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We study a family of lattice-gas systems defined on semiregular grids, obtained by projecting the vertices
of three different geodesic icosahedra onto a spherical surface. By using couplings up to third neighbors, we
explore various interaction patterns, ranging from core-corona repulsion to square-well attraction and short-range
attractive, long-range repulsive potentials. The relatively small number of sites in each grid (∼100) enables us
to compute the exact statistical properties of the systems as a function of temperature and chemical potential
by Wang-Landau sampling. For each case considered, we highlight the existence of distinct low-temperature
“phases”, featuring, among others, regular-polyhedral, cluster-crystal, and wormlike structures. We highlight
similarities and differences between these motifs and those observed on the triangular lattice under the same
conditions. Finally, we discuss the relevance of our results for the bottom-up realization of spherical templates
with desired functionalities.
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I. INTRODUCTION

Reconstructing the equilibrium behavior of a many-particle
system is the main objective of a statistical-mechanics cal-
culation. This task is usually accomplished by means of
Metropolis Monte Carlo simulation, a very general and pow-
erful method which, however, becomes inefficient when the
Hamiltonian contains many parameters, or close to a first-
order transition point, where the sample can remain trapped in
a local free-energy minimum for long. In this respect, finding
exactly solvable models for the problem at hand would be cru-
cial, since, besides feeding our insight and knowledge, exact
calculations best illustrate the characteristics of the model that
are responsible for specific emergent behaviors. In particular,
solvable systems of colloidal-like particles could be helpful in
discerning which features of the interaction are essential for
the appearance, at low temperature, of unusual ordered phases
like cluster crystals or stripes [1]. The latter morphologies
are examples of mesoscale structures (“microphases”) which,
in soft-matter and biological systems, are nearly as frequent
as solid-liquid-vapor triarchy in simple fluids. Indeed, mi-
crophases arise in systems as diverse as block copolymers
[2,3], Langmuir films [4], and protein solutions [5], having
in common a long-range interparticle repulsion arising from
screened electrostatic interactions [6–8].

Our study of self-assembly in particle systems will be eas-
ier if we use a discrete embedding space, like in a lattice-gas
model where particles are defined on the sites of a regular
grid (usually, a Bravais lattice). By enforcing the condition
of single site occupancy, particles gain a hard core and the
numerical analysis is further simplified. Clearly, to observe
nontrivial behavior the grid size cannot be too small, nor
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the range of interactions too short. To add more interest to
our investigation, we choose an ambient space with intrinsic
curvature, e.g., a grid with the topology of the sphere, since
then the particle interaction will typically be frustrated and
observing a complex spatial organization in a relatively small
system is more likely. Using a closed grid has an another
advantage: we should not bother with boundary conditions to
make the various orders fit into the grid.

In this paper we analyze the equilibrium behavior of clas-
sical particles on polyhedral grids (i.e., grids made of the
vertices and edges of a convex polyhedron). To keep the
effects of a curved space to a minimum, our choice goes
to geodesic icosahedra [9], which is a class of semiregular
polyhedra with triangular faces and the least possible number
(12) of disclinations. For such systems a rich interplay can be
expected between “phases” of a various nature — on a finite
grid, genuine thermodynamic phases only exist at zero tem-
perature (T = 0); at T > 0, any phase transition is replaced
by a crossover region [10]. At variance with Refs. [11,12],
it is not our purpose to examine a specific fluid of particles;
rather, we span a whole range of interactions and for each one
the leading structures are identified. Clearly, a key factor will
be having a fast method to extract the system phases from the
Hamiltonian. That is why we employ the Wang-Landau (WL)
algorithm [13,14], a sophisticated variation of the Metropolis
algorithm which allows the computation of the exact density
of states of the system with relatively small effort. From that,
all thermodynamic properties follow at once. In practice, the
size of the system cannot be too large, since otherwise the WL
method ceases to be an opportunity; on the other hand, if the
system were too big the effects of curvature will be totally
obscured, which is not what we really want.

A sample of the rich structural behavior of “spherical”
lattice gases can be found in Ref. [15]. In that paper, we
considered lattice-gas models defined on the grid based on
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FIG. 1. The three geodesic icosahedra considered in this paper. From left to right: PSD, HPTI, and HPCD (see the acronyms defined in the
text). Assuming the mean first-neighbor distance as reference, the curvature of the grid gets smaller from left to right. Each polyhedron in the
figure is obtained from a corresponding parent polyhedron (e.g., the snub dodecahedron for the PSD) by raising a pyramid on each pentagonal
and/or hexagonal face (Conway’s kis operation). The height of the pyramid can be chosen such that all edges are tangent to the unit sphere.
Different colors are used for different types of triangles. The total number of vertices is 72 for PSD, 92 for HPTI, and 122 for HPCD. The
five-fold vertices are twelve in any case.

a pentakis icosidodecahedron, which is one of the simplest
geodesic icosahedra. In the present paper, we enlarge the in-
ventory of amusing structures by considering systems defined
on larger geodesic grids, also with the purpose to draw a
comparison with the phases of triangular-lattice gases. Upon
increasing the number of sites within the geodesic family, the
spatial separation between the five-fold-coordinated vertices
becomes progressively larger and curvature effects gradually
turn off, at least insofar as the interaction is cut off at a fixed
distance.

The plan of the paper is as follows. In Sec. II, we introduce
a class of discrete particle systems and describe the method
used to compute their statistical properties. Results are pre-
sented and commented in Sec. III. Finally, Sec. IV is devoted
to conclusions and perspectives.

II. MODEL AND METHOD

In our language, a grid is a network made of sites and
edges connecting adjacent sites (here, the notion of distance is
inherited from three-dimensional Euclidean space). Particles
live on the sites; calling i (from 1 to M) the generic site
and ci (either 0 or 1) its occupation number, the Hamiltonian
of a lattice-gas model on the grid is a function H[c], where
c = {c1, . . . , cM} is the generic microstate.

Up to a convenient projection (see below), all grids focused
on in this paper consist of the vertices of a geodesic polyhe-
dron, i.e., a convex polyhedron made from triangles. While
the general setup is similar to Ref. [15], the grids considered
hereafter are finer than the single one examined in our previ-
ous paper, in the aim to draw more detailed conclusions on
how H[c] should be designed in order that specific types of
ordering appear at low temperature. We consider three possi-
bilities (see Fig. 1): The pentakis snub dodecahedron (PSD),
the hexakis-pentakis truncated icosahedron (HPTI), and the
hexakis-pentakis chamfered dodecahedron (HPCD) [9].

In the present paper we choose the “canonical forms” of
these polyhedra, in which the vertices are positioned in space
so as to ensure that all edges are tangent to the unit sphere.
Therefore, the edge-scribed radius is unity by construction.
The grid sites are then obtained by projecting the vertices of
the canonical form onto the unit sphere.

We list in Table I the chord distances from a central site
(either five-fold or six-fold) to the closest grid sites. Using
the triangular lattice as paradigm, we gather neighbor sites
in shells (e.g., regarding the six nearest sites to a sixfold site
as belonging to the same, first-neighbor shell), despite the
distance from the central site not being the same for all (in this
way, the sites in the first shell are those connected by an edge
to the central site). Calling uα (with α = 1, 2, 3) the strength
of the interaction between the central particle and the particles
in the α-th shell, the general Hamiltonian reads:

H[c] = u1

∑
1NP

cic j + u2

∑
2NP

ckcl + u3

∑
3NP

cmcn, (1)

where the first sum runs over all distinct pairs of first-
neighbor (1NP) sites, and so on. We refer to Eq. (1) as the
(u1, u2, u3) interaction. By a suitable choice of the couplings,
we can represent various kinds of interaction (e.g., core-
corona repulsion, Lennard-Jones type, and SALR—standing
for “short-range attractive, long-range repulsive” [1]), con-
trasting them with one another in relation to thermal behavior
and dominant structures. In particular, due to the effec-
tively hard-core nature of the particle interaction, we use the
term core-corona interaction to describe a purely repulsive
interaction characterized by positive or null coupling parame-
ters (e.g., (1, 1, 0)). In contrast, we call Lennard-Jones-type
a discrete interaction featuring an attractive well, possibly
preceded by a repulsive shoulder. Finally, we classify the
interaction (1) as SALR whenever a short-range attraction
is followed by a longer-range repulsion. From now on, the
couplings are given in ε units, where ε > 0 is an arbitrary
energy. In turn, the temperature T is given in units of ε/kB,
where kB is Boltzmann’s constant.

Once the couplings have been fixed, we compute the statis-
tical properties of the system in the grand-canonical ensemble
by the WL algorithm [16]. The WL method allows the com-
putation of the exact density of states of the system, gN ,E ,
here given in terms of the energy (E) and particle number
(N ). It manages to do so by sampling a probability density
proportional to the reciprocal of the density of states. This
makes all E and N values (favorable and less favorable) to be
visited (roughly) the same number of times. In practice, gN ,E
is updated during the run by multiplying its entry at the current
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TABLE I. Chord distances (after the projection on the sphere) from a central vertex to its neighbors, distinguishing a five-fold vertex from
(up to three different) six-fold vertices. Within parentheses is the number of equivalent neighbors.

PSD model

Shell Six-fold vertex Five-fold vertex

1st 0.402836 (1), 0.463857 (5) 0.402836 (5)
2nd 0.726567 (1), 0.750536 (2), 0.726567 (5)

0.795775 (3)
3rd 0.846202 (1), 0.901344 (4) 0.846202 (5)

HPTI model

Shell Six-fold vs #1 Six-fold vs #2 Five-fold vertex

1st 0.348615 (1), 0.403548 (3), 0.412411 (6) 0.348615 (5)
0.412411 (2)

2nd 0.652955 (2), 0.698966 (4) 0.640852 (3), 0.713644 (3) 0.640852 (5)
3rd 0.738816 (1), 0.797534 (2), 0.797534 (6) 0.738816 (5)

0.807096 (2)

HPCD model

Shell Six-fold vs #1 Six-fold vs #2 Six-fold vs #3 Five-fold vertex

1st 0.295554 (1), 0.343629 (2), 0.352635 (4), 0.362843 (2) 0.353846 (3), 0.362843 (3) 0.295554 (5)
0.352635 (3), 0.353846 (1)

2nd 0.556004 (2), 0.603210 (2), 0.546533 (2), 0.618034 (4) 0.608634 (6) 0.546533 (5)
0.608634 (2)

3rd 0.684092 (2), 0.694222 (2), 0.684092 (4), 0.705093 (2) 0.640852(3), 0.713644(3) 0.640852 (5)
0.705093 (1)

N , E values by a modification factor f ; when the histogram
of energies and particle numbers becomes approximately flat,
f is halved and the simulation is started again with the his-
togram reset to zero. The simulation is stopped when ln f
becomes smaller than 10−7. WL sampling is insensitive to the
existence of multiple free-energy minima; therefore, it is the
method of choice for the study of low-temperature systems,
which usually undergo a number of discontinuous changes
with increasing the pressure or the chemical potential.

From the knowledge of gN ,E , the partition function readily
follows as

�(T, μ) =
∑
N ,E

gN ,EeβμN e−βE , (2)

where μ is the chemical potential and β = (kBT )−1. The
pressure P of the system is derived from the grand potential
� = −kBT ln � as P(T, μ) = −�/M. In a finite system close
to zero temperature, the slope of P as a function of μ under-
goes a rapid increase near each phase crossover, while keeping
roughly constant across the phase regions.

Calling N and E the grand-canonical averages of N and E ,
respectively, it immediately follows that

∂P

∂μ

∣∣∣∣
T

= N

M
≡ ρ (3)

(ρ is the number density). At fixed T , the density ρ is an
increasing function of μ, alternating plateaus (“phases”) with
steps (phase crossovers), which are sharper at lower tempera-
ture.

Two further quantities are worth computing, namely the
isothermal compressibility κT and the entropy per site s,

respectively, given by

κT = 1

ρ2

∂ρ

∂μ

∣∣∣∣
T

and s(T, μ) = − 1

M

∂�

∂T

∣∣∣∣
μ

= ∂P

∂T

∣∣∣∣
μ

. (4)

Explicit expressions for κT and s are

ρkBT κT = 〈N 2〉 − N2

N
(5)

and

s(T, μ) = 1

MT
(E + MP − μN ). (6)

Finally, let SN ,E = kB ln gN ,E be the microcanonical en-
tropy. Then,

� =
∑
N ,E

e−β(E−TSN ,E−μN ) ≡
∑
N ,E

e−β�̃N ,E , (7)

where

�̃N ,E = E − TSN ,E − μN (8)

is the generalized grand potential (GGP). Since �̃N ,E =
O(M ) for M � 1, application of the saddle-point theorem
leads (if β is not too small) to

� ≈ exp
{−β�̃N ,E

}
with

(
N , E

) = argmin �̃N ,E . (9)

From the previous � estimate, being the more valid the larger
M, we obtain

� ≡ �̃N ,E ≈ −kBT ln � ;

P = −�/M ≈ (kBT/M ) ln �. (10)
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FIG. 2. PSD model, a couple of minimum-energy configurations:
(1, 1, 1) interaction and N = 36 (left); (1, 1, 0) interaction and N =
22 (right). In this and similar pictures, particles (occupied sites) are
represented as small red balls; holes (empty sites) as transparent
light-gray balls.

By the saddle-point theorem, we similarly derive N ≈
N , E ≈ E , and s ≈ SN ,E/M. In particular, notice the differ-
ence between an exact evaluation of E (or N) and the value of
E (or N ): if we choose integer couplings, then E is integer as
well, whereas E is only approximately so.

For fixed (T, μ), the graph of �̃N ,E is a multi-valley
landscape. The absolute GGP minimum falls at (N , E ). This
global minimum jumps from one valley to another as the
control parameters (T, μ) pass over a “transition point”. We
will illustrate this behavior in one case below.

III. RESULTS

We hereafter review, one grid at a time, the phase behavior
of model (1) in a few relevant cases, covering all the main
types of interaction. In the following, it is by far sufficient to
work with integer couplings.

A. PSD model

We start showing results for a number of representative
lattice gases among those defined on the PSD grid. We es-
pecially focus on systems whose low-temperature structures
are particularly symmetric or intriguing in some respect.

Looking at Fig. 1, we easily realize that two occupied
five-fold sites are always left uncoupled by Hamiltonian (1),
opening to the possibility of stabilizing a regular icosahedral
arrangement of zero energy when the interaction is an ex-
tended repulsion. This is indeed observed, e.g., in the (1, 1, 1)
system at μ � 0.30. At higher μ, we see the formation of
wormlike structures; for example, the lowest-energy configu-
ration for N = 36 contains three equivalent chains of particles,
each resembling a two-headed worm (see Fig. 2, left). As μ is
increased further, the grid gets eventually completely filled.

Upon reducing the range of repulsion, other wormlike ar-
rangements appear at low temperature (see an example in the
right panel of Fig. 2, which refers to the (1, 1, 0) case).

When a third-neighbor attraction is added to a first-
neighbor repulsion, as in a discretized Lennard-Jones poten-
tial, the equilibrium behavior changes completely. In Fig. 3
we show the profile of N (μ) for varying u1 and fixed u2 = 0
and u3 = −1. At T = 0.05 we see a sequence of plateaus
separated by sharp crossovers, which become increasingly

FIG. 3. PSD model, (n, 0, −1) interactions with n = 1, 2, 3: N
vs μ for two temperatures (see legend).

smoother as T grows. Each plateau represents a distinct
“phase”. Strengthening the repulsion has just the effect of
shifting the phase “transitions” to higher μ.

More specifically, for μ < −2 the grid is empty. For higher
chemical potentials, the system goes across a number of
phases characterized by particle chains of growing length.
When N = 36, the minimum-energy configurations are two:
one characterized by stripes and another showing a single
“worm” wrapped around the sphere (see Fig. 4). Admittedly,

FIG. 4. PSD model, (n, 0, −1) interaction: The two minimum-
energy configurations for N = 36 (left), along with their stereo-
graphic projections (right). The biggest cluster is colored in brown;
smaller clusters are drawn in orange. The horizontal and vertical
scales have no particular meaning.
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FIG. 5. PSD model, (1, 0,−1) interaction: P vs μ (left) and P vs ρ (right) for three temperatures (see legend).

the mechanism stabilizing both structures is a high number
of third-neighbor particle pairs, which, in spite of the large
number of adjacent particles in the chains, makes the total
energy lower than in any other arrangement of 36 particles
on the grid. Figure 4 is a significant example of how a sim-
ple interaction can trigger the onset, out of an abundance of
options, of mesoscopic structures with an easily recognizable
shape. Other examples follow below.

Looking at the profile of the isothermal compressibility
(not shown), a sequence of peaks appears at low temperature,
aligned with the jumps present in N (μ). For the (1, 0,−1)
interaction the pressure P(μ) is reported in Fig. 5 (left) where
we have marked with dashed lines the location of the κT

peaks. The right panel of Fig. 5 shows the equation of state,
P(ρ), for the same three temperatures. Characteristic plateaus
are clearly visible in P(ρ) at low temperature, as would be
expected for a system undergoing a sequence of first-order
transitions.

The (n, 0,−1) interaction is not the only one to exhibit
stripes and other wormlike structures. Indeed, all interactions
characterized by a first-neighbor repulsion and a minimum

FIG. 6. PSD model, (−1, 2, 1) interaction: N vs μ for three tem-
peratures (see legend).

falling at third-neighbor distance display a behavior similar to
(1, 0,−1), with slight variations in the intermediate phases.

Things change considerably when combining a first-
neighbor repulsion with a second-neighbor attraction and a
weaker (or zero) third-neighbor attraction. In this case, more
irregular patterns emerge, causing stripes and worms to dis-
appear. As previously discussed, another way of realizing a
Lennard-Jones-like interaction is to take a negative u1 and less
negative (or zero) u2 and u3. For instance, in the (−1, 0, 0)
case the profile of N (μ) jumps abruptly from ≈ 0 to 72, as it
would happen in a system undergoing a transition from vapor
to solid. This is confirmed by the shape of the equation of state
having a unique plateau (not shown).

Upon providing a first-neighbor attraction with a repulsive
tail we realize the lattice-gas equivalent of a SALR poten-
tial. The short-range attraction promotes particle aggregation,
while the longer-range repulsion prevents the immediate for-
mation, with increasing μ, of a solidlike phase. A nontrivial
behavior emerges for, e.g., u1 = −1, u2 = 2, and u3 = 1,
where the interplay between attraction and repulsion leads
the system to explore a whole sequence of cluster-crystal
microphases of increasing complexity (see Figs. 6 and 7). In
the first two snapshots of Fig. 7 (corresponding to N = 18

FIG. 7. PSD model, (−1, 2, 1) interaction: from left to right
and from top to bottom, minimum-energy configurations for N =
18, 25, 30, 32 (two distinct), and 38.
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FIG. 8. PSD model, (−1, 0, 1) interaction: minimum-energy
configurations for N = 18 and 36 (two distinct).

and N = 25) the clusters are centered at the vertices of an
octahedron. Notice, in particular, how each cluster is built
around a five-fold vertex. For N = 30 we see the emergence
of three elongated clusters, consisting of 10 particles each.
For N = 32 the minimum-energy configurations are two: one
featuring a ring of particles along the equator, accompanied
by four-particle clusters at poles, and another exhibiting a
characteristic “tennis ball” pattern. Finally, for N = 38 we
observe a long curved ribbon “wandering” through the grid.
As N increases further, we find a number of low-energy con-
figurations that are complementary to the ones just described,
even though no perfect “particle-hole” symmetry holds in this
case. All in all, the above scenario can be viewed as the lattice-
gas version of the generic phase diagram of a two-dimensional
SALR fluid at low temperature (see, e.g., Refs. [8,17]). Struc-
tures very similar to those illustrated in Fig. 7 are found in the
(−1, 2, 0) system, too.

Another intriguing SALR interaction is (−1, 0, 1). While
the overall low-temperature behavior is similar to (−1, 2, 1),
the relevant structures are different. As shown in Fig. 8, in the
N = 18 phase we find three pentagon-shaped clusters of six
particles each, centered on five–fold vertices. For N = 36 two
different lowest-energy configurations exist: one formed by a
curved ribbon and another by two unequal clusters.

B. HPTI model

Using the same order of presentation as before, we begin
our analysis of the HPTI model by core-corona repulsions.
Again, our interest is mainly in the most stable structures,
which are those heralded by a fairly extended plateau in N (μ)
at low T .

Taking u1 = 1 and u2 = u3 = 0, the most distinct phase ap-
pears at N = 32, where particles are arranged on the vertices
of a pentakis dodecahedron; in this case, the empty sites form
its dual polyhedron, i.e., the truncated icosahedron. Extending
the repulsion range a little further, the system goes through a
sequence of mostly disordered phases, where small clusters
coexist with short particle chains. Finally moving to (1, 1, 1),
a broader variety of structures emerges. For low μ values,
N = 12 particles are organized into an icosahedral configu-
ration, either regular or irregular. As the density increases, we
see small clusters mixed up with wormlike structures.

Similarly as done for the PSD model, we examine three
variants of Lennard-Jones-like interaction. Considering first
the (2, 0,−1) case, the third-neighbor attraction leads to the
formation of a disordered arrangement of isolated particles
at low density (N = 22). As the density increases (N = 30),
small wormlike structures emerge. For N = 46 (see Fig. 9) the

FIG. 9. HPTI model, (2, 0, −1) interaction: minimum-energy
configuration for N = 46 (left), along its stereographic projection
(right).

minimum-energy configuration contains two worms wrapped
around each other, which subsequently merge into a single
percolating worm at N = 48. At still higher densities, we ob-
serve the structures complementary to those found at N = 22
and N = 30.

When the first-neighbor repulsion is weakened, e.g.,
(1, 0,−1), the previous N = 46 phase disappears. Conversely,
increasing the repulsion leads to the emergence of additional
intermediate phases, which however are poorly significant. If
we put the minimum of the interaction at second-neighbor
distance, with a null or weaker third neighbor attraction, the
behavior of the system changes radically. Specifically, the
(1,−1, 0) system undergoes a sort of solid-solid transition
between a N = 32 phase, where particles form a pentakis
dodecahedron, and a N = 60 phase, where particles are placed
at the vertices of a truncated icosahedron (see Fig. 10). The
N (μ) curve, reported in the left panel of Fig. 11 for three
temperatures, makes it evident that these two phases are ex-
tremely robust to thermal fluctuations, much more than any
other “phase” encountered so far. Furthermore, the profile of
N (μ) is symmetric with respect to μ0 = 0 (this is not a mere
coincidence; see Appendix for a proof).

Finally moving to SALR interactions, the parameter set
(−1, 2, 1) offers a wide variety of structures, as highlighted by
the numerous small steps in N (μ) (not shown). In particular,
at low density the system undergoes a sequence of transi-
tions between cluster-crystal configurations with octahedral
symmetry around five-fold vertices (see Fig. 12). At higher

FIG. 10. HPTI model, (1, −1, 0) interaction: pentakis dodecahe-
dron for N = 32 (left) and truncated icosahedron for N = 60 (right).
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FIG. 11. HPTI model, N (μ) for two sets of parameters with u1 + u2 = 0 and u3 = 0 and three temperatures (in the legend): (1, −1, 0)
(left) and (−1, 1, 0) (right). Particle-hole symmetry holds for both models (see Appendix).

densities clusters merge into thick worms, which first evolve
to a “tennis ball” (N = 42) and then to stripes (N = 46 − 50).
For N = 52 a single worm finally appears. A further increase
in the density leads to configurations that are complementary
to cluster crystals.

Reducing the height and range of the repulsion ramp, e.g.,
(−1, 1, 0), the system exhibits two distinct phases, along with
their complementary phases (see N (μ) in the right panel of
Fig. 11). Both configurations show a ring of particles along the
equator, with either four (N = 38) or six (N = 42) particles at
opposite poles.

C. HPCD model

Again, our analysis of the HPCD model begins with core-
corona interactions. At low T , the (1, 0, 0) system organizes
itself in polyhedral structures. Specifically, N = 42 particles
occupy the vertices of a pentakis icosidodecahedron, while
two irregular polyhedra emerge at N = 78 and N = 86. When
the repulsion is extended to include second neighbors, the sys-
tem behavior changes substantially. Regular structures persist
at low density, as highlighted by the presence of a N = 32
pentakis dodecahedron phase, but, for intermediate densities,
wormlike structures of various length appear, progressively
merging into a connected branched arrangement of N = 64
particles. Moving to the (1, 1, 1) interaction, we find a few
cluster-crystal structures (see Fig. 13). In particular, we ob-
serve icosahedral arrangements of clusters comprised of three
(N = 36) or four particles (N = 48), built around five-fold
sites. As already found for other grids, worms arise at in-
termediate density and coexist with clusters, until at N = 72

FIG. 12. HPTI model, (−1, 2, 1) interaction: minimum-energy
configurations for N = 30, 50, 52.

we see the onset of twelve pentagon-shaped clusters of six
particles each, arranged at the vertices of an icosahedron. At
N = 82 we observe a complex yet symmetric arrangement
of clusters and stripes, while at higher density we find a
percolated assembly of particles with “holes” at the vertices of
an icosahedron. Finally, in the minimum-energy configuration
with N = 108 particles the empty sites occupy the vertices of
a rhombic dodecahedron [9].

As far as Lennard-Jones-like interactions are concerned,
for the parameter set (1, 0,−1) three distinct phases are ob-
served [see Fig. 14 (left)]. N = 32 particles are placed on the
vertices of a pentakis dodecahedron. Judging on the persis-
tence in temperature of the relative plateau in N (μ), this phase
is very robust to thermal fluctuations. Increasing the chemical

FIG. 13. HPCD model, (1, 1, 1) interaction: minimum-energy
configurations for N = 36, 48, 72, 82 (from left to right, from top
to bottom).
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FIG. 14. HPCD model, (1, 0, −1) interaction: N (μ), E (μ), and s(μ).

potential, a phase transition then occurs at μ = 0 into a N =
58 phase characterized by wormlike structures. This transition
is isoenergetic at T = 0, whereas at, say, T = 0.5, the energy
of the N = 58 phase is sensibly higher [Fig. 14 (middle)].
Eventually, a further transition occurs to a phase with N = 90,
where the system adopts the structure of a rectified truncated
icosahedron [9].

As shown by the entropy profile as a function of μ [see
Fig. 14 (right)] each phase transition is accompanied by a
peak in the entropy. This behavior arises from the increased
number of microstates available to the system near each phase
crossover.

Focusing on the “transition” from N = 58 to N = 90, oc-
curring at μ ≈ 0.95, the generalized grand potential (GGP)
�̃N ,E is plotted as a function of N and E in Fig. 15, at low
temperature (T = 0.05). In particular, we here illustrate the
evolution of the two GGP minima across the transition. At
μ = 0.80, the global GGP minimum falls at N = 58, E =
−90, and a high free-energy barrier separates this minimum
from the relative minimum at N = 90, E = −60. At the phase
transition, the two minima have exactly the same height,
meaning that the increase in chemical potential has canceled
the difference between the minima. At still higher μ, the
phase transition has already occurred, since the global GGP
minimum is now located at N = 90, E = −60. The endurance
of the free-energy barrier across the transition indicates that
the latter can be classified first-order-like.

When the strength of the first-neighbor repulsion is dou-
bled, we still observe the above mentioned N = 32 and

N = 58 phases. However, a new phase appears at N = 62,
where the particles form two interlaced worms. Furthermore,
the rectified truncated icosahedron at N = 90 is no longer
present, being instead replaced by a nonregular polyhedral
configuration at N = 92. Finally considering Lennard-Jones-
like interactions with a minimum at second-neighbor distance,
for example (1,−1, 0), only two distinct phases are found.
The system organizes itself in either a pentakis icosidodec-
ahedron configuration (N = 42) or its dual structure, the
chamfered dodecahedron [9] (N = 80). The overall scenario
remains unchanged when including a weaker third-neighbor
attraction.

Moving to SALR interactions, the (−1, 2, 1) set of param-
eters still offers a wide variety of low-temperature structures.
At relatively low density, the system goes through a sequence
of microphases corresponding to cluster-crystal states. In par-
ticular, for N = 30 ten clusters are arranged at the vertices of
a pentagonal antiprism, while for N = 36 an icosahedron of
clusters emerges, similarly to the (1, 1, 1) case. As the density
increases, the clusters merge, forming six worms comprised of
eight particles each (N = 48). These worms subsequently join
into two longer worms (N = 54 − 62, see Fig. 16), eventually
coalescing in a branched configuration with N = 70 particles.
At high density, the system exhibits cluster-crystal configura-
tions, but with the roles of particles and holes interchanged.
Reducing the height and width of the repulsion ramp, e.g.,
(−1, 1, 0), we observe two distinct phases only, for N = 48
and N = 54. In both cases we find a mixture of clusters and
worms. Finally, we analyzed the parameter set (−1, 0, 1), see

FIG. 15. HPCD model, (1, 0, −1) interaction: GGP plotted as a function of N and E for three different chemical potentials, μ = 0.8 (left),
μ = 0.95 (middle), and μ = 1.15 (right). We have marked in red the absolute minimum of the GGP in each case.

024108-8



WANG-LANDAU STUDY OF LATTICE GASES ON … PHYSICAL REVIEW E 112, 024108 (2025)

FIG. 16. HPCD model, (−1, 2, 1) interaction: minimum-energy
configurations for N = 62 (left top) and N = 70 (left bottom), along
with their stereographic projections (right).

Fig. 17. At low density we observe pentagon-shaped clusters,
while at N = 40 four hexagonal and two pentagonal clusters
sit at the vertices of an octahedron. As the density increases,
we see structures of a type already encountered, i.e., a ring
of particles with hexagonal clusters at poles (N = 56) or two
rings (N = 64).

D. Comparison with the triangular lattice

To understand how a curved space can influence the ther-
modynamic properties of a lattice-gas system, we compare—
for a few interactions—the results presented in Sec. III A–
III C with those relative to the triangular-lattice gas. We
remark that perfect particle-hole symmetry holds for the
triangular-lattice gas, irrespective of the interaction (see Ap-
pendix). For the latter system we still employ the WL method,
choosing a 12 × 12 triangular lattice with periodic boundary

conditions; the structures found at low temperature are then
confirmed by Metropolis Monte Carlo simulations on larger
lattices. Specifically, we analyze three distinct sets of param-
eters, each corresponding to a different type of interaction.

First of all, we consider the core-corona (1, 0, 0) repul-
sion. The profile of the density as a function of μ is plotted
in Fig. 18 (left) for T = 0.1. The overall behavior of the
density on spherical grids is consistent with that found on
the triangular lattice. Notably, the latter profile shows two
distinct plateaus at ρ ≈ 0.33 and ρ ≈ 0.67, corresponding to
the structures depicted in Fig. 19. Of the various curves in
Fig. 18, the density curve on the biggest grid (HPCD) is the
most similar to that on the triangular lattice.

For the Lennard-Jones-like (1, 0,−1) interaction, the den-
sity profile ρ(μ) is reported in Fig. 18 (middle), again for
T = 0.1. As seen in the picture, a direct comparison between
the various curves is challenging. However, it is fair to say that
the HPCD grid, which has the smallest curvature among all
grids, provides the best approximation to the triangular lattice.
On this lattice, ρ(μ) is characterized by three distinct plateaus
at 0.25, 0.50, and 0.75. The configurations corresponding to
these densities are illustrated in Fig. 20. At ρ = 0.25 the par-
ticles form a triangular crystal whose lattice spacing is twice
larger than that of the underlying lattice; at ρ = 0.75 occupied
and empty sites are interchanged with respect to ρ = 0.25.
Instead, at ρ = 0.50 particles are lined up to form parallel
stripes. These configurations have an obvious relationship
with those observed on geodesic grids at low T . Indeed, at
low and high densities curved systems typically exhibit poly-
hedral structures, whereas at intermediate densities they are
characterized by wormlike structures.

Finally, we consider the SALR interaction (−1, 2, 1). The
various density profiles for T = 0.1 are compared in Fig. 18
(right). At this temperature, the density curve of the triangular-
lattice gas exhibits five plateaus; the configurations at ρ ≈
0.25 and 0.50 are identical to those reported in Fig. 21, which
are outcomes of a simulation carried out at T = 0.2. For ρ ≈
0.33 the minimum-energy configuration in a 12 × 12 lattice
consists of a crystal of four-particle clusters; in the simulation,
which uses a larger sample, most (but not all) of the clusters
are of the same sort.

Although the comparison between density profiles is not
particularly valuable due to strong curvature effects, cluster
crystals exist in both geometries. Similarly, the wormlike
structures observed on spherical grids near ρ = 0.50 show a

FIG. 17. HPCD model, (−1, 0, 1) interaction: minimum-energy configurations for N = 40, 56, 64.
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FIG. 18. ρ(μ) profile at T = 0.1 for three geodesic grids and the triangular lattice: (1, 0, 0) (left); (1, 0, −1) (middle); (−1, 2, 1) (right).

characteristic width of two particles, in reasonable agreement
with the stripes found on the triangular lattice. In closing, it
is worth noting that the ρ(μ) curve for the SALR system with
parameters (−1, 1, 0) shows a single plateau at ρ ≈ 0.50, cor-
responding to two-row stripes. This agrees with the view that
cluster crystals require a sufficiently high and long repulsive
ramp to be stabilized [1].

IV. CONCLUSIONS

Using WL sampling, we have worked out the exact
phase behavior of a variety of lattice-gas systems defined on
geodesic grids. Among spherical grids, geodesic grids provide
the closest approximations to the triangular lattice. Originally,
the aim of this analysis was twofold: firstly, to provide a
thorough classification of low-temperature “phases”, so as
to draw a correspondence between particle interaction and
global system structure. On the other hand, our study had also
the purpose to assess the effects of geometric frustration on
the ground states of the triangular lattice gas, in a working
framework where the amount of curvature can be tuned.

We have considered three types of pair interactions,
extending up to third neighbors: core-corona, Lennard-Jones-
like, and SALR interactions. In the former case, a common
thread among the various grids is the existence of ground
states with polyhedral order at low density and worm-
like arrangements at moderate densities. For interactions of
Lennard-Jones type, structures with polyhedral order are only
observed when the minimum of the interaction energy falls at
second- or third-neighbor distance. In the latter case we also
find wormlike structures at moderate density. Finally, when
couplings are adjusted to a SALR interaction, the only ordered

FIG. 19. Minimum-energy configurations for a triangular-lattice
gas with parameters (1, 0, 0): ρ ≈ 0.33 (left) and ρ ≈ 0.67 (right).

structures at low density are cluster crystals, while a multitude
of wormlike configurations are stabilized at intermediate den-
sities.

Interestingly, our survey reveals that striped patterns exist
as lowest-energy configurations for all kinds of interactions.
As far as we know, this finding is novel for Lennard-Jones
type of interactions in which the attraction encompasses
third-, rather than first- or second-neighbor particles on the
lattice.

The structural complexity of lattice gases on spherical grids
gets lost when moving to the triangular lattice, despite an
evident relationship remaining between the structure of the
lowest-energy configurations in flat space and the recurrent
motifs on curved grids. As the curvature is gradually reduced,
the profile of the density as a function of chemical poten-
tial shows a clear trend towards the density curve for the
triangular-lattice gas. The relationship between the triangular
lattice and geodesic grids is similar to the approximation of
planar lattices by sequences of aperiodic tilings [18]. The ar-
rangements observed on spherical grids can also be compared
against those exhibited by particles confined on a spherical
surface. For example, at low temperature a SALR potential
consisting of the sum of Lennard-Jones and Yukawa potentials
promotes the formation of striped patterns on a sphere [11]
that are essentially identical to those found on the largest
geodesic grids.

To see how our results could turn useful in practice,
suppose that we want to functionalize spherical colloidal mi-
croparticles with attractive patches of desired number and
shape. The patches are made of smaller particles deposited on
the surface of the microparticle; by employing suitably inter-
acting smaller particles, and choosing their size appropriately,
we can in principle bring them to self-assemble in the form
of patches, as illustrated in Figs. 12 and 13. A recent method
by which the “valence” of a DNA meshframe (produced with
the technique of DNA origami [19]) can be programmed to
coordinate nanoparticles into pre-defined cluster architectures
is described in Ref. [20]. Interestingly, a specific example
made in the latter paper is a pentakis-icosidodecahedral mesh.
Clearly, if we knew in advance the shape of the interaction
giving rise to specific self-assembled structures, we could gain
a better control on the synthesis of patchy particles. Our paper
aims to be a contribution in this direction.

Among future prospects, we plan to extend the study of
lattice gases on spherical grids to binary mixtures, especially
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FIG. 20. Minimum-energy configurations for a triangular-lattice gas with parameters (1, 0, −1): ρ ≈ 0.25 (left), ρ ≈ 0.50 (middle), and
ρ ≈ 0.75 (right).

with the aim of establishing conditions for the appearance of
stripes and other ordered patterns at high density [21].
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APPENDIX: PROOF OF A SYMMETRY PROPERTY

The N (μ) curves in Fig. 11 are manifestly symmetric
around N = M/2 = 46; we have also found the same particle-
hole symmetry in other cases not commented in the text.
Below, we provide an explanation for this fact.

In order for the mentioned symmetry to hold, there must
exist a chemical potential μ0 such that

N (μ0 + 
μ) = M − N (μ0 − 
μ). (A1)

By working out the right-hand side of Eq. (A1), we obtain:

M − N (μ) = 〈M − N 〉(μ)

=
∑

{c}
(
M − ∑

i ci
)
eβμ

∑
i ci−βH [c]∑

{c} eβμ
∑

i ci−βH [c]

=
∑

{c}
(∑

i(1 − ci )
)
eβμ

∑
i ci−βH [c]∑

{c} eβμ
∑

i ci−βH [c]
. (A2)

Upon substituting ci → 1 − ci for all i, we arrive at

M − N (μ) =
∑

{c}
(∑

i ci
)
eβμ

∑
i (1−ci )−βH [1−c]∑

{c} eβμ
∑

i (1−ci )−βH [1−c]
. (A3)

Now, the calculation of H[1 − c] yields:

H[1 − c] = u1

∑
1NP

(1 − ci )(1 − c j ) + . . .

= u1

(∑
1NP

1 − 2
∑
1NP

ci +
∑
1NP

cic j

)
+ . . . , (A4)

omitting similar terms containing u2 and u3. First, we have∑
1NP

1 =
∑
2NP

1 = 1

2
(12 · 5 + 60 · 6 + 20 · 6) = 270 ;

∑
3NP

1 = 1

2
(12 · 5 + 60 · 5 + 20 · 6) = 240. (A5)

The evaluation of
∑

1NP ci is more intricate. Denoting the
nearest neighbors of site i as NNi, the five-fold sites as 5s,
and the two sets of six-fold sites (see Table I) as 6s1 and 6s2,
we obtain:∑

1NP

ci = 1

2

∑
i

ci

∑
j∈NNi

1

= 1

2

⎛⎝∑
5s

ci · 5 +
∑
6s1

ci · 6 +
∑
6s2

ci · 6

⎞⎠
= 5

2

∑
i

ci + 1

2

∑
6s1

ci + 1

2

∑
6s2

ci. (A6)

Similarly,

∑
2NP

ci = 1

2

⎛⎝∑
5s

ci · 5 +
∑
6s1

ci · 6 +
∑
6s2

ci · 6

⎞⎠
= 5

2

∑
i

ci + 1

2

∑
6s1

ci + 1

2

∑
6s2

ci (A7)

and

∑
3NP

ci = 1

2

⎛⎝∑
5s

ci · 5 +
∑
6s1

ci · 5 +
∑
6s2

ci · 6

⎞⎠
= 5

2

∑
i

ci + 1

2

∑
6s2

ci. (A8)

The last terms in Eqs. (A6)–(A8) are configuration-dependent;
however, if u1 + u2 = 0 and u3 = 0, then the contribution
from those terms vanish and we simply get:

H[1 − c] = H[c]. (A9)
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FIG. 21. Typical configurations obtained via Monte Carlo simulations for a triangular lattice with parameters (−1, 2, 1), for T = 0.2: from
left to right, ρ ≈ 0.25, 0.33, and 0.50. The leftmost and rightmost configurations are also minimum-energy configurations. The cluster crystal
of density 0.25 is not unique, since the orientation of all the triangles in a given column can be inverted at zero cost.

Eq. (A3) then becomes:

M − N (μ) =
∑

{c}
(∑

i ci
)
e−βμ

∑
i ci e−βH [c]∑

{c} e−βμ
∑

i ci e−βH [c]

= N (−μ). (A10)

Upon comparing Eqs. (A1) and (A10), we immediately see
that μ0 = 0 and 
μ = μ.

By performing an analogous derivation for the HPCD
model, we see that the symmetry condition remains un-
changed, implying that u1 + u2 = 0 and u3 = 0 hold for both
models. In contrast, for the PSD model no special condition on
u3 is required. As a result, the symmetry condition simplifies
to u1 + u2 = 0. Under this assumption, for the PSD model we
obtain:

μ0 = 5
2 u3 and 
μ = 5

2 u3 − μ. (A11)

Looking at Fig. 18, it appears that the density profile of the
triangular-lattice gas is always symmetric, regardless of the
energy couplings. The same figure indicates that the abscissa
μ0 of the inversion-symmetry center is instead interaction-
dependent. Following the same steps of the above derivation,
for a triangular lattice of M sites we arrive at:

H[1 − c] = 3M(u1 + u2 + u3)

− 6(u1 + u2 + u3)
∑

i

ci + H[c]. (A12)

At variance with the previous cases, no condition is to be
imposed to obtain Eq. (A12). Thus, for any choice of the
energy couplings we have:

M − N (μ) = N (6(u1 + u2 + u3) − μ), (A13)

finally yielding

μ0 = 3(u1 + u2 + u3). (A14)

It is easy to verify that Eq. (A14) is consistent with the curves
plotted in Fig. 18.
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