
PHYSICAL REVIEW E 108, 034602 (2023)

Microphase versus macrophase separation in the square-well-linear fluid:
A theoretical and computational study

Dino Costa ,1 Gianmarco Munaò ,1,* Jean-Marc Bomont ,2 Gianpietro Malescio,1

Amedeo Palatella ,3 and Santi Prestipino 1

1Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra,
Università degli Studi di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy

2Université de Lorraine, LCP-A2MC, EA 3469, 1 Bd. François Arago, Metz F-57078, France
3Liceo Classico, Scientifico e delle Scienze Umane “Bonaventura Cavalieri”, Via Madonna di Campagna 18, 28922 Verbania, Italy

(Received 26 June 2023; accepted 10 August 2023; published 6 September 2023)

Due to the presence of competing interactions, the square-well-linear fluid can exhibit either liquid-vapor
equilibrium (macrophase separation) or clustering (microphase separation). Here we address the issue of
determining the boundary between these two regimes, i.e., the Lifshitz point, expressed in terms of a relationship
between the parameters of the model. To this aim, we carry out Monte Carlo simulations to compute the structure
factor of the fluid, whose behavior at low wave vectors accurately captures the tendency of the fluid to form
aggregates or, alternatively, to phase separate. Specifically, for a number of different combinations of attraction
and repulsion ranges, we make the system go across the Lifshitz point by increasing the strength of the repulsion.
We use simulation results to benchmark the performance of two theories of fluids, namely, the hypernetted chain
(HNC) equation and the analytically solvable random phase approximation (RPA); in particular, the RPA theory
is applied with two different prescriptions as for the direct correlation function inside the core. Overall, the HNC
theory proves to be an appropriate tool to characterize the fluid structure and the low-wave-vector behavior of
the structure factor is consistent with the threshold between microphase and macrophase separation established
through simulation. The structural predictions of the RPA theory turn out to be less accurate, but this theory
offers the advantage of providing an analytical expression of the Lifshitz point. Compared to simulation, both
RPA schemes predict a Lifshitz point that falls within the macrophase-separation region of parameters: in the
best case, barriers roughly twice higher than predicted are required to attain clustering conditions.
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I. INTRODUCTION

Model potentials featuring a short-range attraction (SA)
and a long-range repulsion (LR) are commonly used to de-
scribe, under appropriate physicochemical conditions, the
behavior of a large variety of soft materials, including col-
loidal suspensions, globular protein solutions, and polymers:
just to quote a few illustrative examples, see [1–10]. Perhaps,
the most intriguing feature of SALR fluids lies in the ability to
spontaneously self-assemble into aggregates of various mor-
phologies; this peculiar property stems from the competition
between attractive and repulsive forces which, on the one side
(SA), promote aggregation while, on the other side (LR), dis-
courage macrophase (liquid-vapor) separation [11]. A number
of recent reviews extensively account for both general and
specific aspects of the physics of SALR models, witnessing at
the same time the wide interest in these systems [12–16]. Mix-
tures containing SALR particles are more recently addressed
in the literature [17–21].

At the structural level, an unambiguous signature of
mesoscale inhomogeneities developing in the fluid is given
by a peak in the structure factor S(q) at a wave vector qp �= 0

*Corresponding author: gianmarco.munao@unime.it

well below the location of the main scattering peak [22,23],
signaling the propensity of the system to form aggregates on
a length scale ≈2π/qp. The height of the low-q peak even-
tually diverges upon approaching thermodynamic conditions
where the density modulation becomes periodic (periodic mi-
crophases) [24]. On the other hand, when the competition
between attraction and repulsion is unbalanced in favor of the
former, a SALR fluid behaves like a simple fluid, exhibiting
liquid-vapor equilibrium. In this case, as one enters the region
of liquid-vapor coexistence, S(q) diverges at q = 0 [25]. The
locus separating the two scenarios is the Lifshitz point, i.e., a
threshold in the space of model parameters across which the
location of the divergent structure factor changes from 0 to a
qp �= 0.

Until recently, many efforts have been devoted to deter-
mine, based on purely structural indicators, the threshold
where a SALR fluid characterized by small local inhomo-
geneities, a condition generically termed “intermediate-range
order” (IRO) in Ref. [5], evolves into a genuine cluster fluid,
i.e., a situation marked by the presence of compact, relatively
large (compared to the particle size) and weakly interacting
aggregates, suspended in a sea of substantially smaller aggre-
gates and isolated particles. The currently accredited view is
that clusters form under the same thermodynamic conditions
for which the attractive “reference” potential (obtained from
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the full SALR interaction by cutting out the LR component)
would exhibit liquid-vapor separation [26–28]. A simple, well
verified, heuristic criterion states that the crossover from IRO
to clustering is reached as S(qp) overcomes ≈2.7 [27,28], an
indication in appealing analogy with the Hansen-Verlet crite-
rion of freezing for simple fluids [29]. Other criteria, based on
the width of S(qp) [30,31] or the long-range behavior of the
radial distribution function [32–34], were proposed (see [16]
for a review).

Even though simulation studies play a prominent role in
the field, integral equation theories of fluids (IET) [35–37]
are also a valuable tool. Indeed, the characterization of spa-
tially inhomogeneous states in terms of the structure factor
naturally fits within the scope of IET; moreover, SALR po-
tentials extending over long distances can be studied by IET
with much less computational cost than computer simulations.
IET studies of SALR fluids employed from simple closures
and semianalytical schemes [5,31,38–43] to sophisticated,
thermodynamically self-consistent approaches [11,34,43–53].
With reference to this study, the HNC closure has been fruit-
fully employed in [40,43,54–56]. All these works demonstrate
that IET can provide accurate structural and thermodynamic
predictions. The even simpler RPA closure (and the closely
related mean spherical approximation), aside from providing
analytical expressions for the structure of the fluid, also offers
the advantage that the Lifshitz point of various SALR poten-
tials can be determined analytically [11,24,38]. Recently, a
simple RPA expression for the Helmholtz free energy density
functional of a two-Yukawa fluid has been used as an input
for the first application of the nonequilibrium self-consistent
generalized Langevin equation theory [57] to the description
of dynamical arrest in a SALR model [58].

Many current studies concern a prototypical SALR model
consisting of hard spheres interacting via the sum of two
Yukawa potentials of opposite signs; another commonly used
model is one in which the hard-core repulsion and the attrac-
tive Yukawa terms are replaced by a m-n Lennard-Jones–type
interaction; other SALR models were comparatively less in-
vestigated (see [14–16]). A yet different model, which is
attracting growing interest, is given by hard spheres inter-
acting via an attractive square-well potential, followed by a
linearly-descending ramp (SWLR hereafter). As far as we
know, such a “square-well-linear” potential was originally
proposed in 2009 by Cates and his group [59] to demonstrate
that the combination of a short-range attraction with a repul-
sive barrier can strongly stabilize a particular kind of gel in
which colloidal particles in a single-phase solvent have locally
planar coordination. In a 2015 paper [56] we proposed the
SWLR model as a convenient model of competing interac-
tions. Even though rather schematic, the SWLR model offers
the advantage that all three interaction parameters, namely, the
width of the attraction, together with the height and range of
the repulsive barrier, can be tuned independently from each
other. This allows to examine how each parameter separately
affects the overall behavior of the model and the aggregation
process.

In Ref. [56] we focused on the thermodynamic conditions
under which the fluid changes from homogeneous to slightly
inhomogeneous, i.e., at the onset of the low-q peak. Therein,
we documented a neatly linear increase of the temperature at

which IRO first appears (at constant density) as a function
of either the square-well width or the height of the repulsive
barrier; instead, we found a much stronger dependence on the
repulsion range. Moreover, the typical distance between ag-
gregates was shown to fall at an approximately fixed fraction
of the width of the repulsive barrier. Immediately after, Char-
bonneau and coworkers analyzed in a series of papers [24,60–
62] several other aspects of SWLR fluids, including a study
of the disordered regime in one dimension [62]: in Ref. [60]
the equilibrium phase diagram of a specific SWLR model
was worked out, elucidating the thermodynamic interplay be-
tween cluster fluid, gel, and various periodic microphases. In
Ref. [24], a specialized simulation method was employed to
determine the phase behavior of the SWLR fluid for a couple
of strengths and ranges of the repulsive component; theoreti-
cal predictions for microphase formation were shown to be in
qualitative agreement with numerical results. In Ref. [61] the
authors studied the dynamics of self-assembly at intermediate
densities, identifying four different regimes and the structural
changes that underlie the crossover from one regime to the
next. Below the order-disorder transition line, they found that,
among the periodic microphases, lamellae are the most easily
accessible. More recently, by relying on the knowledge of
the equilibrium phase behavior in the bulk [60], Góźdź and
coworkers have studied a specific SWLR fluid under various
confining geometries [63–66].

In this work we carry out an extended study of the struc-
tural properties of the SWLR model, in order to investigate
the boundary between macrophase (liquid-vapor) and mi-
crophase (clustering) separation. Specifically, we use Monte
Carlo (MC) simulations in the canonical ensemble to study
three combinations of square-well and linear-ramp widths;
in each case, the fluid is driven across the Lifshitz point
by increasing the barrier height. To locate this threshold,
all samples are gradually cooled at various fixed densities
until, depending on the specific combination of interaction
parameters, the fluid proceeds towards liquid-vapor separation
or rather forms clusters. As discussed before, the different
scenarios are distinguished based on the shape of the structure
factor at low wave vectors. Simulations are complemented by
hypernetted chain (HNC) and random phase approximation
(RPA) calculations. In particular, within RPA we compare
predictions obtained from the same direct correlation func-
tion employed in [24] with those obtained from a different
prescription, corresponding to the bare Percus-Yevick solution
for hard spheres in the core region [25].

Previous studies almost exclusively focused on a single
value of the square-well width, taken to be half the hard-core
diameter [24]. In this case, the purely attractive reference
system essentially behaves like a simple fluid. Here, we also
consider a very short-range attraction, where the square well
extends for only a 2% of the core, so as to make the system
akin to a colloidal fluid. We complete our survey with the
intermediate case of a well width equal to 20% of the particle
size.

The paper is organized as follows. In Sec. II we describe
the SWLR model and introduce our RPA, HNC, and MC
implementations. To facilitate the reading of results, the math-
ematical steps leading to the RPA expression of the structure
factor are reported in Appendix A, while the ensuing Lifshitz
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FIG. 1. The square-well-linear potential studied in this work [see
Eq. (1)]. H = ξ (κ − λ) indicates the top of the repulsive barrier at
r = λσ .

point is calculated in Appendix B. In Sec. III we make a
survey of the HNC and RPA structural predictions, in com-
parison with Monte Carlo results. Section IV is devoted to the
numerical determination of the Lifshitz point; this section is
divided in three subsections, each one relative to a specific
combination of square-well and linear-ramp widths. Section V
is devoted to conclusions.

II. MODEL AND METHODS

Using the same notation of Ref. [24], the SWLR fluid con-
sists of hard spheres of diameter σ interacting via an attractive
square well (SW) of depth ε and width (λ − 1)σ , followed
by a repulsive barrier in the form of a linearly descending
ramp (LR), from a height H = ξ (κ − λ) at r = λσ to zero
at r = κσ (see Fig. 1). Outside the hard core, the interaction
potential is then given by

VSWLR(r)

ε
=

⎧⎨
⎩

−1, σ � r < λσ

ξ (κ − r), λσ � r < κσ

0, otherwise.
(1)

From now on, distances will be expressed in units of σ and
energies in units of ε; accordingly, the density ρ is given in
units of σ−3 and the temperature T in units of ε/kB, kB being
the Boltzmann constant.

From the Ornstein-Zernike relation,

h(q) = c(q)

1 − ρc(q)
, (2)

connecting the Fourier transforms of the direct and total corre-
lation functions c(r) and h(r), the structure factor S(q) follows
as

S(q) = 1 + ρh(q) = 1

1 − ρc(q)
. (3)

The radial distribution function is g(r) = 1 + h(r).
In the RPA theory an approximate expression for c(r)

outside the core is obtained by extending to finite distances

the exact asymptotic behavior, given by c(r) = −βVSWLR(r),
while various expressions were considered within the core
(see, e.g., [24,38,42,45,67]). Here we choose the Percus-
Yevick solution for the hard-sphere fluid cHS(r) [25]. In
formulas

c(r) =
{

cHS(r), r < 1
−βVSWLR(r), otherwise

(4)

where β = 1/kBT . A second option, adopted by Zhuang and
Charbonneau (ZC) [24] and also considered in this work,
consists in adding another contribution to cHS(r), obtained by
extending the definition of VSWLR(r) to r < 1 as VSWLR(r) =
−ε. For the model at issue, Eq. (4) is therefore rewritten as

c(r) = cHS(r) − βVSWLR(r), (5)

independently of the distance r [notice that cHS(r) = 0 outside
the core]. For the sake of clarity, the two different schemes
of Eqs. (4) and (5) will be hereafter referred to as RPA-PY
and RPA-ZC, respectively. Within either of these schemes, the
structure factor is analytical and derived in Appendix A. The
RPA, with further simplifications valid in the low-q regime,
also offers the opportunity to obtain the Lifshitz point in
closed form (see Appendix B).

The HNC closure provides a more refined expression for
c(r), given by

c(r) = exp[−βV (r) + γ (r)] − γ (r) − 1 (6)

in terms of the indirect correlation function γ (r) = h(r) −
c(r). We numerically solve the coupled set of Eqs. (2) and
(6) via a Picard iteration, with standard mixing of the γ (r)
functions at successive iterations. We assume that conver-
gence is achieved when two successive estimates of c(r) are
equal to within 10−9. Calculations are carried out on a grid
of 217 points with a mesh in real space of resolution �r/σ =
5 × 10−4, thus covering a maximum distance of rmax ≈ 65σ ,
with an ensuing minimum q value equal to �q = π/rmax ≈
0.0479. We resort to such a fine mesh to ensure an accurate
“sampling” of distances near the discontinuities in V (r), as
well as inside the attractive square well, which is especially
necessary for the smallest value of λ considered here.

Canonical ensemble (NVT) Monte Carlo simulations are
carried out on a sample of 1024 particles, enclosed in a cubic
box with periodic boundary conditions. For the cases exam-
ined in Sec. III, where one or two thermodynamic conditions
are analyzed for any given combination of SWLR parameters,
we have employed a larger sample of N = 4096 particles.
Production runs range from 2 × 106 to 1 × 107 MC cycles,
depending on thermodynamic conditions; each run is divided
in blocks of 500 000 cycles, so as to ensure small statistical
uncertainties. As a standard improvement to the Metropolis
algorithm, especially appropriate in the case of inhomoge-
neous configurations, at each MC step we randomly choose
between two values of the maximum random displacement.
The MC structure factors presented throughout the paper are
computed from the correlation between density fluctuations
[25]; we have verified in a number of cases that results agree
with the calculation of S(q) carried out in terms of the Fourier
transform of h(r).
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TABLE I. The combinations of [λ, κ, ξ ] parameters analyzed in
this work; the height of the repulsive barrier H = ξ (κ − λ) is also
reported for completeness. In the last column, for each model we
indicate the relative figures in the text.

[λ, κ] ξ H Figure

2 × 10−5 7.96 × 10−5 5(a)

2 × 10−4 7.96 × 10−4 5(b), 7(a)
[1.02, 5.0] 2 × 10−3 7.96 × 10−3 5(c), 7(b)

1 × 10−2 0.0398 5(d)
0.0754 0.30 2, top

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.0100 0.018 8
0.0150 0.027 8
0.0250 0.045 8
0.0500 0.09 8

[1.2, 3.0]

⎧⎪⎪⎨
⎪⎪⎩

0.0050 0.0125 3
0.0200 0.05 9
0.0300 0.05 2, bottom

[1.5, 4.0]

⎧⎨
⎩

III. RPA AND HNC PREDICTIONS FOR THE FLUID
STRUCTURE

We have investigated the structure of the SWLR fluid for
three pairs of [λ, κ] parameters, namely, [1.02, 5.0], [1.2, 3.0],
and [1.5, 4.0], and for several values of ξ , chosen so as to
encompass the Lifshitz point for each [λ, κ] pair (see Sec. IV).
These cases are reported in Table I, where, for each [λ, κ, ξ ]
combination, we also indicate in the last column the relative
figure(s) in the text. In Table 1 of their recent paper [14], Liu
and Xi introduced a broad categorization of the experimental
and theoretical studies of SALR potentials up to date, identi-
fying three different classes with distinctive phase diagrams,
structures, and dynamics. Our choice of SWLR parameters
naturally fits within this classification; specifically, the models
with λ = 1.02 and λ = 1.2 fall within type-II category (SALR
potentials with attraction range substantially shorter than the
particle size and repulsion range comparable or larger than
that) whereas the model with λ = 1.5 belongs to the type-III
class (attraction larger than 20% of the particle size but still
shorter than the repulsion range).

In Fig. 2 we make a first assessment of the RPA and HNC
theories against MC data for two sets of parameters. In both
cases, the presence of a low-q peak in the structure factor
(left panels) that quickly rises on cooling is a clear signal
of microphase separation. In the left panels we observe that
the HNC theory (blue lines) correctly reproduces the MC
structure factor (circles), even in cases where the fluid is
presumably clustered. This occurs at T = 0.40 for λ = 1.02
[Fig. 2(b)] and at T = 0.72 for λ = 1.5 [Fig. 2(f)], where
in fact S(qp) is well above the threshold ≈2.7 for the onset
of clustering [27,28]. On the other hand, both RPA schemes
are less accurate overall, with RPA-PY (red lines) underes-
timating S(qp), whereas RPA-ZC (green lines) overestimates
it. Since theoretical schemes will eventually fail to converge
when the first peak of the predicted structure factor becomes
too high, RPA-ZC is unable to attain the low-temperature
regime, which can instead be addressed by both HNC and
RPA-PY. In the right panels of Fig. 2 we see that the HNC

theory accurately describes the local order in the fluid, as
witnessed by the good agreement of g(r) with MC data, even
within the attractive well (see the insets). As for the RPA
theory, g(r) is obtained from the numerical Fourier transform
of S(q). In this case, the agreement with MC is poor and
worsens at lower temperatures; moreover, unphysical negative
values of g(r) are found within the core.

In Fig. 3 we consider the same pair [λ = 1.5, κ = 4] as
in Figs. 2(e)–2(h), but we reduce ξ from 0.030 to 0.005. In
this case, the repulsive barrier is not sufficient to promote
clustering and liquid-vapor separation takes place instead,
as signaled by the diverging trend of the MC S(q → 0)
[Fig. 3(a)]. This specific SWLR fluid is studied for three
densities, ρ = 0.1, 0.3, and 0.6, at temperatures T = 1.177,
1.218, and 0.783, respectively. These temperatures are the
lowest limits attainable by the HNC theory at the given
densities.

In Fig. 3(a) we confirm the accuracy of the HNC S(q),
except for the tendency of the theory to slightly underestimate
S(q → 0) at high density. These discrepancies may be intrin-
sic to the HNC theory [68], but they could be in part due to
the difficulty of estimating S(q → 0) by NVT simulations. As
for the RPA theory, in parallel with the discussion of Fig. 2,
RPA-PY gives a lower S(0) in comparison with RPA-ZC, with
the latter theory in better agreement with MC data, especially
on the vapor side. Another issue actually affects RPA-PY
predictions at high density: as is seen in Fig. 3(a) (red full
line), the strong underestimation of S(0) is accompanied by
the presence of a large, cusplike main peak at qσ ≈ 2π , which
is totally absent in MC data; this feature ultimately triggers the
failure of the RPA-PY analytical solution in this high-density,
low-temperature regime.

In Fig. 3(b), similarly to what reported in Figs. 2(g) and
2(h), the HNC g(r) turns out to be reasonably accurate. Some
discrepancies with MC data only emerge within the attractive
well: in particular, a little overestimation of density correla-
tions at low density (black line) turns into an underestimation
at high density (red line), with the best agreement in the inter-
mediate case ρ = 0.3 (blue line), where HNC and MC results
are practically coincident for all distances. The analysis of the
RPA g(r) does not add much to what discussed in relation
to Fig. 2 and therefore we make no further comments on
this.

To sum up after this preliminary analysis, the HNC theory
is a reliable tool to determine the structural properties of
the SWLR fluid, under both microphase- and macrophase-
separation conditions. RPA predictions are poorer overall.

IV. RESULTS FOR THE LIFSHITZ POINT

In spite of the shortcomings just highlighted, it is worth
considering the RPA theory here because of the possibility
to derive the Lifshitz point analytically. This section is con-
cerned with a detailed assessment of RPA predictions against
MC results for the three [λ, κ] pairs of Table I. Furthermore,
the availability of fresh simulation data provides the occasion
for a parallel validation of the HNC theory.
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FIG. 2. Comparison between theoretical predictions (lines) and MC results (circles) for the structure of two SWLR models with [λ, κ, ξ ]
combinations indicated in (a) (for top panels) and (e) (for bottom panels). All results are obtained for ρ = 0.382 (i.e., for a packing fraction
η = 0.20), and temperatures indicated in each panel. The low-temperature cases T = 0.40 [(b) and (d)] and T = 0.72 [(f) and (h)] are beyond
the reach of RPA-ZC and therefore no green lines are shown. A magnification of g(r) within the attractive well is reported in the insets.

A. RPA predictions

As reported in Appendix B, the Lifshitz point (LP) of the
SWLR fluid reads as

ξPY
LP = 6(λ5 − 1)

κ6 − 6κλ5 + 5λ6
or ξZC

LP = 6λ5

κ6 − 6κλ5 + 5λ6
,

(7)

depending on the specific version of the RPA theory consid-
ered: as before, superscripts PY and ZC refer to the RPA-PY
and RPA-ZC schemes, respectively. In Eq. (7) the Lifshitz
point is expressed as a function of the attraction and repulsion
widths, λ and κ , and is thus a surface ξLP(λ, κ ) in the [λ, κ, ξ ]
space of SWLR parameters. Above this surface, i.e., for ξ >

ξLP, the barrier is high enough for the SA vs LR competition
to be effective in inducing microphase separation; on the other
side of the surface, i.e., for ξ < ξLP, attraction dominates and
liquid-vapor separation now takes place.

Interestingly, ξPY
LP has the same expression as predicted

in [24] from the structure of the ground state, which was
calculated according to a low-temperature, low-density ap-
proximation of the interaction energy (LTA). Therefore, both
RPA-PY and LTA theories lead to the same form of the Lif-
shitz point, despite the two routes start from quite different
assumptions. As for ξZC

LP , it corresponds to the same expres-
sion reported in [24]: both RPA-PY and RPA-ZC predictions
will be discussed side by side in the rest of this section.

In Fig. 4 we show the behavior of ξPY
LP (full lines) and ξZC

LP
(dashed lines) as a function of κ for fixed λ = 1.02, 1.2, and
1.5 [Fig. 4(a)]. In Fig. 4(b), the same quantities are plotted as
functions of λ for fixed κ = 3, 4, and 5. The λ and κ ranges
in the figure encompass the [λ, κ] pairs reported in Table I.
The numerical values of ξPY

LP and ξZC
LP are reported in Table II;

the corresponding MC estimates, to be presented below, are
anticipated for a quick comparison in the last column of the
same table. It is clear from Eq. (7) that ξLP(κ ) diverges as
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FIG. 3. Comparison between theoretical predictions (lines) and MC results (symbols) for the structure of the SWLR model with [λ, κ, ξ ]
in (a) and [ρ, T ] in the legends. In (a), the correspondence is dashed lines vs triangles and full lines vs circles. In (b), only the comparison
between MC and HNC is made; symbols and lines having the same color refer to the same ρ and T pairs. Results for ρ = 0.3 are omitted in
(a) to avoid overcrowding.

κ → λ: the narrower the repulsive barrier, the higher ξ must
be in order to destabilize liquid-vapor separation in favor of
clustering. At the opposite end, ξLP rapidly decreases with
increasing κ: for fixed λ, in the range κ = 2–5 the value of
ξLP drops by more than two orders of magnitude. Moreover,
while the differences between ξPY

LP and ξZC
LP are marginal for

λ = 1.5, they become substantial for smaller λ: for instance,
for λ = 1.02 differences of more than one order of magnitude
arise between the two predictions (see Table II). Similarly, in
Fig. 4(b) we see that, for fixed κ , ξLP must grow with λ in
order to temper (in favor of clustering) the larger amount of
attraction available from the square well. This growth is less
and less pronounced as κ becomes progressively larger. In the
inset we can appreciate how the difference between the two
RPA estimates of ξLP shrinks as λ increases, independently
of κ .

B. Narrow square well: λ = 1.02, κ = 5

Turning back to the comparison of theory with simulation,
we first consider the case of a narrow square-well width,
λ = 1.02 (with κ = 5.0), for which the two RPA schemes
give largely different predictions for ξLP (see Table II). From
the analysis of Fig. 2 (top panels), we already know that ξ =
0.0754 is a sufficiently large value to induce clustering; hence,
this specific ξ is above ξLP. In the four panels of Fig. 5 we
show the MC S(q) for lower ξ values, namely, 0.2 × 10−4 (a),
0.2 × 10−3 (b), 0.2 × 10−2 (c), and 0.01 (d), encompassing
the two different RPA predictions for ξLP. The MC data in
Fig. 5 are relative to two densities, namely, a low value (ρ =
0.1, squares) and a high value (ρ = 0.6, circles), at various
temperatures in the range 0.25–0.40. In Fig. 6 we report two
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FIG. 4. RPA Lifshitz point expressed as ξLP(κ ) for fixed λ (a) and ξLP(λ) for fixed κ (b) (see the legends). Solid and dashed lines,
respectively, correspond to ξPY

LP and ξZC
LP predictions [see Eq. (7)]. Inset: same as in the main panel, but for the logarithmic vertical scale.

034602-6



MICROPHASE VERSUS MACROPHASE SEPARATION … PHYSICAL REVIEW E 108, 034602 (2023)

TABLE II. RPA predictions for the Lifshitz points according to
Eq. (7). MC results, ξMC

LP , are reported for comparison in the last
column.

[λ, κ] ξPY
LP ξZC

LP ξMC
LP

[1.02, 5.0] 0.40 × 10−4 0.42 × 10−3 [0.2–2] ×10−3

[1.20, 3.0] 0.0128 0.0213 0.025–0.050
[1.50, 4.0] 0.996 × 10−2 1.15 × 10−2 0.02–0.03

snapshots of the low-density fluid with ξ = 0.2 × 10−4 and
ξ = 0.01.

For the lowest ξ investigated [Fig. 5(a)], the behavior of
S(q) already heralds the divergence at q = 0 occurring at
lower temperatures, i.e., macrophase separation. In Fig. 5(a)
the temperatures considered are such that the system quickly
reaches equilibrium. On slightly cooling the sample (for in-
stance, going from T = 0.260 to T = 0.258 for ρ = 0.1), the
decay to equilibrium becomes much slower, taking more that

4 × 107 MC cycles for the system to complete relaxation. The
final system configuration is shown in Fig. 6(a). Here we see
a very dilute vapor coexisting with a polycrystalline droplet,
characterized by large ordered domains separated by grain
boundaries. This indicates that, for the SWLR fluid at issue,
the interparticle attraction is so short range that the available
“glue” is insufficient to promote the stability of the liquid [69],
implying that the vapor coexists with the solid. The behavior
in Fig. 5(b) closely reflects that in Fig. 5(a), despite the fact
that ξ has been increased by an order of magnitude.

The scenario illustrated in Figs. 5(c) and 5(d) is different:
here we see that a low-q peak develops in both the dilute
and the dense sample at T = 0.30–0.40, and further grows
on cooling, pointing to the onset of a clustered state at lower
temperatures. Comparing Figs. 5(c) and 5(d), we see that a
higher repulsive barrier in Fig. 5(d), under the same tem-
perature and density conditions, gives rise to a more refined
and higher low-q peak, implying an earlier, i.e., occurring at
higher temperatures, onset of clustering. Upon cooling the
sample with ρ = 0.1 and ξ = 0.01 from T = 0.25 to 0.20,
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FIG. 5. MC structure factor for [λ = 1.02, κ = 5] and four ξ , indicated in each panel. Two densities, ρ = 0.1 (squares) and ρ = 0.6
(circles), and several temperatures (in the legends) are analyzed.
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FIG. 6. Typical equilibrium configurations of the SWLR fluid with [λ = 1.02, κ = 5], for ξ = 0.2 × 10−4 (a) and ξ = 0.01 (b). The
thermodynamic conditions are ρ = 0.1, T = 0.258 (a) and ρ = 0.1, T = 0.20 (b). Isolated particles are drawn in white.

we obtain the well-defined clustered state shown in Fig. 6(b).
The snapshots in Fig. 6 are only reported for the purpose of
demonstrating that the typical equilibrium configuration of
the system is coherent with the structural evidence shown in
Fig. 5.

We point out that specifically tailored SALR models, de-
termined via inverse-design optimization [70,71], are able to
form porous mesophases, with a peculiar void-bubble struc-
ture. In common with the present SWLR interactions, these
models share a narrow and deep attractive well, whereas the
repulsive barrier shows more complex features, with a broader
and shorter shape, in relation to standard cluster-forming in-
teractions [see, for example, Fig. 1(b) of Ref. [70]]. As for the
effect of the density, high-ρ values promote the formation of
spherical and monodisperse voids, which self-organize into a
periodic structure, whereas more mobile pores are observed
over a large range of lower packing fractions [70]. Similar
to our case, porous mesophases are expected to be sepa-
rated from macrophase separation by a Lifshitz point [54].
Investigating whether specific SWLR models could give rise
to similar self-assembled complex structures is an intriguing
issue that may be addressed in future studies. As well, this
would call for a detailed characterization in terms of the
structure factor since the behavior of S(q) should represent the
primary source to identify such porous phases experimentally
(and to distinguish them from other aggregate structures) in
nanoscale colloids with similar interactions.

Turning back to Fig. 5, we deduce that ξLP for [λ =
1.02, κ = 5] falls somewhere between 0.2 × 10−3 and 0.2 ×
10−2. Looking at Table II, it turns out that both RPA schemes
provide a too low value of ξLP for the fluid to escape the liquid-
vapor separation condition in favor of clustering. Therefore,
the higher value of ξLP provided by RPA-ZC makes this theory
more accurate than RPA-PY. Specifically, if we assume, in the
absence of more information from MC, that ξLP ≈ 10−3, then
ξZC

LP is a factor of 2 to 3 smaller than the exact threshold.
The large set of MC data collected in Fig. 5 give us the

opportunity to check the HNC structural predictions against

simulation. This task is accomplished in Fig. 7 for ξ = 0.2 ×
10−3 (a) and ξ = 0.2 × 10−2 (b), close to the MC Lifshitz
point [see Figs. 5(b) and 5(c)]. As is evident, the HNC the-
ory correctly identifies the location of the crossover between
liquid-vapor separation and clustering since in Fig. 7(a) we
see an increase of S(q → 0), whereas in Fig. 7(b) we see
the rising of a low-q peak. Within working conditions for the
HNC theory, i.e., for temperatures not below T ≈ 0.26–0.28
for the cases at issue, the theoretical predictions on the dilute
side (ρ = 0.1, squares) turn out to be quantitative; on the
liquid side, ρ = 0.6, the closer the “diverging” conditions
[blue lines and circles in Figs. 7(a) and 7(b)], the less ac-
curate the theory predictions. We have ascertained that the
HNC theory improves when ξ is farther away from ξLP, e.g.,
for ξ = 0.2 × 10−4 or ξ = 0.01, corresponding to Figs. 5(a)
and 5(d).

C. Intermediate square well: λ = 1.2, κ = 3

For the SWLR fluid with [λ = 1.2, κ = 3], ξPY
LP ≈ 0.0128

and ξZC
LP ≈ 0.0213 (see Table II). We explore by MC four

ξ values around these thresholds, namely, ξ = 0.010, 0.015,
0.025, and 0.050. Results are reported in Fig. 8(a); they are
relative to ρ = 0.2, with temperatures in the range 0.40–0.60.
As far as ξ is less or equal to 0.025 (black, red, and blue lines),
the structure factor shows a clear tendency to diverge at q →
0. At fixed density and temperatures, the lower the repulsive
barrier, the more marked this tendency. Clustering conditions
are eventually established when the repulsive barrier is further
increased, namely, for ξ = 0.050 (green lines), at which a
low-q peak is evident in S(q); this peak quickly increases from
≈2 to ≈10 as the system is cooled from T = 0.55 to 0.40.

If we arbitrarily assume that the exact Lifshitz point falls
halfway between ξ = 0.025 and 0.050, the present analysis
confirms that ξPY

LP falls inside the “simple-fluid behavior”
region. However, compared to the case [λ = 1.02, κ = 5]
discussed before, the deviation from MC is now smaller. As
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FIG. 7. Comparison between MC (symbols) and HNC (lines) structure factors for [λ = 1.02, κ = 5] and two ξ , indicated in each panel.
Squares: MC at ρ = 0.1; circles: MC at ρ = 0.6. Symbols and lines of same color refer to the same temperature, in the legends.

for RPA-ZC, we equally confirm that ξZC
LP is two to three times

smaller than the exact Lifshitz point.
As for the HNC predictions, a comparison with MC results

is reported in Fig. 8(b). Again, the theory correctly predicts
the threshold between microphase and macrophase separa-
tion; similarly to the previous cases, the overall shape of the
structure factor is well reproduced in all situations, except for
a mismatch occurring very close to q = 0 below the Lifshitz
point.

D. Large square well: λ = 1.5, κ = 4

We complete our survey with the case [λ = 1.5, κ = 4],
for which we already know that the values ξ = 0.005 (Fig. 3)
and ξ = 0.030 (Fig. 2) fall on opposite sides of the Lif-
shitz point. Also, in Table II we read ξPY

LP ≈ ξZC
LP ≈ 0.010.

For a more precise determination of the Lifshitz point, in
Fig. 9 we examine the case ξ = 0.020, a value intermediate

between the RPA predictions and the Gibbs ensemble Monte
Carlo estimate ξGEMC

LP = 0.025 ± 0.005 [24]. In the figure, we
plot the MC structure factor for a low (ρ = 0.1, (a)) and a
high density (ρ = 0.6, (b)), at various temperatures. The fluid
clearly exhibits a tendency to macrophase separation, as can
be appreciated from the sharp increase of S(q → 0) on cool-
ing, both on the vapor [Fig. 9(a)] and on the liquid [Fig. 9(b)]
side. This finding is in agreement with the GEMC estimate
and demonstrates the consistency between the thermodynamic
and structural routes in the determination of the Lifshitz point.
Again, doubling the value of ξZC

LP gives a reasonable estimate
of the exact Lifshitz point. As for the HNC predictions, the
good accuracy observed in Figs. 2 and 3 for [λ = 1.5, κ = 4]
deserves no further examination.

A conclusive visual summary of our results is shown
in Fig. 10. Therein we report the Lifshitz point calculated
through both RPA-PY and RPA-ZC for the three [λ, κ] pairs
analyzed before. Alongside, the MC results for the occurrence
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FIG. 8. (a) MC structure factor for [λ, κ] indicated in (a) and various [ξ, T ] in the legend. The density is fixed at ρ = 0.2. (b) Comparison
between MC (circles) and HNC (lines) for [ξ, T ] in the legend; symbols and lines of same color refer to the same [ξ, T ] conditions.
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FIG. 9. MC structure factor for [λ, κ, ξ ] indicated in (a), at low [ρ = 0.1, (a)] and high density [ρ = 0.6, (b)], and for progressively lower
temperatures, in the legends.

of either liquid-vapor separation or clustering are marked by
squares and triangles, respectively. For the sake of compar-
ison, we also report in the figure the GEMC result ξLP =
0.025(5) for λ = 1.5 and κ = 4 [24], so as to document
the perfect agreement between structural and thermodynamic
indications.

V. CONCLUSIONS

Using extensive Monte Carlo simulations, we have in-
vestigated the structure of the square-well-linear fluid under
thermodynamic conditions close to either liquid-vapor sepa-
ration or clustering. To elucidate how the model parameters
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FIG. 10. The RPA Lifshitz points ξPY
LP (full lines) and ξZC

LP (dashed
lines) as functions of κ for the three λ values investigated in this work
(in the legend). Symbols refer to MC results for those [λ, κ, ξ ] sets
(same color, same λ) for which we have established that either liquid-
vapor phase separation (squares) or clustering (triangles) takes place.
The green segment refers to the GEMC estimate ξLP = 0.025(5) for
λ = 1.5 and κ = 4 [24].

distinguish between these two scenarios, we have analyzed
three different sets of attraction and repulsion widths λ and
κ , respectively, with λ − 1 ranging ranging from 2% of the
hard-core diameter σ (typical of colloidal solutions) to 0.5σ

(typical of simple fluids), with the further intermediate case of
0.2σ . While keeping λ and κ fixed, we progressively increase
the height of the repulsive barrier ξ until we observe the
crossover from macrophase (liquid-vapor) separation to mi-
crophase separation (clustering). Our results are summarized
in Fig. 10.

We have used simulations to assess the performance of
a few integral equation theories of fluids. Specifically, we
consider the hypernetted chain equation and the analytically
solvable random phase approximation with two different pre-
scriptions as for the form of the direct correlation function
inside the core. The first case (named RPA-PY in the text)
corresponds to the Percus-Yevick solution for hard spheres,
whereas the second case (named RPA-ZC) is obtained by
adding a constant term to the PY term, as provided by the
backward extension of the square-well interaction to zero
distance.

It turns out that HNC structural predictions agree well with
MC data. This has been extensively verified for the variety
of square wells analyzed here, and in particular in the case
of an attraction width as short as 0.02σ . As well, the theory
turns out to be accurate over a whole interval of reduced
densities spanning the fluid regime, from ρ = 0.1 to 0.6, also
encompassing the putative critical region of reference fluids.
Relevant to our study, the theory correctly reproduces those
low-wave-vector features of the structure factor S(q) that dis-
criminate between microphase and macrophase separations.
Small deviations from MC data are only seen in the height of
the low-q peak of the structure factor (when the fluid is close
to clustering) or in its q = 0 value (when liquid-vapor separa-
tion is approached instead). As expected for a theory designed
to describe homogeneous fluids, the numerical algorithm fails
to converge or provides unphysical results, typically manifest-
ing in spurious negative values in S(q) or unrealistically large
and persistent oscillations in g(r), as the low-temperature
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regime is attained, where stronger and stronger microphase
or macrophase inhomogeneities progressively develop in the
fluid. In Figs. 3 and 7, the quality of HNC predictions
closely above such limiting temperatures can be directly
appraised.

It is clear that good structural predictions will not guarantee
equally accurate thermodynamic properties by the HNC the-
ory. Just to quote a noteworthy example, for the square-well
fluid with λ = 1.5σ it was shown in Ref. [72] that a good
agreement between HNC and MC is only obtained for the
heat capacity, whereas the HNC pressures and internal ener-
gies show discrepancies with simulation results. Presumably,
similar errors would also affect the determination of phase
equilibria. Moreover, the lack of thermodynamic consistency
introduces another source of ambiguity since different routes
from structure to thermodynamics could be followed, leading
in principle to different outcomes with different levels of accu-
racy. Therefore, in common with the conclusions of previous
studies on different SALR fluids [11,34,43–53], the use of
more sophisticated IET, such as the SCOZA or HMSA [37],
might prove more suitable for an accurate determination of
thermodynamic properties and phase equilibria in the SWLR
model.

Both RPA schemes turn out to be comparatively less ac-
curate; in particular, RPA-PY strongly underestimates the
diverging trend of S(q) at low temperatures, both in the case
of clustering and liquid-vapor separation. In the latter case,
RPA-ZC works slightly better. Using the RPA theory along
with other approximations appropriate for low values of q,
the Lifshitz point of the SWLR model can be determined
analytically; this property is conveniently expressed in terms
of the threshold value ξLP as a function of λ and κ . We find that
both RPA schemes underestimate the minimum height of the
repulsive barrier needed to induce microphase aggregation in
the fluid. Since RPA-ZC returns ξLP values that are systemati-
cally larger than RPA-PY values, the former scheme performs
slightly better. Even so, ξ values that are two to three times
larger than predicted are required to induce clustering in the
fluid.

We wish to comment about the possibility to model a
real competing-interaction fluid in terms of SWLR interac-
tions. With specific reference to our choices of [λ, κ], type-II
parametrizations [14] were the subject of a few experimental
studies, involving charged PMMA particles [73,74], whereas
no similar studies exist for type-III models. Changing the κ

length in Eq. (1) so as to get a substantially shorter repulsive
barrier, while keeping an equally short attractive well (type-I
interaction), would make the SWLR potential more suitable
to represent real colloidal suspensions [14]. On the other
hand, we reiterate that in our opinion the great advantage of
the SWLR interaction lies in its schematic, piecewise shape,
which makes this model an ideal test bed for studying the
separate effects of attraction and repulsion on the aggrega-
tion process in SALR fluids. At the same time, this peculiar
property may be thought detrimental to represent real soft
materials; as an example, a Yukawa long-range repulsion
correctly describes the screened electrostatic forces acting in
charged solutions. Indeed, two-Yukawa and Lennard-Jones-
Yukawa SALR fluids have proved able to describe lysozyme

solutions (see, e.g., [4,5]) and charged colloidal suspensions
(see, e.g., [1]).

We conclude by summarizing the highlights of this work:
we have determined by MC simulations the structural portrait
of the SWLR fluid, a model fluid which is attracting growing
interest as a prototype system with competing interactions
[24,56,60–66]. Gratifyingly, the HNC theory pinpoints with
great accuracy a delicate crossover in the behavior of the
model, such as the one between macrophase and microphase
separation. The less sophisticated RPA theory, even when
augmented with some reasonable prescription for the direct
correlation function in the core region, works less accurately.

In a forthcoming study, we plan to analyze more closely,
this time exclusively in terms of MC simulations, the SWLR
fluid for values of ξ slightly above the Lifshitz point, in order
to better characterize in this situation the shape and structure
of the clusters.
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APPENDIX A: THE RPA STRUCTURE FACTOR

In this Appendix we provide the straightforward derivation
of the structure factor within the RPA theory. With specific
reference to RPA-PY, Eq. (4), the reciprocal of the structure
factor in Eq. (3) can be written as

1

S(q)
= 1 − ρcHS(q) + ρβVSWLR(q)

= 1 − ρcHS(q) + ρβ[VSW(q) + VLR(q)], (A1)

where, for later convenience, the Fourier transform of the
potential VSWLR(q) is written as the sum of the Fourier trans-
forms of square-well and linear-ramp contributions VSW(q)
and VLR(q), where

VSW(r)

ε
=

{−1, 1 � r < λ

0, r � λ
and

VLR(r)

ε
=

{
ξ (κ − r), λ � r < κ

0, r � κ.
(A2)

We recall that the Fourier transform of a spherically symmet-
ric function f (r) takes the form

f (q) = 4π

q

∫ ∞

0
f (r) sin(qr)r dr. (A3)

As for the Percus-Yevick direct correlation function of hard
spheres cHS(r), this is zero outside the core, whereas inside the
core it is given by [25]

cHS(r) = −A − Br − Cr3 (r < 1), (A4)
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where A, B, and C are certain functions of the packing fraction
η = π/6ρσ 3:

A = (1 + 2η)2

(1 − η)4
,

B = −6η
(1 + η/2)2

(1 − η)4
,

C = η

2

(1 + 2η)2

(1 − η)4
. (A5)

Hence, in q space we get

cHS(q) = −AJ1(q) − BJ2(q) − CJ3(q) (A6)

with

J1(q) = 4π

q

∫ 1

0
r sin(qr)dr = 4π

sin(q) − q cos(q)

q3
, (A7a)

J2(q) = 4π

q

∫ 1

0
r2 sin(qr)dr

= 4π
2q sin(q) − (q2 − 2) cos(q) − 2

k4
, (A7b)

J3(q) = 4π

q

∫ 1

0
r4 sin(qr)dr

= 4π
(4q3 − 24q) sin(q) − (q4 − 12q2 + 24) cos(q) + 24

q6
.

(A7c)

Still within RPA-PY, the Fourier transform of VSW(r) is given
by

VSW(q) = −4π

q

∫ λ

1
r sin(qr)dr

= −4π
sin(qλ) − qλ cos(qλ)

q3

+ 4π
sin(q) − q cos(q)

q3
. (A8)

The boxed formula should be cut out when RPA-ZC is con-
sidered, since VSW(q) is now an integral extended from 0 to
λ; in this case, we exactly recover Eq. (24) of Ref. [24], but
for a typo present therein, consisting in a change of sign (from
minus to plus) in the first fraction.

As for the last term in Eq. (A1), we get

VLR(q) = 4π

q
ξκ

∫ κ

λ

r sin(qr)dr − 4π

q
ξ

∫ κ

λ

r2 sin(qr)dr

= 4πξκ
sin(qκ )

q3
− 4πξκ

sin(qλ) − qλ cos(qλ)

q3

− 4πξ
2qκ sin(qκ ) + 2 cos(qκ )

q4

+ 4πξ
2qλ sin(qλ) − [(qλ)2 − 2] cos(qλ)

q4
. (A9)

Upon plugging Eqs. (A6), (A8), and (A9) in Eq. (A1) we
finally obtain the full analytical expression of S(q).

The isothermal compressibility χT can be recovered from
the q → 0 limit of S(q):

ρkBT χT = S(0) = lim
q→0

1

1 − ρcHS(q) + ρβ[VSW(q) +VLR(q)]
.

(A10)

From Eqs. (A6) and (A7), we get

cHS(0) = −4

3
πA − πB − 2

3
πC = π

6

η3 − 4η2 + 2η − 8

(1 − η)4
,

(A11)
or, in terms of the density,

cHS(0) = π
(πρ)3 − 24(πρ)2 + 72πρ − 1728

(6 − πρ)4
. (A12)

The above expression corrects the one provided in the first line
of Eq. (25)b in Ref. [24]. As for the SWLR contribution, from
Eqs. (A8) and (A9) we get

VSWLR(0) = − 4
3π (λ3 − 1) + 4

3πξκ (κ3 − λ3) − πξ (κ4 − λ4),

(A13)

where the first term on the right-hand side derives from the
SW contribution and the other two terms from the LR con-
tribution. With the aid of Eqs. (A11) and (A13), the reduced
compressibility (A10) is completely determined. Should RPA-
ZC be adopted instead, the constant term (4/3)π is canceled;
the sign inversion in [24] also affects the term −(4/3)πλ3 in
Eq. (A13) [see the second line of Eq. (25)b in [24]].

APPENDIX B: LIFSHITZ POINT WITHIN RPA

Following a common practice (see, e.g., [38,75]), we seek
the maximum of S(q) by finding the minimum of c(q), and
therefore we solve

dc(q)

dq
= 0. (B1)

Now, in the low-q range we are interested in, VSW(q) + VLR(q)
in Eq. (A1) varies more rapidly than the hard-sphere con-
tribution cHS(q). Therefore, we can reasonably neglect the
derivative of cHS(q) and look for the solution to

d[VSW(q) + VLR(q)]

dq
= 0. (B2)

Within this approximation, the Lifshitz point will neither de-
pend on the temperature nor on the density, and is thus defined
only in terms of the parameters of the SWLR interaction
potentials λ, κ , and ξ .

As a further approximation, since we are interested in the
low-q regime we can replace

sin(qr)

qr
≈ 1 − q2r2

6
, (B3)

and Eq. (A3) becomes

f (q) ≈ f (0) − 2π

3
q2

∫ ∞

0
f (r)r4dr. (B4)
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For the SWLR part in Eq. (B2), we then obtain

VSW(q) + VLR(q) ≈ VSWLR(0)

−2π

3
q2

∫ κ

1
[VSW(q) + VLR(q)] r4dr

= VSWLR(0)

+πq2 6(λ5 − 1) − 6ξκ (κ5 − λ5) + 5ξ (κ6 − λ6)

45
, (B5)

where VSWLR(0) is given by Eq. (A13).
The expression (B5) is a parabola, VSWLR(0) + Aq2. When

A is negative, the parabola is concave down and its maximum
(at the vertex) falls at q = 0; correspondingly, S(q) displays a
minimum at the origin, and a maximum is therefore expected
at qp > 0, signaling microphase separation; in this case the
fluid is above its Lifshitz point ξLP. In the opposite case A > 0,

the fluid exhibits liquid-vapor separation, i.e., it falls below its
Lifshitz point. The threshold condition is realized when the
fraction in Eq. (B5) vanishes, namely, for ξ ≡ ξLP with

ξPY
LP = 6(λ5 − 1)

κ6 − 6κλ5 + 5λ6
, (B6)

where the superscript PY indicates that this result holds for
RPA-PY. Should RPA-ZC be employed, the (−1) term in the
numerator of (B6) is canceled and the Lifshitz point becomes

ξZC
LP = 6λ5

κ6 − 6κλ5 + 5λ6
. (B7)

Clearly, if the long-range repulsion is switched off, i.e.,
VLR(r) = 0, then the value of A, reducing to 6π (λ5 − 1)/45
in (B5), is always positive, as we would expect for a simple
fluid, and in this case only liquid-vapor separation can occur.
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