, with different nuances, for
all combinations of x and y investigated in this paper; thus
it likely represents a general feature of the nonequimolar
mixture.

IV. STRONG COMPOSITIONAL ASYMMETRY

In the more asymmetric y = 0.1 case, only one particle out
of ten belongs to species B. Yet, we will see that the behavior
of the mixture is radically different from pure hard spheres.
Choosing y =1 first, the OOPs are shown in panel (a) of
Fig. 5, and the excess energy per particle in panel (b). The
overall behavior of g, and g, is similar to x = 0.3, in spite
of quite higher cohesive energies. As testified by the OOP
values at low density, the triple-point temperature is between
T = 0.5and 1. For T = 0.3 we recover the same behavior ob-
served for y = 0.3, i.e., an absolute energy minimum located
in the solid-vapor region.

As far as composition is concerned, we see in the snapshots
of the mixture for y = 1 and T = 1 that in the high-density
regime [Fig. 6(a)] the compositional order is different from
x = 0.3 and again novel: B particles now form a fcc crystal
on their own, with a first-neighbor distance close to 2¢. This
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FIG. 5. Mixture for x = 0.1 and y = 1. (a) orientational order
parameters g, (empty symbols) and g (full symbols). (b) excess
energy per particle. Temperatures are in the legend of panel (b).

would amount to x = 1/8, implying that some of the fcc sites
pertaining to B particles are actually occupied by A particles.
This peculiar order vanishes when reducing the density below
1.0, where a substitutionally disordered solid is found instead
[Fig. 6(b)]. Finally, at p ~ 0.6 the system enters the liquid-
vapor region.

Below the triple-point temperature, the bulk solid extends
down to p & 1.1; for slightly lower densities, solid-vapor
coexistence occurs. Under these conditions, the solid droplet
has the same compositional order observed in bulk. However,
below p ~ 0.8 the compositional order changes, becoming
stripe order: in the solid droplet, planes occupied by B
particles are alternated with two-plane layers filled with A
particles. In particular, for 7 = 0.5 B particles show in-plane
square order [Fig. 6(c)], whereas for T = 0.3 the ordering of
B particles is similar to that in the bulk solid for y = 0.3 and
y = 0.5 (namely, in the planes filled with B particles, one
triangular sublattice out of three is occupied by the A species).

All these peculiarities find a rationale in the strong concen-
tration unbalance between the species. In order to minimize
energy at low temperature, the vapor phase is remarkably

(¢ T=05,p=0.5

FIG. 6. A few snapshots of the mixture for x =0.1, y =1
and different thermodynamic conditions: 7 = 1.0, p = 1.2 (a); T =
1.0, p =1.0 (b); T = 0.5, p = 0.5 (c). In the right panels, A parti-
cles have been removed to show the arrangement of B particles.

dense and practically devoid of B particles—for example, in
the configuration reported in Fig. 6(c), the vapor density is
about 0.45, which is quite high for a vapor phase, but, at the
same time, too low for surmising that the vapor would actually
be a solid. The remaining A particles are bound to B particles
in the solid droplet, where the effective x is substantially
higher than the nominal 0.1, thus allowing for the possibility
of stripe order.

Finally, we analyze the mixture for x = 0.1 and y = 0.5.
The OOPs are shown in panel (a) of Fig. 7, and the excess
energy per particle in panel (b). The triple-point temperature is
between 0.2 (where g, and g, are small but definitely nonzero
in a range of moderate densities) and 0.3 (where g, and
g vanish for all densities lower than 1.0). Interestingly, for
T = 0.2 the OOPs are close to zero for p < 0.3; moreover, the
excess energy shows a broad minimum for moderate densities,
lower than the energy of the bulk solid. With an attraction
of very short range between unlike particles, the B particles
would be too few to support compositional order of any kind.
Indeed, the solid phase is a substitutionally disordered fcc
crystal, regardless of the temperature. At T = 0.3 or higher,
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FIG. 7. Mixture for x = 0.1 and y = 0.5 (temperatures in the
legend). (a) orientational order parameters g, (empty symbols) and
g (full symbols). (b) excess energy per particle. Temperatures are in
the legend of panel (a).

the solid melts into liquid for p & 1; for still lower densities
the mixture lies in the liquid-vapor region, as suggested by
the behavior of the static structure factor. In Fig. 8, the A-A
structure factor is plotted as a function of the wavevector for
several densities at T = 0.3. As p is lowered, the increasing
trend of Saa (k) for vanishing wavevectors points towards the
development of density fluctuations on progressively longer
interparticle distances, as typically occurs when approaching
the liquid-vapor coexistence region.

A more interesting behavior shows up at T = 0.2, where
the mixture manages to reduce its energy below the value
typical of the bulk solid by gathering B particles in a small
region of the box—a solution that clearly requires two-phase
coexistence. We remark that also at 7 = 0.2 no compositional
order occurs in the bulk solid, which begins to melt around
o = 1.0. Starting with p = 0.8, the solid droplet develops a
form of compositional order where B particles are arranged in
a regular structure, close to fcc (see Fig. 9).

Further details on the arrangement of particles for T =
0.2 can be gained by computing the radial distribution func-

L o—=e p=09
3 =—m p=038
g *—a p=07
I p=0.6

v—v p=0.5

o2 4 6 8§ 1
ko
FIG. 8. Structure factor Syp(k) for x = 0.1,y = 0.5, and T =
0.3. Densities p are in the legend.

tions gaa (r) and ggg(r) for p = 1.3 (bulk solid) and p = 0.8
(solid-vapor coexistence); see Fig. 10(a). As expected, for p =
1.3 the shape of both functions is consistent with solidlike
behavior, with narrow peaks at lattice distances. Conversely,
for p = 0.8, A particles are not in perfect registry and their
environment is distorted enough to appear liquidlike, whereas
B particles keep locally a crystalline arrangement. Apparently,
this arrangement is the only possibility for B particles to make
bonds with a higher number of A particles than in the bulk
solid. This is demonstrated in Fig. 10(b), where the probability
distributions of the number of A-A, B-B, and A-B bonds are
plotted. It clearly emerges that, for p = 0.8, each B particle
is typically bonded to 19 or 20 A particles, i.e., more than
in the bulk solid where the number of bonds is exactly 18.
Also notable is the strong density dependence of the A-A bond
distribution, which at p = 0.8 is dominated by vapor. Finally,
when the density becomes too low, the size of the droplet
decreases considerably, until it melts completely. However,
this should not be interpreted as the reentrance of liquid-vapor
equilibrium but rather as a size effect due to the smallness of
the simulation sample.

While in principle novel structures and compositions can
emerge at concentrations not considered here, we believe that
a critical comparison of our three cases (including equimolar
conditions [14,15]) already reveals a few general trends in

FIG. 9. Left: snapshot of the mixture for x = 0.1,y =0.5,T =
0.2, and p = 0.78. In the right panel, A particles have been removed
to highlight the position of B particles.
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the combined effects of x and y on the phase behavior of
the mixture. For such an aim, a schematic summary of all
phase behaviors is presented in Fig. 11. Upon increasing the
departure from equimolarity, it emerges that stripes, which
are systematically observed in the bulk solid for x = 0.5 and
0.3, only survive in the solid-vapor region for y = 0.1 and
y = 1, while being altogether absent for y = 0.5. Moreover,
a difference in compositional order between the bulk solid and
the solid droplet is only seen under nonequimolar conditions.
Finally, while the value of y does not significantly affect the
phase behavior for x = 0.5, the opposite is true at the other
concentrations.

V. CONCLUSIONS

We have investigated by Monte Carlo simulations the na-
ture of compositional order in a mixture of two identical
hard-sphere species, with the cross interaction modeled by
a square-well (SW) potential. This system represents the
simplest conceivable model of binary mixture, with the SW
width y as a unique parameter. We know from previous
studies [14,15] that the solid phase of the equimolar mixture
is striped, provided that the temperature is low enough. In
particular, stripes also appear for very small values of y,
suggesting that their origin is intimately related to the ability
of stripe patterns to ensure a higher number of close contacts
between unlike particles than possible in configurations with
disordered composition. In this paper, we have specifically
addressed the role of the mixture concentration .

For a moderate concentration asymmetry between the
species (x = 0.3) stripes are still found in the bulk solid
phase, at least for sufficiently high density. However, unlike
what is observed in the equimolar mixture, novel compo-
sitional orders arise when solid and vapor coexist at low
temperature: for y = 1 the solid droplet has a bcc structure
and the minority particles are arranged in a honeycomblike
pattern, while for y = 0.5 we observe solid droplets with
stripes and square in-plane order of particles.

For a strong concentration asymmetry (x = 0.1) and y =
1 we have seen another type of compositional order in the
bulk solid, where minority particles are arranged in a fcc
structure with increased spacing. Upon reducing y to 0.5,
the solid phase becomes compositionally disordered at all
temperatures. On the other hand, in the solid-vapor region

for y =1 stripes are present in the solid droplet, whereas
for y = 0.5 minority particles are arranged in a crystalline
structure close to fcc.

To sum up, away from equimolarity the compositional
order of the solid droplet is generally different from that of
the bulk solid. This occurs because, at low temperature, the
droplet adjusts its composition in order to lower the system
energy as much as possible. This goal is achieved by making
the particle concentration in the droplet closer to equimolar-
ity, which in turn is obtained by expelling majority particles
toward the vapor. In all cases, a different compositional order
at coexistence is reflected in the behavior of cohesive energy,
which at low T is larger in the solid-vapor region than in the
bulk solid.

A mixture with the characteristics of our model could
be realized by, e.g., DNA-functionalized colloidal particles
of two species, as long as the binding affinity between the
DNA strands grafted on two unlike particles is reduced by
amino-acid substitution [52]. On account of our findings, we
expect that even basic colloidal mixtures will exhibit a variety
of compositional orders. We hope that the present results will
stimulate new experimental efforts and trigger novel applica-
tions in photonics and biomedicine.
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