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Saito’s variational mean-field theory of roughening Saito, Z. Phys B32, 75 (1978] is generalized to
include preroughening. The starting point is a sine-Gordon Hamiltonian with a cosine parameter changing sign
at a temperatur@pg. This theory accounts for a number of known features of preroughening from solid-on-
solid lattice models, including logarithmic divergence of the average interface width as a function of the system
size and continuous crystal growthtg. WhenTpg reduces to one quarter of the roughening temperature or
less, preroughening becomes first order. We also consider adsorption over an attractive substrate. Using our
variational theory, we calculate adsorption isotherms. They show a reentrant layering pattern, which connects
well with observations for noble gases adsorbed on grafdl8@163-18208)05543-X|

[. INTRODUCTION come negative at a temperatufgr (the PR temperatuye
below Tr.! In this way, we are able to reproduce, qualita-

Since the introduction of the prerougheni(R) transi- tively in all cases, exactly in some cases, the known phenom-
tion of crystal surfaces by Den Nijs and Rommelsenum-  enology related to PR and to the DOF phase.
ber of theoretical approach&sand of numerical studies of This paper is organized as follows. After an initial review
solid-on-solid lattice modefs as well as of step modefs, in Sec. Il of known results which will be needed later, we
have clarified the behavior at this unusual phase transitiorpresent in Sec. Il our model and the variational derivation of
Here we list a number of well-established results. The averits static properties, and in Sec. IV a numerical exemplifica-
age surface height jumps from roughly integer in the smoothtion of the equilibrium phase diagram in a variety of condi-
or ordered flat phase, below PR, to roughly half-odd integetions. Then, in Sec. V, we consider growth, by analyzing the
values in the disordered fl#DOF) phase, above PR. The dynamical response to a chemical-potential driving force. In
average square height difference diverges logarithmically apSec. VI, we consider adsorption on a substrate, and derive
proaching thelisolated PR transition temperatufB-g. The  adsorption isotherms, which are in their turn exemplified nu-
surface-specific heat has a nonuniversal singularity at PRnerically in Sec. VII. Finally, we present a short discussion
Crystal growth is continuous exactly @tg, and is layer by and concluding remarks in Sec. VIII.
layer, with a finite activation energy, both below and above

Tpr. Transitions between half-integer coverages are ex- Il. BRIEF REVIEW
pected in adsorption over an attractive substrate at tempera- ) o )
tures betweefpg andTg. Crystal surfaces are often described within the solid-on-

Clearcut experimental evidence of a surface PR transitiogolid (SOS approximation, characterized by a single two-
on e.g., metal surfaces, has apparently not yet been idenflimensional lattice height variablg, separating the interior
fied, possibly due to slow kinetics or to associated phaseef the crystal and the outside vacud#iThe simplest non-
separation phenomena between DOF phases with neighbdrivial surface model of this kind is the discrete Gaussian
ing heights’ However, reentrant layering has been observedDG) model
in adsorption isotherms for several rare gases on graphite,
and has been attributed to PRPreroughening is also found
in realistic Lennard-Jones surface simulatibhghere it ap-
pears to mark the onset of surface melting.

Surprisingly enough, there is as yet no mean-field treatwith integer heightsh;=0,+1,+2,..., andwhere the sum is
ment of PR for comparison with this wealth of theoretical, restricted to nearest-neighbor pairs of lattice sftesbe spe-
experimental, and simulation evidence. In the present papegific, from now on we consider a square latlice Eq.(2.2),
Saito’s treatment of the roughening transitidnyhich em-  J>0 is the surface stiffness, and the heights are expressed in
ploys a variational, mean-field approach to study surfacenits of the vertical lattice spacing. The DG model is well
equilibrium, supplemented by a Langevin equation forknown* to undergo a roughening transition of the Kosterlitz-
growth and dynamics, is extended to PR. The extension i¥houless type affg=4/7 (hereafter, all temperatures in
obtained simply by allowing, phenomenologically, the co-units of J/kg).
sine parameter of the sine-Gordon trial Hamiltonian to be- A closely related model is the sine-Gordon model

J
Hoc=5 2 (=i )7, 2.
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J J
Heo=7 2 (Ni—hisp)?+y, 2 [1-cod2mhy)], H=75 2 (hi=hi ) +y, 2 [1-cog2mh))]
(2.2
with continuous heights angl,>0. This model is in the +Y4§i: [1—cog4mh))], 3.

same universality class as the DG motfehut is easier to

handle analytically, being a field theory. A number of well- ; > :
known results have been obtained from renormalization-by keepingy,>0 constant, and by allowing, to change

i t LT ific, |
group treatments of Hamiltonia®.2).1® Summarizing, the ﬁ:]genaﬂ- ?jgg:annpdeerﬁc%@m 0 be specific, let us assume a
roughening transition is of infinite order, i.e., the surface free
energy shows an essential singularityTat of the kind f _
~exp{—AT-Tg "Y3; below Tk the surface is flat, meaning Y2T)=C(Tpr—T), (3.2
that the average surface height ((1/N)Z;h;) is well de-
fined, and the average square height difference approache
number at large distance. Precisely, one finds

with C>0. Equationg3.1) and(3.2) can be considered as a
%8‘arse-grained approximation to the true microscopic Hamil-
tonian, in thatC, Tpg, andy, parametrize for a specific SOS
Ir—r| lattice model exhibiting the same thermodynamic properties.
;> (2.3 An explicit mapping between a restricted SOS model with
£ parallel-step repulsion and a sine-Gordon-type free energy

. . . . . with y, changing sign at some temperaturgg has been
with a correlation lengtlg diverging, as the roughening tem- : &
perature is approached from below, a&-expiC(Tx recently produced using a plaquette mean-field thébry.

T The mechanism inducing PR in the Hamiltonighl) is
T1)'Wo decades ago, when renormalization-grou methodsimply explained. Whery,>0 and the temperature is not
) C go, wh ; on-group tho high, the cos(#h) term pins the surface height indiffer-
were in their infancy, Saito devised a variational theory ofently at either integer or half-integer values. Howevery as

the roughening transition which, even if partly failing to re- becomes negative, i.e., upon crossiigy, the average sur-
produce the precise behawor‘.ai, nonetheless had the ad_— face height jumps from integer to half-integer, thus provok-
vantage of capturing the main features of the roughenin

. . = j’ng PR of the surface.
phenomenon, being in addition transparent an

. 2 ; I " Variationally, we can now approximate the exact, un-
straightforward"? In this approximation, the transition tem-
known free energy of{ by means of that generated by a

perature is exact, and the infinite-order character of the trans-irn ler. soluble Hamiltonian:
sition is accounted for. More detailed, the form of the free- pier, '
energy singularity is slightly wrong, since one finds

<(hi_hj)2>~2<(hi_ﬁ)2>+8 exp{ -

—In fgng~In é~(Te—T) 7%, instead of Tg—T) Y2 for T IS 024362 (h—h)2

<Tg. In dynamics, Saito’s theory correctly describes the Ho 2 iZg (hi=hi.5)"+J¢ Z (hi=h)% @3
jump from activated to continuous surface %rovvth, reproduc-

ing the results of the more rigorous thedfy. with continuous heights. Here the average helgland the

Given its simplicity and effectiveness, it is desirable 10 cqrrelation lengtht are variational parametetboth are as-
generalize this kind of variational theory so as to embody themed to be dimensionless, measuring numbers of vertical

additional possibility of preroughening. The usual way togng horizontal lattice spacings, respectiVelps in other
introduce PR in a SOS Hamiltonian is to add some interacmean-field theories, the variational principle is provided by

tion between the surface steps. When parallel sigps,
steps of same sigrrepel each other more than antiparallel
steps, PR will generally occur at some temperatlipg
<Tg. BetweenTpg and Tg, the surface is in a DOF state,
characterized by a mesh of up-down correlated steps, leading _ ) )

to a half-coverage of the topmost surface layer, that is to §/"€reFo is the free energy relative b, and(:--)o is an
half-odd-integer average surface height. One particular casd/érage over the ensemble specified7y. At each tem-
of antiparallel-step attraction, leading to PR, is realized orperature, choosing such and ¢ that minimize F*=F,
some surfaces which have a tendency toward missing-row (H—"Ho)o Will give the optimal free energy per site as
surface reconstructions. When realized, as for example in

the Bogolubov thermodynamic inequafity

F$F0+<H_Ho>o, (34)

Au(110), these reconstructions consist of a statically ordered 1 _
array of up-down steps, already leading to half-coverage at fhest T) =5 min F*(T;h,&). (3.9
T=0. In this case, the PR transition and the deconstruction {h.&

transition coincide. ) . )
At the same time, we shall identify the stable surface phase

according to the following “dictionary”: ¢ 2=0, rough

phase; half-integen and ¢~ 2>0, DOF phase; integdr and
Phenomenologically, preroughening can be mimicked by ~2>0, ordered flat phase.

means of a sine-Gordon Hamiltonian, where the cosine pa- Details of the calculation, which is straightforward, can be

rameter sign can chang®For example, it suffices to modify found in Appendix A. In the rough phase, the variational free

the sine-Gordon model slightly as follows: energy reads:

IIl. MODEL AND ITS VARIATIONAL TREATMENT
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BF* (£72=0)

Bi*(¢72=0)="—

n '
In —J+ g['n(ﬂz)—l]'*‘ﬂ(h"'h),

B
(3.6

with 8J=1/T. Equation(3.6) gives the optimal free energy
wheneverAf* (¢ 2)=f* (£ 2)—f*(0) is minimum at¢ 2
=0 (i.e., strictly positive. It is shown in detail in Appendix
A that

BAT*

g+ (792

- ,BYZCOS(27TF)[1+ (7é)?] — (ml4B3)

— Byscod4mh)[1+(mw&)2]~ "B (3.7
with
sin(27h)=0 (3.9
and
JE 2=272y,c08 27h)[ 1+ (m&)?] (748
+8m2y,coqdmh)[1+ (wé)2] ("B (3.9

as necessary conditions in order tidt* be extremal.

We have two classes of solutions forfrom Eq. (3.8):
integers[cos(ZnF)=l] and half-integers[cos(ZnF)=—1].
Given Eq.(3.2), the ordered flat phas(éntegerﬁ) is more
stable than the DOF phagbalf-integerh) when T<Tpg,
and the opposite fof >Tpg. Hence, PR occurs precisely at

Ter. Moreover, y,cos(2rh)=|y,|, cos(4mh)=1, and Egs.
(3.7 and(3.9) simplify to

BAT* = ZIn[1+(m&) 21— Bly,l[ 1+(mg)?) (™)

— BYa[1+(mw§)?] (A, (3.10
3¢ 2=2my [ 1+ (m)?] ("D
+ 8wy [1+ (7é)?] (7B, (3.11)

Equation (3.11) is still too complex to solve analytically.
However, we can at least analyze what happens figand
Tpr Where, as can be readily shown, there are divergent
solutions to Eq(3.11).

When é>1, Eq.(3.11) becomes

2 #(Wf)z[l_mmm‘ 8¥(W§)2[1_(4T/TR)]z 1,

(3.12

whereTg=4/m. If T<Tg, then (&)1~ “TTRI<1 can be
ignored, and we obtain
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1 2 12 T
£~ —ex ly2(T)| ’ (313
T l—l
Tr

which diverges to+~ asT—Tg, providedJ/[2|y,(TR)|]
>1, orC<C*(TpRr), Where

* —
C*(TM)= 2(TaeT)’ (3.19
Wheny, is a positive constant, E43.13 describes the be-
havior near the roughening transitibhHenceTg is recog-
nized as the roughening transition temperature. As already
noted, ¢ in Eq. (3.13 diverges with the wrong power of 1
instead off. WhenC>C*(Tpp), there is no divergent so-
lution to Eq.(3.11) for T<Tg, and¢ remains finite aflg,
which therefore is no longer the roughening temperature. As
we shall see below, the true roughening is first order and
takes place aT>Tg.

Now considerT=Tpg, When Tr/4<Tpr<Tg. In this
case, a diverger§ must be such that

M(Wf)Z[l—(TPR/TR)]zl, (3.19

leading in turn to

1 (2C|T—Tpgl| M2 Ter/TR)] -
2;(# ~|T=Tpal %,
(3.16
with
L (3.17
ve 2(TrR—Tpr) " ‘

Hence,¢ diverges as a power law at the PR transition. Note,
in particular, the absence of, from both Egs.(3.13 and
(3.16). For this reasony, is irrelevant to the critical behavior
of the extended sine-Gordon model, at least so lon@jas
>Tgrl4.

According to Eq«(3.16), the bestH, at Tpg is a Gaussian
model, i.e., the same as for the regular rough phase. Thus, for
a finite surface of lateral sizM at T=Tpg we have(sh?)
~ (/47K )In N, with a roughness paramet&r,= 7v/(4v
—2) (Ref. 1) equal to

. aa TR 3 1
C_4 TPR. ( . &
We note that the absolute surface roughness exactly at PR, as
measured by the prefactor of My namely, 1/4K ., is just a
fraction Tpr/Tg of that at roughening, and will thus be pro-
portionally lower, the loweil pg is with respect tolg.
Given Eq.(3.17), the specific-heat exponent is obtained

from the hyperscaling relation:

TR_ 2TPR

a=2-2p=——1"
TR_TPR

(3.19

a is negative forTgr/2<Tpr<Tg, varying from —« as
Tpr—Tr, t0 +% as Tpr—(Tr/4)*. Nonuniversal critical
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exponents have indeed been predicted for'FRyuations  Using the above results, we can derive the behavigsbf)
(3.17 and (3.19 indicate an approximate connection be- near criticality. ForT<Tg andC<C*(Tpg), we have
tween them and the transition temperatures.

Another important quantity is the PR order parameter, Lln J
defined(in the smooth phageas 2727\ 2|yo(T)
(6h?)= T (3.2
1 R
P= <ﬁ EI (= 1)hi> . (3.20 (power-law singularity at rougheningwhereas
After noting that (1)"=e™", we can use Eq(A21) to (6h?)=— — T n(2C|T_TPR|) (3.2
obtain P=[1+ (7&)2]~ (™18 |n particular, for T<Tpg 27(Tr=Ter) J
we haveP~(Tpgr—T)*, with nearTpg, WhenTgr/4<Tpr<Tg (logarithmic singularity at
PR).
B =£. (3.21) Finally, we analyze the free-energy singularity at the two
P A(Tr—TeR) transitions, as follows from Edq3.10 and from the abové

. . . . . e solutions. Wheril>Tg and ¢ 2<1, one has
This result is consistent with Gaussian criticality at PR, R ¢

which would in fact predict the sam@p, i.e., (7/4)/(4K, 1
— )4 BAT* = ggfz, (3.28
WhenT=Tpg=Tg/4, Eq.(3.11) becomes
and& 2=0 is a local minimum ofAf*, but not necessarily
., 87y, the lowest. On the other hand, whar<Tg, & 2=0 pro-
J&(Ter) 1+ 72E(TpR)? (3.22 vides a local maximum foAf* (i.e., zerg. WhenT=Tg
and £ 2<1, it follows that
which gives a finite £ solution, &(Tpgr)=1/7[(8y,4/J)
—1]" Y2, wheny,>J/8. Otherwise, the only solution to Eq.

J
(3.22 for y,<J/8 is &(Tpg) = +. T '“(m)
When Tpr<Tg/4, there is no¢ divergence from Eg. Afbef—z (1—1.—) exp ——1 |
(3.1 nearTpg. In fact, £ shows a cusplike singularity at R 1— —
Tpr, and PR becomes first-ordéBec. IV). £(Tpg) can still Tr
diverge exponentially a¥pr— (Tr/4)™: (3.29
as long a<C<C*(TpR). Afpesithen shows an essential sin-
lln(i) gularity atTg, but of the wrong type, as already commented.
2 18y, NearTpgr, £ only diverges folTpg>Tg/4, in which case we
E(TpR)=—exp ——=——|, 323  nhave
™ PR
T _ w
. . ) . - Afbes.F_ﬂ( _T_PR)(M) ) (3.30
but only if y,<J/8. Otherwise,&(Tpr) remains finite as 2 Tr J
Ter—(Tr/4)". with
Finally, wheny,=0 andT=Tpg, the correlation length
behaves like Eq(3.16), which is now valid for anyTpg Tk
<Tg. This means that the change from critical to first-order w=2y= T Ton’ (3.3

behavior afT pg=Tg/4 only occurs whery,>0. - _
We now evaluateé(hm—ﬁ)z)o for h,,=(L/N)=;h; , in or- We remark that the specific heat, proportional to

= o . *Afpesd T2, behaves likg T—Tpg/® 2 near PR; hencer
der to check how sharply Is defined at equilibrium. Using a best 77 . PR i
similar device to Eq(Arig) we obtain: q 98 _5_ 4, a result consistent with hyperscalifigqg. (3.19].

All of the above indicates that PR only exists as a con-

o 1 - - £2 tinuous transition wheMpg>Tg/4. We now move to the
((hm=h)2 =% > ((hi—h)(hj—h))o=57= numerical analysis and see whether the solutions found re-
N® 7 2NBJ (3.24 ally provide in each case the absolute minimum free energy.
which is to be considered as a good definition whenever IV. NUMERICAL RESULTS: FREE SURFACE

finite, i.e., away from criticality.
Once &(T) is given, the average surface width follows
directly from the general relationshfafter Eqgs.(A20) and

In order to make these results more tangible, we now
present a numerical exemplification. In Fig. 1, we @6T)
for Tpg=0.5, C=0.5], andy,=0.1] (other values ofy,

(A27)] were not found to affect substantially ti§eorofile in Fig. 1.
1 1 Note thatC<C*(0.5). Looking at Fig. 1, we see that the
(6h?)=— <2 (hi—ﬁ)2> = In[1+(7&)?]. correlation length distinctly diverges at PR as a power law
N\ 5 0 8mBJ [cf. Eg. (3.16)], signalling a second-order phase transition

(3.29  (with «=0.353. When approachind iz from below, ¢ di-
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50 . ] two casesy,=0 andy,=0.1]J. Now C>C*(0.25). Al-

though theé profile for y,=0 is quite similar to Fig. 1, a
cusp develops afpr wheny,=0.1J (Afp. behaves like-
wise, signalling a first-order PR transition; see the inset of
1 Fig. 2). In both cases¢ undergoes an infinite jump at

| =Tk =1.2785, slightly abovd = 1.2732(first-order rough-
ening transition affy). This behavior should be representa-
tive of the caseTpr<Tg/4 in general. We verified that
TE(Tpr) Moves to the left, untilTg is reached, asC

1 —C*(0.25)" (the same effect is also obtained by keeping
C=0.9 fixed and increasind pg up to Tg—(J/2C)=Tg
—1). This indicates that, although ?=0 is a local mini-
mum of Af* whenT>Tg, it does not represent the absolute
minimum as far asT<Tg%, since the branch providing the
minimum Af* for T<Tg still gives the stable¢ solution
until T=Tx.

FIG. 1. Variational correlation lengthi(T) whenTpg=0.5,C Then, we numerically check the sensitivity 6fto y,,
=0.5J, andy,=0.1). With these parameter<C*(0.5). The  since there appearddf. Eq.(3.23] a change of behavior at
correlation length ist o beyondTg=4/7. Continuous lines give y,=J/8. Taking C=0.5], we separately consider,<J/8
tge1 beh\?\;/ior r:ea::r thetlf?NO .tr?nsititcr)]ntp;ﬁir[ts‘..t.qus. 313 ar:d . and y,>J/8. Wheny,<J/8, &+ at PR providedTpg
well beyond  small neighborood of the two ransitn pamte, 2,4 WHile remaining fnte wheffe<Te/d. In his case,

&(TpRr) grows to infinity asTpr— (Tr/4)™ according to Eg.
(3.23. Wheny,>J/8, we find thaté— +« at PR only if
Ter>Trr(Ys), WhereTEg is a slightly larger temperature

40 —
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verges even fastdcf. Eq. (3.13], while remaining infinite
aboveTg. We also verified thai f .5 has the expected be- ; <T* e fini
havior nearT pg [cf. Egs.(3.30 and(3.31)] and neaiTg [cf. thanTg/4. Otherwise, fofTpr<Tpg(Y4), £ remains finite at

: g . PR, which is then first order. In fact, although a free-energy
Eq. (3.29]. The scenario represented in Fig. 1 is thought to__. . . oS :
be generic, as far abpg>Tg/4. In this case, our variational minimum is present along the branch providing a divergent

. | for any Tpg>Tg/4, this minimum is not the absolute mini-
theory gives a reasonable account of the behavior of the res. & 'PR™ IR 'S minimum | ure mini

i A .
stricted SOS model of Ref. 4. There PR is signalled by th m*“”? until Tpp=Tpg(ys). The interval betweerTg/4 and
switch from integer to half-integer mean height, and also by_ PR 1S \iew narrow, and grows o_nzly slowly 35 g*rows. We
the logarithmic broadening of the surface upon increasing itdnd Tpr(0.126)=0.318 61 € “=0.022), Tpr(0.13])
lateral size. =0.320 25 ¢ 2=0.124), andT§g(0.15))=0.331 11 ¢ 2

In Fig. 2, we plot&(T) for Tpr=0.25, C=0.5], in the  =0.804). WhenTpr>Trg(Ys), we also find two further
transitions at temperatures not very far frdpg; one inside
the smooth phas@at T=T;<Tpg), and the other inside the
DOF phasgat T=T,>Tpg). They are first-order transitions
. with a finite jump in the correlation length. These transitions
appear as soon a&g overcomesT§g(Y,4), but they disap-
pear soon after, at two different values Bfg. We quote
some results relative tg,=0.15: the transition al; is no
longer present foff pg>0.337, whereas the one & has
_ already disappeared &tpr=0.333; furthermore, forTpg
=0.3325, we haveT;=0.3320 andT,=0.3346. These
. prewettinglike transitions have not been described before, to
our knowledge. Their true physical relevance is at present
- unclear. Besides the evidence offT§(Tpg)>Tg [WwhenC
>C*(TpRr) ], the only other anomaly found in the theoretical
scenario presented above is the existence OfFfa(ya)
. >Tgrl4 (Wwheny,>J/8).

In conclusion, we find that the PR transition in the ex-
tended sine-Gordon model is, according to our variational
FIG. 2. Variational correlation lengtii(T) when Tpg=0.25, calculation, continuous foil pg>Tg/4 and first order for

C=0.9J, for y,=0 (0) andy,=0.1J (X). With these parameters, TFR<TR/4' In terms ofK, [Eq. (3'1&]’ second-c_)rder PR
C>C*(0.25), and the correlation length remains finite g, ~ Will occur for m/4<K <, while first-order PR will be ob-
which in this case is not the roughening temperature. There is inServed forK > . The m threshold for continuous PR is also
stead a first-order roughening transitionTgt=1.2785>Ts. The  found in the extended BCSOS model of Ref. 21. Moreover,
PR transition is critical foy,=0, but first order foy,=0.1J (inthe ~ the above results on the nature of the PR transition in the
inset, the free energ@A f . for y,=0.1J shows a cusplike singu- extended sine-Gordon model are in excellent agreement with
larity at Tpg). renormalization-group theofy.This is gratifying, even if

4

—

(@]

(9]

—_ 3
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somewhat surprising, considering the nominal mean-field na- dhy, BAu
ture of our theory. In fact, our trial Hamiltonia¢8.3) em- rTaR e Y (5.9
bodies nontrivial correlations between the heights, and this

explains why the present theory is so informative. with  £n=(IN)Zigi, (L)) =0, and ({m(t){m(t’)),
=(2/IN7)8(t—t'). Integrating Eq(5.3) and then averaging,
V. GROWTH: LANGEVIN DYNAMICS we obtain

In this section, we analyze the near-equilibrium dynamics

2
of the extended sine-Gordon mod&lg. (3.1)]. We consider ([hm(t)—hm(O)];Z)g:(’BAMt

2
+ —t. (5.9

the Langevin growth equation T N7
dh; B 6H At equilibrium, A =0, we find that the interface as a whole
ot 7 oh; +di (5.)  diffuses like a Brownian particle, with a diffusion coefficient

) 1/N7 which is vanishingly small in the infinite-size limit.
where a term—AuZh; (with Au>0) has been absorbed  Next, we move to the general case. As usual,(Bd) can

into  to induce crystal growth. In Ed5.1), 7 is the relax-  pe studied through the associated Fokker-Planck eq@#ation
ation time, and ¢;(t)} is a Gaussian white noise:

5 aP({hi},t)_BE i( SH 1 6P
(£i(1))=0, <§i(t)§j(t’)>g=;5u5(t—t’), (5.2 B S

"o a9

where the averages are over a Gaussian distributiofor the height density function P({h;},t)=(II;d[h;
Pg[{gi(t)}]ocexq—(ﬂ4)fdt2i§i(t)2]. —hit.{Zi(t)D]),, whereh;(t,{Zi()}) is the solution to the

A first, limited, result is the exact solution of the Langevin Langevin equation for a particular realization of the noise.
equation for the mean surface height=(1/N)Z;h;, when  Any noise average can be expressed as an ensemble average
T=Tpgr andy,=0. In this case, Eq5.1) becomes over theP distribution, according to:

<F[{hi(ty{§i(t)})}]>§:<fDhHi‘s[hi_hi(t:{gi(t)})]F({hi})> :fDh<Hi5[hi_hi(ty{gi(t)})pg“':({hi})E<F({hi})>P-
¢
(5.6)

It is shown in detail in Appendix B that, upon assuming a GaussiarPfothe average surface heigﬁ(t) and the pair
correlation in momentum spacgp,t) are found to obey the equations

_ 2 2
¥= s AM—Zwyzsin(ZwW(t))exp( - > g(p,t)l) —4wy4sin[4wﬁ(t)]eXp( A > g(p,t)l) } (5.7
t T N 5 N 5

d 4 o 2
GO = ;g(p,t)1{>\(p)—g(p,t)+2w2By200$27rh(t)]exp( - % Ep) g(p,t)l)

— 47
+87Byacog4mh(t)lexy — - > g(p,t) . (5.8
P
|
Equationsg(5.7) and(5.8) form a set of coupled equations Ape=27|y,|[ 1+ (mw&)2]~ (748,
which appears hard to solve. As in Ref. 12, we decouple (5.10
these two equations by neglecting the effect of a time- Aul=4my,[1+ (w&)?]~ ("B,

dependenﬁon the evolution ofy(p,t), which is then iden- _ N
tified with the equilibriumg(p) (quasistationary approxima-  The form of the solution critically depends upan. and
tion). In this way, we wind up with: Ap. . A special case is whegis infinite (PR, when critical,

and the rough phageln this caseAu.=Au.=0 and Eq.
3 (5.9 is easily solved a$1(t)=(,8A,u/7-)té which describes
JR— . . . l -
—ZrAu—s A w.sin 2 7h(t continuous growth. This is well knowH;*®and also found in
T{ 7 SOMY2) Apcsin 2mh(t)] Monte Carlo simulations of restricted SOS modt43.
The behavior ofAu, and Au., for T<Tg and C
<C*(TpR), is easily found to be:

where Apc=27ly,|(7&) 2R, Apl=0(Aud). (5.1)

dh(t)
at

—Apgsifamh(t)]}, (5.9
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A, is called the depinning field since the crystal does not Next, let us consider what happens to the depinning field
grow for Au<Apu. (see below. At first sight, it is puzzling just below and just abovEpr. There are no previous results
that, according to Eq5.11), A, close toTg appears to be about this. ForTpg>Tg/4, PR is critical and we find from
set by the energy scaje (the bare surface pinning potengial Egs.(5.10 and(3.16:

rather thanJ (the renormalized pinning potential, as it

should be on physical grounds. For example, Nezeand

Gallet® showed that the depinning field Appe~|T=Tprl® Apl~|T—Tpgl4TPr/(TR"TeR),
2 (5.195
ya
Apc~ & (5.12

where o=Tg/(Tg—Tpg) is the same exponent as for the
free energycf. Eq.(3.30], and is typically much larger than
1. It follows that pinning of the flat surface to integer height
values and that of the DOF surface to half-integer height
values close to PR is much stronger in comparison with that
—TI(TR=T) J found below roughening. A glance at Fig. 1, for example,
) =— (&) "2, shows thatt? will grow large only very close td pr, Which
2]y,| implies, via Eq.(5.14), that only there doed u. truly be-
(5.13 come small.
shows that Finally, we find that the role oA is irrelevant: since
AT/ (Tr—Tpr) > o [cf. Eq. (3.31)], there exists a neigh-
borhood of Tpr Wwhere A, <Apu., meaning that ./ can
be neglected at least sufficiently near criticality.

that is, our result foA . below roughening is in fact in full We now wish to computda_(t_). Equation(5.9) is exactly
agreement with Eq(5.12, and is correctly controlled by  solvable whery,=0.1> We seth(0)=0 and distinguish be-
and not byy,. tween a Au>Auc. and h Au<Apu.. In case(a), we find

where vy is the renormalized surface stiffnessTat, anda
(here=1) is the step height. Sincga®= ZkgTg,* which in
turn equals 3, one hasAu.~2J/£2. However, a simple
algebraic manipulatiohsee Eq(3.13],

—(2TITR) —
(m6) " (2|y2|

J
Apc= 7T_§2’ (5.149

t A
1 sgny,)Auc+D tar( 78D p —sgr(yz)arctan%
h(t)= — arcta
T Au

for (n—=21)(7/BD) +ty<t<n(7/BD)+ty, n integer, with D=\/A,u2—A,uc2 and  to=(7/8D)[3
+ (1/ar)sgnfy,)arctanQ u./D)]. F(t) is a stepwise increasing function of time with step peri¢@D. The increase becomes
linear asAu grows to infinity.ﬁis never stationary; however, its rate of increase is minimurh_n%lﬁJrk, k integer, when
y,>0 (smooth phaseor ath=2+k, k integer, wherny,<0 (DOF phasg This feature is different from results of restricted
SOS simulations, where the staircase plateaus occur rather accurately at integer or half-integer (whmebdrs. Tpg or T
>Tpg, respectively.*>

Below the critical depinning fieldcase b, A u<Au, one finds

+n, (5.1

F(t): i arcta SgNyz)Ape—D i1 (5.17
T Ap ) sgryz)Apuc—D |’ '
e apD(t/Ir)y__ “2 e/ 7
sgny,)Auc+D

with D:\/AMCZ—AMZ_ Wheny,>0 (flat surface, the de- mately overcome in order to cause continuous crystal

nominator is always positive arfdincreases monotonically 9rowth. Similar is the outcome of a renormalization-group
Up to 1/ arctanf u,—D)/Au. Wheny,<0 (DOF surfacg, ~ Ureatment of the growth mode near roughenifigt suffi-
the solution to Eq(5.9) is again similar to that for,>0. glently IargeA,u is needed in order to obser\{e .C(.)ntlll'lUOUS
(i.e., substantialgrowth forT<Tg, whereas an infinitesimal

Ap suffices forT=Tg.
The last point to discuss is what happens when including
Apf . It turns out that this factor has little influence on the

However, ash crosses3 at (/27BD)IN[(Auc+D)/(Au,

—D)], the right-hand side of E¢5.17) adds another 1, even-
tually leveling off at a value<1. Hence, in this regime there
are no oscillations and the crystal does not gawreality, ] — )
the growth mechanism would be nucleation, which is, how-evolution ofh as compared td . (some numerical results
ever, beyond the scope of our theprjdenceApu, really — can be fo_und in Fig. B As before, we ask what are the
represents the threshold which the driving force must ultivalues ofh when its slope is minimum. Alternatively, we
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I LA e o T IS A e s VI. ADSORPTION ONTO AN ATTRACTIVE SUBSTRATE
2 T<Tpp ] The theory above is for a free surface. However, the main
= y experimental claims of surface preroughening have been
1+ — made for thin multilayer films of rare-gas solids adsorbed on
- . attractive substrates. These data show that the film thickness,
0 e i.e., the average quantity of adsorbed matter, is, below the
3 roughening temperature, a staircaselike function of chemical
| | | | ; o S ; )
L _ 1 potential. More specifically, it is a function of the difference
2 - T=Teg — Au between the chemical potential of the bulk interface and
e b . that of the film(not to be confused with the quantityu of
1 = Sec. V, which is just the opposjteRoughly, these layering
r | T jumps occur between integer layer numbers at low tempera-
0= tures, and disappear due to roughening at high temperatures.
37— T In detail, however, a reentrant behavior was observed in Ar,
© o OTST . for example: the jumps first disappear at about 82% of the
2+ PR — melting temperature; then they reappear above this tempera-
koo 1 ture, but this time between roughly half-integer layer num-
1 T bers; finally they disappear for good at about 94% of the
0 A melting temperature, where roughening is known to take
0 1 2 3 4 5 place® Other subtler features in the layering phase diagram
t of Ar have also been reported, in the form of zigzagging

heat-capacity peaks joining low- and high-temperature layer-

=2 _ ) ing transition lines. A very similar reentrant layering behav-

face heighth(t) as a function of time foffpr=0.5,C=0.5J, and o has also been found recently in a grand-canonical Monte

y4=0.2), at three different temperatures: top=Teg (SMOOth  Cayjg simulation for Lennard-Jones particds.

phase; the following parameters were useti:*=2.2, ¢ Den Nijs first suggested that the reentrant first-order lay-

;0'21%361%‘ ;r?d%:md oa;g;naobgiz}ncfgt'?r’T(TDTOPFR (\r’]\':s:_ssvi ering transitions should be indicative of PR of the bulk
w2 T ' PR P ' interfacel® More recently, Weichman and Prasad provided a

usedT =18, £ "=0.062,A1=0.02), 7=0.018. The smooth renormalization-group theory of adsorption which compares

jumps in the average height both below and above preroughenin . . .
are indicative of layer-by-layer growth in the linear-response re-\%eII with the experlmentg.Here we show that our varia-

gime. Note, however, that the jumps do not occur between eithe‘ijonal th,eory is Cap"’!ble of accoun_ting in detail for this ”‘?h
integer (top) or half-integer valuegbotton). adsorption phase diagram. To this end, we follow earlier

work by Weeks, who studied the standard case, without

— o — L= PR2* We use the extended sine-Gordon Hamiltoniart),

seek for Z(h)=sgnf)Aucsin(2rh)+Aucsin(4mh) being  5gmented by a ter;V(h,) describing the influence of the

maximum. Obviously, we here consider only the growth re-g pstrate. The substrate potential mainly serves to define a

gime, maxZ(h)<Au. A simple analysis shows that when mean film thicknessho~A =3 diverging asAu goes to

Apl<Apl2 there is a uniqu&(h) maximum at zero. This can be accounted for by using the Weeks prescrip-
tion for the potential,

FIG. 3. Surface growth in our variational theory: average sur-

— 1 —Auct \/A,LL§+32A,LL(’:2 . c
= 5 arcco 8A L +k, V(h)=Aph+ o0, (6.2)

5.1

(518 with ¢>0, and where the heights are zero at the substrate.
k integer, fory,>0; or at The first term in Eq(6.1) favors the gas phase with respect
to the solid, and thus works against adsorption, whereas the
second term describes van der Waals attraction by the sub-

_ 2 12
h=1- 1 arcc(,%A'“C Auct32Ap Tk strate. Near its point of minimunig=(Ax/c) 3, V(h) is
2 8Au, ' approximated by
(5.19
. , 1
k integer, fory,<0. When Au.=Au /2, another local V(h0)+§V”(h0)(h—ho)2, 6.2

maximum appears, but it never overcomes the first. Finally,

asAu, increases, Eq$5.18 and(5.19 move fromz+kto  with V"(hy)~ (A w/c)*3. For simplicity, we assume form
§+k, and from§+k to §+k, respectively. We note that (6.2) to be valid in generalthe error made is small in the
these values differ from integers and half-integers typical othick-film limit).

equilibrium and also of growth on SOS mod&fs, while In the same spirit of Sec. lll, we estimate the free energy
they are not inconsistent with the evidence provided by realef our model[Hamiltonian?{+V(h)] using the Bogolubov
istic Lennard-Jones simulatiohs. inequality, Eq.(3.4). We obtain
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1 1 1 1 _ V”(ho)
_ X — —_\/" _ . 2 — N\ _ 2 2
N <Ei V<h.)>0 V(ho)+ 5V (ho)<N 2 (hi—ho) >O V(ho) + 5V"(ho) (h—ho)2+ 7223 In[ 1+ ()7,
(6.3
and then, using earlier resultsee Eq.(3.7)], we arrive at the free-energy functional
BAT* =BV(hg)+ Ev"(h )(h—hg)?+ v(ho) In[1+( 6)2]+zln[1+( )77
PVl o o 167 m 8 T
— Byacod2mh)[ 1+ (m§)?] (") — gy cog Amh)[ 1+ (m§)?] (A, (6.4
with ¢ andeeing selected so as to minimiag*. Necessary conditions for this are
V"(ho)(h—hg)+ 27 sin(2mh)[ 1+ (m£)?] ("4 {y,+ay,cog2mh)[ 1+ (m§)?] m* =0 (6.5
and
—2_V"(h0) 2 T 21— (w/4B3) 2 — 21— (! BJ)
JE o= > +2my,coq27h)[ 1+ (7&)7] +8my,cog4mh)[ 1+ (7é)7] . (6.6

These equations must be solved numerically. When more than one solution is found, the such is chosen that provides the
minimum Afpo(T,Au) of Af*.

In Sec. VII we solve Eqs(6.4)—(6.6) numerically in a number of selected cases. However, one can even go beyond the
quadratic approximatiof6.2). For example, if we keep up to fourth-order terms in the expansi®{(bf aroundh,, then Eq.
(6.4) must be modified as follows:

BAT* =V (ho) + §V"(ho><ﬁ— ho)?+ /gvm(ho)(F— ho)®+ ngh@)(ﬁ— ho)*

— 1 . —
V/(hg)+ V" (o) (N o) + 5 V/¥(hg) (R ho)? Vie(h)

+ 6] IN[1+ (7&)%]+ W|n2[1+(77§)2]
+ %mm (&)~ ?]= By cog 2mh)[ 1+ (m§)2]” (") — gy,coq 4h)[ 1+ (m§)?] ™ (7R, (6.7)

Equations(6.5) and(6.6) are then replaced by

. Vm h o Vi v h . Vm h + Vi v h F_ h _
V" (hg)(h—hg) + (2 O)(h—h0)2+ é 0)(h—h0)3+ (no) 1677(/33’)( o IN(L+ (&)2)+ 27 sin(2h)
X[1+(m§)?]) " "y, +dy cod 2mh)[ 1+ (m£)?] T} =0 (6.8

and

V'*(ho)
3218

—ZZE " " T E iv D 2 2
J& =5 V'(ho)+V"(ho)(h—ho) + 5V*(ho) (h—ho)*| + In[1+(7&)“]

+272y,c08 27h)[ 1+ (7&)2] (749 4 8 2y ,coq 4arh)[ 1+ (w&)2]~(/AY), (6.9

respectively. We postpone a discussion of third- and fourthbulk-interface behavior We setc=J in what follows. A
order corrections to results obtained within the quadratic aptypical low-temperature adsorption isotherm is plotted in

proximation until the end of Sec. VII. Fig. 4 (T=0.4). Here we show bottiandh as a function of
VII. NUMERICAL RESULTS: ho. Besides a less interesting behavior at latjge we see
ADSORBED FILM ON A SUBSTRATE sharp jumps of the film height between nearly integer val-

First we consider the case.g> Tr/4. To be specific, we UES every timéng equals an integer-plus-one-half, and with-
take Tpr=0.5, C=0.5], andy,=0.1) (see Fig. 1 for the out any loss of continuity foAfp.g. This is the film coun-
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FIG. 4. Variational correlation length (X) and heighth (0), FIG. 6. £ (x) andh (0), as a function ohy, along the adsorp-

during growth, as a functign dig=(Ap/c) ' (also drawn as a tion isothermT=0.6, for Tpg=0.5. Sharp jumps oh between
continuous line through thie dat, along the adsorption isotherm pat_integer values signal the crossing of first-order reentrant layer-
T=0.4, for Tpr=0.5. Sharp jumps oh between integer values ing transition lines.

signal the crossing of first-order layering transition lines.

y In Fig. 6, the behavior af =0.6 (the DOF phase in the
%ulk interface is reported. It is similar to Fig. 4, but notv
and (9Afyesd IA 1) g jump between half-integer values every
time hy is an integer. This is the adsorbed film remnant of

terpart of the bulk-interface smooth phase, whose degeneral
is removed by a nonzemyy which selects among pure states

the one with the nearest height bg. At everyh jump, a

cusp is found forg, which becomes less and less sharpgs —
the DOF phase. As beforg shows a cusp whenevér

grows, until¢ attains the bulk-interface valu@.2394 forT ; i i
umps, and increases eventually until the bulk value 2.7797.

=0.4). Moreover, from Fig. 5 we see that jumps are also! ; ; ; |
found in the numerical\u derivative ofAfy.e; this is not Starting fromhy=2, integer values oh, define first-order

g . . 2 3 4
surprising, given thatdA fue/ @A) 4 is the variational es- transition lines starting at temperaturd@$®, 7®) 174 |

— i (n) _
timate of the average film widtfto be compared witth in which converge toTpg as a power law,T™=Tpg

~n_P (T ) 1 =3 i
Fig. 4 when the originaM(h) is used[Eg. (6.1)]. Starting n"P2eR, with p(Tpr)==2.502. Weichman and Prasad
from hy=1.5, half-integer values oh, define first-order gave a renormalization-group estimate of the same exponent,

— — N _ 3 . .
transition lines ending in noncritical points whose tempera'gé(c-gZFF)a_iEZ(lTpsF;)milgr t[owi) E?gTPFF;)n]aIIZ.A{ﬁZ tra\ll:lwzlifign Il?nes
tures THS) T(29) TGS eventually converge tdpg as a gingly ' Y,

z _ ; terminate in noncritical end points at temperatures
power law, Tpp—TI" (H2l~n"PulTe, with py(Ter) T'® 7@ T4 which converge toTg as Tg—T'(™
=2.510. ~(nn)™", with r=1.406 (for comparison, the
N renormalization-group estimate fis= 2).2°

Lastly, we study the behavior atz (see Fig. 7. Here

both ¢ andh grow monotonically withhy, and there is no
first-order line ever crossed. To sum up, coming from low
7 temperature, first-order layering transitions disappear just be-
low Tpg, only to reappear soon after. At higher temperature,
K e 300X they disappear again, and for good, when roughening is
reached. The ensuing phase diagram is shown in Fig. 8.
Next we study the growth of the adsorbed film under con-
> ditions where the bulk PR is first ordef gg<Tg/4). We use
£ Tpr=0.25,C=0.5, andy,=0.1] (see Fig. 2 for the behav-
ior at the bulk interface A typical low-temperature adsorp-
Ll T tion isotherm is plotted in Fig. 91(=0.2). The main differ-

ence with respect to Fig. 4 is in the supplementary step
ol L L L L aroundhy,=1.5, which is found in theh staircasgand in
0 ! 2 h 3 4 5 (9Afpesd IA 1) g @s well,, signalling a more complex behav-
° ior than before. A more accurate analysis shows that the two
FIG. 5. Variational estimate di through theAy derivative of ?ddltlonal flrfSt_?]rder points a.ctulallyhbelonlg to neV\II. transition
Afpest, for T=0.4 andTpg=0.5. The small discrepancies from Fig. ines, one of whichand precisely that at lowef,, line A)

4 are due to the quadratic approximation of the substrate potentidifurcates aff=0.238 into two first-order linegone ending
[cf. Eq.(6.2)]. at T=0.269 with vanishingh jump, and the other at

6 X

XXXY x... X%

N

w

2

(aAfbest/ﬁAu)ﬁ,

[Av]
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0

FIG. 7. £ (x) andh (O), as a function oh,, along the adsorp-
tion isothermT=Tpg=0.5. The correlation length increases to in-
finity as Au—0, and no transition line is ever crossed.

FIG. 9. ¢ (X) andh (O), as a function ohg, along the adsorp-
tion isothermT=0.2, for Tpr=0.25. We notice the additional step
around 1.5 and the relatefljumps. Sharp jumps ofi signal the

) . — crossing of first-order layering transition lines.
T=0.273 enclosing a region whete=1.25. The other tran-

sition line (B) joins the first reentrant line on the DOF side
Totgglgh%sti dlgg:a_rlr(see b.EIO.IW Itn :;'S E%cg()nat T < 0. This is a rather common circumstance, although models
e : er _e- ails are su@ ar 1o ter=0. . CaseL  which realize it have only recently been discus’ed.
has a cusp at evetyjump, growing eventually until the bulk  \what we find here is that a strong attractive substrate and
V?'“e 0'4978' the_f_lrst-order Ime_s B5=152.5,3.5,... ter- a large correlation lengtly can stabilize a phask=1.25
minate in noncritical end points, whose temperatures ... bR even whey,>0. The key factor is that tends to
'E(_lr-?:],:l'((s;)],;r(:f’zl...v;;)hnvergj Z%EPR as a power laWler  go elop ‘mexima at coverage=(2n+1)/4. This can be
The oh 't’h 972 1 2'5 ) ted real seen directly in Figs. 10 and 11, and understood in(E4),
€ phase with coverage=1.25 is an unexpected real- for y,=0, y,>0. Since cos(#h)=—1 at thish, the last term

ization of Den Nijs's¢-DOF phasé®'%in the presence of a s it Ok hences becomes large. Given a lar
strong substrate. We now wish to understand how it come§&ancels part oV, he Cfg ecomes 1arge. en a large
and a strong substrat”, consider, for example, the total

about. It is shown in Appendix A thaDOF phase solutions free energy(6.4) for y,=0, y,>0, athy=1.25. We see that

characterized by some fractional coverayegenerally do hos i b th i destabilizingt .
exist as local free-energy mininjaf. Eqg. (A31)]. Without a — 4 can prevail because the main destabrizing ,(,erm IS
reduced by a large, so that the main stabiliziny” term

— T R T (which vanishes only at=3 but is otherwise positiecan

substrate, however, they can be global minima only 4f

i I 1y
7 |
! 66 i 5 T e e e e e e e S E B s e s e e s
6~ 6 f —
e 5.5 ] T
L5 | i 4
|
R —)H} 4.5 B B B0
= 4 -4 | — 3
1 3.5 :
-3 } J
e R.5 :
22 | _— _
R 1.5 :
T T S S RS BT B
0.4 0.6 0.8 1 1.2
TPR T TR O|||||||||||||||||||||||
0 1 2 3 4
FIG. 8. Phase diagram of the film f@r,g=0.5, C=0.5J, and h,
y4=0.1]. With these parameters, the bulk preroughening is critical.
Our data pointgincluding noncritical end poinisare marked with FIG. 10. Same as in Fig. 9, along the adsorption isoth&rm

an X. The low-temperature layering transition lines are followed, =0.3, for Tog=0.25. The film height jumps between half-integer
past the preroughening point, by another series of lines whiclvalues, each time a first-order reentrant layering transition line is
bound phase-diagram regions where the film height is half-integercrossed.
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FIG. 11. £ (X) andh (O), as a function oh,, along the ad- ’

sorption isothermT = Tpr=0.25. We notice the additiondl step T S R B

around 1.25 and the relatgdumps. 0.2 0.25 0.3
T

take over. A more physical way to rationalize a quarter- g 12. phase diagram of the film f&px=0.25,C=0.5J, and
coveragef-DOF phase is to note that close ton(21)/4 the  y —0.13. With these parameters, the bulk preroughening is first
substrate acts to renormalize the valueyef which may  order. Our data pointéncluding noncritical end poinisare marked
become effectively negative. with an X. We show in more detail in the picture below the addi-
In Fig. 10 theT=0.3 isotherm is shown. A very similar tional basin wheréi=1.25. At variance with the phase diagram in
behavior to that of Fig. 6 is founch jumps (and theAu  Fig. 8, the two series of transition lines are now sewn by a zipper.
derivative ofAf . behaves the samdetween half-integer Similar features are seen in the phase diagram of rare-gas films
values every timé,, takes an integer value; correspondingly, deposited on graphiteRef. 9.
& has a cusp, while increasing witty up to the bulk value
0.8376. Starting fronmy,=2, integer values dfi, define first-  order terms in the substrate potential. We considered, in par-
order transition lines originating &, T®) T4 ... which  ticular, the isotherms plotted in Figs. 4 and 11. Actually,
converge tolpg as T™ — Tpr~n"%, with q,=3.802. We-  only minor changes have to be notég., no further transi-
ichman and Prasad gave an estimate of 4ffet q2,3 which tion line is found. In both cases, the main quantitative cor-
is close to ours. The transition lines survive only below therections come about, as expected, for loy First of all,h
roughening temperature; they end in noncritical points ajumps will occur at slightly loweh, values than before, with
T'@ T @ T @ | showing a nonmonotonic trend to appreciable differences only for largeu. This suggests a
Tk(0.25). small bending downwards of all the transition lines in Figs. 8
The T=0.25 isotherm(Fig. 11) gives a conclusive indi- and 12. More important, each time a transition line is
cation of the overall structure of the film phase diagramcrossed, the correlation length also makes a jumbpile a
when Tpr<Tg/4. At Tpg, there is a radically different be- cusp was seen befgreMoreover, the firstand most impor-
havior than that represented in Fig. 7. Besides the pair ofan) & maximum is slightly depleted. Finally, the numerical
jumps which occur when_the fork stemming from liAeis agreement betweem and (A fesf/ JA ) 5 COnsiderably im-
crossed, further jumps dfi are found athy=1.75+(n/2)  proves, and this provides a successful check of internal con-
(n=0,1,2,..), theformer at the crossing of linB, and the  sistency of our numerical procedure.
others along the “zipper” that joins th& <Tpg first-order
lines to theT>Tpy first-order lines. In the end, the phase
diagram of the film looks like Fig. 12.
The “zippering” behavior found forTpr<Tg/4 is quite In this paper, we have introduced a mean-field variational
similar to the experimental resuftsis well as to the outcome theory of prerougheninPR) of crystal surfaces, which gen-
of renormalization-group theoryin fact, the zipper which is eralizes previous approaches devoted to roughefifjwve
present in the phase diagram of argon films strongly suggestmd that many features of both preroughening and roughen-
first-order PR of A(111). We note that for the Ad11) sur- ing are well described in this simple theory. In particular, PR
face Tpr=69 K, Tg=80 K, so the conditioiTpg<<Tg/4 is  of arigid lattice model is correctly predicted to be a nonuni-
far from being verified. We conclude that there must be othewersal second-order transition, at least wigixg>Tg/4. In
physics, not contained in our modeling, and probably nothis case, the theory connects the critical exponents and the
contained in any rigid lattice model, which is at work in roughness parameter at PR to the ratio of the two tempera-
making quantitatively the PR of At11) first order. tures. ForTpg below this threshold value, PR is predicted to
Finally, we add some remarks on the changes introducedecome first order, in agreement with Ref. 3.
in the foregoing results when including third- and fourth-  Surface dynamics is also described by the theory. Growth

VIIl. CONCLUSIONS
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is continuous at both PR and roughenifighen not first 1 ,

orde, as well as—of course—in the whole rough phase; in Viy=N > M(peP Y, (A5)

all other cases, the growth mode is layer by layer. In this P

regime, there is a threshold which the driving force mustA similar formula gives the inverse-matrix elements

overcome in order for the crystal to become depinned and _

start growing, both below and aboWgg. This is the direct . 1 elP(x=y

extension to preroughening of the known result, obtained by Vx,y_ﬁ > Np)

Nozieres and Galléf in the simple sine-Gordon model, and

by Kotrla and Levi in a kinetic solid-on-solid mod&that ~ The infrared divergence in EA6) can be healed up by

the interface mobility for a finite driving force is enhanced introducing a small mass term which must eventually be set

just below the roughening temperature. The behavior of thé0 zero when evaluating measurable quantities like, for in-

depinning field close td pg is critical, with the same expo- stance, the pair correlatiofisee Eq(A1l) below].

nentw of the free energy. In order to calculate thermodynamic averages over qua-
Finally, we find that the variational approach can repro-dratic Hamiltonians, the Gaussian integral

duce many of the subtle features of the layering phase dia-

gram of nqble gases adsorbed on an attractive substr.ate.. In f Dh e hVht+bh_ WN/Z(detV)7(1/2)e(1/4)bv—1b’ (A7)

particular, if parameters are chosen such that bulk PR is first

order, cIe_ar evidence is _found for the zippering behavior obig useful, whereV is any positive-definite matrix,h

served in the experimerits an(g also predicted by _r L 1 andb is any complexN-component vector.

renormalization-group argument$® A substrate-induced We used the notatio®h=11,dh,. Observe that déf is

6-DOF phase is also predicted, leading to a quarter-coveraggm iy the product of theV eigenvaluesall positive. In
region in the phase diagram. particular

(A6)
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APPENDIX A: VARIATIONAL FREE ENERGY ference:

In this appendix, we compute some surface quantities 2th(h§—hxhy)e—th
which are averages over the ensemble specified by the qua- ((he=hy) = [Dhe PVh . (A9)
dratic Hamiltoniar, in Eq. (3.3), with continuous heights.
We first simplify the notation by defining a matrix, such  Using the result

that 7
~hVh_ —hVh+Jh
53 , f Dh hyhe (&Jany J Dh e )J—O
> % (hi—his ) :XEy hVyyhy=hVh. (A1)
' ’ 1
__ -1
We usexy, . .., aswell asi,j, ..., throughout this section =5 %ceVy (AL0)
to indicate the sites of a square lattice. Equatiaf) yields . .
one finally obtains
Vx,y:ﬁ‘](45x,y_ 5|xfy|,1):Vy,x- (A2) ) 1 1—elP-(x=y)
. . . : . h,—h == ~ In|x—y|,
Translational invariance of imposes the existence of plane- {(=hy)%)ce N % A(p) 27 BJ x=Vl
wave eigenvectors (A1l

which diverges at large distance, although as slow as a loga-
2 Viy€PY=A(p)eP, (A3)  rithm.
y Another matrix we introduce i8V, defined through

with eigenvalues BJ
— 2 (h=hi )*+BIE 2 hi=hwh (A12)
A(p)=2BJ(2—cospy—Cospy) (Ad) ho '

(we choose a unitary horizontal lattice spaging/e use pe- Itis fairly simple to show that

riodic boundary conditions to fix thp values. For a rectan- W o= BI(4+& 26— 5 A13

gularL, XL, box, we havep= (n,/L,)b,+(ny,/L,)b,, with ny =PI+ L) 0™ Oyl (AL3)

n=01,..L4,—1, n=01,..L,~1, b=2me, and b, and

=2me,.

y l;gll\rjgdoirr:rl?gon:gty of plane waves, E@3) can be eas- Ey: nyyeipy:g(p)eip.x, (A14)
X,y 1
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with Then, usingh/ =h,—h, we have
-2
9(p)=2pBJ| 2—cosp,—cospy+ —-|.  (ALS) ,B(H—Ho)thh—h’Wh’+/3y2§i: [1—cog27h))]
At variance withx (p) ~1,g(p) ! acquires a mass tergi 2
in the largeN long-wavelength limit +BYs>, [1—cog4mh))]. (A19)
i
1 . .
BIg(p) = —o—s. (A16)  The average of the first part of EGA19), given the formula
pe+é 2V, y=0 and using Eq(A10), comes out as

The outcome of this is that a term liké¢~2S;h? in the

Hamiltonian makes the surface flat, since it gains a finite  (hVh—h'Wh')o=(h"(V—W)h')y= 2 (Vyy—Wyy)
correlation lengthé. This follows from the estimate of the
average square height difference at large distahcey|
>§’12 ><<h>/<h§>o:%)<2y (Vx,y_vvx,y)w_1
1 1—gelP (x=y) ’
hy—hy) o= —_— _
(h)o=] 2 ) =3 o) Ap-1. (a20)
1 In & | @& o (x=yll9) Then it follows from Eq.(A7) that
273 2|x—y] ’ . - .
(A]_?) <e|bh>O:e|bhe—(1/4)bW b, (AZ].)
Given all of the above, we calculate the right-hand side ofWith bh=hZ;b; . In particular:
Eq. (3.4). The first ingredient we need is <et2~rrihx>0:etZ‘rrih_ef(ﬂ-z/N)Epg(p)fl. (A22)
BFo=—1 D In[ 7g(p) 1] (A18) Collecting together all the foregoing results, we finally ob-
' tain
BF*=BFo+ B(H—Ho)o= 3 - |n[wg(p)‘1]+%% [9(P) "\ (P)— 1]+ NBy>
— 2 — 4772
X | 1—cog2mh)ex —W% g(p) ||+ NPy, 1—cog4mh)ex N Ep ag(p) . (A23)

Choosingg(p) andF=<hi)0 as free parameters, we select them by requiring @&t be minimum. A necessary condition
for that is to havesF* =0, from which

2 2
g(p)=Mp>+2w2ﬁy2cos2wﬁ>exp( - 2 9P +8w2,8y4cos(4wF>exp( - 4% 2 g(prl) (A24)

and

sin(2h)

— 372 B
y2+4y4cos(2wh)exp( N > g(p) 1) } =0. (A25)
p

Among the solutions to the two joint equatiofs24) and  ~(N/2m) [{pF(p)dp. We thus find
(A25), we must ultimately choose the one providing the ab- LS 1
solute minimum of8F*. In turn, this gives thosa(T) and 2 ) nLrg(p) ]
&(T) that qualify the thermodynamic phases of the surface as N - N
described by the Hamiltoniaf8.1). = —7In—=+-—(72+£2)
We can further simplify EqQ9A24) and(A25) by making 8 BJ 8w
explicit the ¢ dependence. In the thermodynamic limit, a s o, N N
sum 3 F(p) is evaluated as N/ g dp/(27)2]F(p) XIn(m+ &)+ Eg In & g™ (A26)



3122 SANTI PRESTIPINO AND ERIO TOSATTI PRB 59

. i, N , 6-DOF phases can appeat’ Even fory,>0, solution type
3 2 [9(p) N (p)—1]=— 8¢ N1+ (76, (3) may become relevant in presence of a strong substrate
P (see Sec. VIl For a free surface, and wity,>0, we can

(A27) ignore this, and the& functional to minimize becomes
2
_ -1) — 21— (ml4BJ) T
ex;{ N % g(p) ) [1+(7T§) ] . ,8Af*=§IH[1+(7T§)‘2]—B|y2|[1+(wg)z]_("/‘w”
(A28)
_ 21=(mBI)
In particular, BF* in the rough phase is given by: BYal1+(mE)7] ' (A33)
N N with Fbeing an integer foM<Tpg and a half-integer for
BF*(£72=0)=— 87 In ,8_71:]+ gﬂ.“n(WZ)_l] T>Tpg. Similarly, Eq.(A24) can be rewritten as
J 72:2 2 1+ 27— (wl4pJ)
ENB(Ya+Ya). (A29) £ Yol [ 1+ (7é)°]
2 21— (=l BJ)
Choosing the free energy of the rough surface as the refer- 87y [ 1+ (mE)’] ‘ (A34)
ence, we have Minimization of the variational free energ§A33) is dis-
cussed in Sec. lll, together with the analysis of the solutions

to Eq. (A34).

Our final comment is about the lattice geometry. One may
ask whether the above conclusions retain their validity if a
_ zln[1+(w§)’2] different host lattice is used. In particular, here we consider

8 here the case of a triangular lattice. We expect that only

_ nonuniversal quantities like the transition temperatures de-

— By,cog 2mh)[1+(m§)?]~ (4D pend upon the lattice geometry. In order to prove this, we

— 21— (i) start from Eqs(A2) and (A4). In the hypothesis of a trian-
~ Byscog4mh)[1+(mE)7] - (A30)  gular host lattice, they are to be modified as follows:

1
BAT*=C[BF* — BF*(¢£72=0)]

From Eq.(A25), we obtain three possible choices faor Vyy=BI(68y— Six—y|.1) (A35)
(1) h=..,-2-1012,., and
B +v3 —V3
(@) P=..-3-bd (A31) x<p>=2w{3—cospx—wf(—px 2 py)‘”s(—px 2 py”

— Yy . 3
(3) cos<27h)=—4—;[1+<w5)2]3 163, ~ >8I, (A36)

Solutions of type(1) correspond to the ordered flat surface, respectively. Similarly, Eq(A16) becomes
and those of typé2) to the disordered flafDOF) surface.

Type (3), finally, corresponds to the so-calledDOF sur- 1
face?531%|n particular, a necessary condition for solutions BIg(p) "=
of type (3) to be valid isé<1/m[(4y,/|y,|)*#3™—1]Y2

Plugging Eqg.(A31) into Eq.(A30), we obtain three possible with different wave vectors than before. They now rgad

—, (A37)
3pPHe?

expressions for the free energy: =(ny/Lyby+(ny/L,)by, with bX:27-r[ex—(1/f3)ey] and
by=(4m/v3)e,. In particular, the area of the first Brillouin
x_ —27_ 27— (wl4Bd) zone is now (2r\2//3)2, and the rule for summing up over
BATY 8|n[1+(w§) 1= Byl 1+ ()] all wave vectors becomes:

= BYa[1+ (w21, V3 (V23w

1 V3 dp
N% F(p):fJ'BZWF(D)*EfO pF(p)dp

BAT =g I 1+ (78) 2]+ By [ 1+ (m)?] (745

1 (= \F
=-— "F —p’ |dp’. A38
— Byd L+ (mg)?] I8, (A32) 27 Jo P ( v’ ) P A39
- By2 Given Eq.(A38), and definingd’ =v3J, &' “2=¢ 2/V3, we
BAFE=—In[1+ (&) 2]+ _2[1+(7T§)2]w/2ﬁd see that any expression involving only sumsggp) func-
8 8Y4 tionals, like the free energdA23), becomes equivalent to its
+ By 1+ (mE)2] (7B, square-lattice form if we just replackwith J' and £ with

&', In this way, the theory exposed above is still vdkdth
We immediately see that free energy of ty(®, when it  the only exception of EqA17), to which Eq.(A38) is not
does exist, is always larger than the other two, so long adirectly applicablg, but with a new temperature scdl¥/kg
y4>0. This is no longer true whey,<0, where stable instead ofJ/kg) and also a rescaled correlation length. In
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particular, surface roughening on the triangular lattice wouldHere H contains a term-A u=;h; which makes the crystal

occur at 43/4 (in units of J/kg). grow at the expense of the vacuum. Note that the stationary
solution to Eq.(B1) for Au=0 is P{h)xexp(—BH),
APPENDIX B: FOKKER-PLANCK EQUATION which ensures Boltzmann fluctuations at equilibrium.

We denote ag---)p the average/Dh P(h,t)(--+) over

This appendix is meant to help the reader follow our deri-yhe hejght distribution. First we calculate the evolution of the
vation, which is formally somewhat different from that of height at a given site of the lattice:

Saitol? even if close in its essence. We derive differential

equations for the average height and the pair-correlationd dP(h,t) B SH 1 6P
function in nonequilibrium conditions when a Gaussian an-a( [ P:J h T T, J Dh( Per EE)
satz is made on the height distribution functiBig{h;},t), ' '

abbreviated a$(h,t). The latter obeys the Fokker-Planck B | oH
equation(5.5), which we here reproduce for the reader’s con- I ohi/ .’ (B2)
venience: P

where we used the fact thBtgoes to zero at infinity. Then,
dP(h,t) _EZ i(Pﬁ+lﬁ) ®1) We consider the second cumulan{(h;—(h;)p)(h;
at TG 6h sh; B éhy)’ —(h;j)p))p, Whose first-order time derivative reads

aP(h,t) B SH 1 6P SH 1 6P
f Dh p (hi=(hi)p)(h;—(h;)p)=— th P5_N+E5_hi (hj—<hj>P)+fDh(P5—hj+E5—hj)(hi_<hi>P)

B[ |1 oH 2
=- ;[<5—m(hj_<hj>p)> P+<5_hj(hi_<hi>P)> . E%}- (B3)

Equations(B2) and(B3) are to be made explicit by specifying the formRf We make two assumptioﬁ%.(l) homoge-
neity, (hj)p=h(t); and(2) Gaussian distribution for the heights, i.@(h,t)exp{—ZX; [h—h(t)]W;®)[h—h()]}, with Wj;
=W;i=W, yj+k- This last assumption is not bad, provided the system is not much far from equilibrium. Using

oH
= 232, (hi—hi, 5+ 2my,sin(2mh) + 4my,sin(4wh) — Ap, (B4)
i S

we readily obtain

h( 2
@% Au—2wyzsir[2wﬁ<t>]exp< “T e —4wy4siri4wﬁ<t>]exp( —(4mIN X g(p,nl”,
p p

(B5)
|
where the following resolution was used: <[hi_mt)]ei2ﬂ'ihj>P: + W L= 2mih()
+ i
2
1 eip'(X*y) F{_ ™ E 1
-1 = — . Xex N g(pyt) ’
Wy (=] 2 gip) (86) N %
(B8)
Note that in the absence of any driving force the system
gradually approaches equilibrium, and EB5) gives back .
Eq. (A25). and finally
Then we need the evolution equation gfp,t). To this
end, we use EqB3) which we now make less cumbersome. - _, —
First, we havecf. Eq. (A10)] ([hi—h(t)]sin(27h;))p=7W;; "cog 27h(t)]
77_2
_ _ 0 -1
([ =1L = (B T)e=2W; Xb). (B7) Xexf{ N2 9Py,
(B9)

Upon inserting Eq(B4) into Eq.(B3), we are led to evaluate
([hi—h(t)]sin(27h))p. Using the same trick as in Eq.
(A10), we obtain Likewise, we have
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([hi—h(t)]sin(4h;))p=27W; ‘cog 47h(t)]

d -1 4 -1
ag(p,t) =—;g(p,t)
2
4qr
><exp<——2 a(p.t) L.
N p

X| N(p)—g(p,t) + 2By cog 2mh(1)]
(B10)
2

Finally, using Eqs(B7) and (A4), we obtain T _

y, using Eqs(B7) and (Ad) Xex;{—WEpg(p,t) 1)

S (h—hy Il —h01) =3 S (Wt Wik) =

y T o 25 T Tl +8m2By,cod4mh(t)]

472
1 -1
- —1 xexg ——— >, g(p,t) ” (B12

Collecting together all partial results, and usinf,  Again, in stationary conditions, EqB12) gives back the
=(1N)= e ¥ we find, in the end equilibrium result(A24).
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