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Variational theory of preroughening

Santi Prestipino
Istituto Nazionale per la Fisica della Materia, Trieste, Italy

Erio Tosatti*
Istituto Nazionale per la Fisica della Materia, Trieste, Italy;

International School for Advanced Studies, Trieste, Italy;
and International Centre for Theoretical Physics, Trieste, Italy

~Received 1 June 1998!

Saito’s variational mean-field theory of roughening@Y. Saito, Z. Phys B32, 75 ~1978!# is generalized to
include preroughening. The starting point is a sine-Gordon Hamiltonian with a cosine parameter changing sign
at a temperatureTPR . This theory accounts for a number of known features of preroughening from solid-on-
solid lattice models, including logarithmic divergence of the average interface width as a function of the system
size and continuous crystal growth atTPR . WhenTPR reduces to one quarter of the roughening temperature or
less, preroughening becomes first order. We also consider adsorption over an attractive substrate. Using our
variational theory, we calculate adsorption isotherms. They show a reentrant layering pattern, which connects
well with observations for noble gases adsorbed on graphite.@S0163-1829~98!05543-X#
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I. INTRODUCTION

Since the introduction of the preroughening~PR! transi-
tion of crystal surfaces by Den Nijs and Rommelse,1 a num-
ber of theoretical approaches,2,3 and of numerical studies o
solid-on-solid lattice models4,5 as well as of step models,6

have clarified the behavior at this unusual phase transit
Here we list a number of well-established results. The av
age surface height jumps from roughly integer in the smoo
or ordered flat phase, below PR, to roughly half-odd inte
values in the disordered flat~DOF! phase, above PR. Th
average square height difference diverges logarithmically
proaching the~isolated! PR transition temperatureTPR . The
surface-specific heat has a nonuniversal singularity at
Crystal growth is continuous exactly atTPR , and is layer by
layer, with a finite activation energy, both below and abo
TPR . Transitions between half-integer coverages are
pected in adsorption over an attractive substrate at temp
tures betweenTPR andTR .

Clearcut experimental evidence of a surface PR transi
on e.g., metal surfaces, has apparently not yet been id
fied, possibly due to slow kinetics or to associated pha
separation phenomena between DOF phases with neigh
ing heights.7 However, reentrant layering has been observ
in adsorption isotherms for several rare gases on graphi8,9

and has been attributed to PR.10 Preroughening is also foun
in realistic Lennard-Jones surface simulations,11 where it ap-
pears to mark the onset of surface melting.

Surprisingly enough, there is as yet no mean-field tre
ment of PR for comparison with this wealth of theoretic
experimental, and simulation evidence. In the present pa
Saito’s treatment of the roughening transition,12 which em-
ploys a variational, mean-field approach to study surf
equilibrium, supplemented by a Langevin equation
growth and dynamics, is extended to PR. The extensio
obtained simply by allowing, phenomenologically, the c
sine parameter of the sine-Gordon trial Hamiltonian to
PRB 590163-1829/99/59~4!/3108~17!/$15.00
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come negative at a temperatureTPR ~the PR temperature!
below TR .1 In this way, we are able to reproduce, qualit
tively in all cases, exactly in some cases, the known phen
enology related to PR and to the DOF phase.

This paper is organized as follows. After an initial revie
in Sec. II of known results which will be needed later, w
present in Sec. III our model and the variational derivation
its static properties, and in Sec. IV a numerical exemplifi
tion of the equilibrium phase diagram in a variety of cond
tions. Then, in Sec. V, we consider growth, by analyzing
dynamical response to a chemical-potential driving force
Sec. VI, we consider adsorption on a substrate, and de
adsorption isotherms, which are in their turn exemplified n
merically in Sec. VII. Finally, we present a short discussi
and concluding remarks in Sec. VIII.

II. BRIEF REVIEW

Crystal surfaces are often described within the solid-
solid ~SOS! approximation, characterized by a single tw
dimensional lattice height variablehi , separating the interior
of the crystal and the outside vacuum.13 The simplest non-
trivial surface model of this kind is the discrete Gauss
~DG! model

HDG5
J

2 (
i ,d

~hi2hi 1d!2, ~2.1!

with integer heights,hi50,61,62,..., andwhere the sum is
restricted to nearest-neighbor pairs of lattice sites~to be spe-
cific, from now on we consider a square lattice!. In Eq. ~2.1!,
J.0 is the surface stiffness, and the heights are expresse
units of the vertical lattice spacing. The DG model is w
known14 to undergo a roughening transition of the Kosterlit
Thouless type atTR54/p ~hereafter, all temperatures i
units of J/kB!.

A closely related model is the sine-Gordon model
3108 ©1999 The American Physical Society
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HsG5
J

2 (
i ,d

~hi2hi 1d!21y2(
i

@12cos~2phi !#,

~2.2!

with continuous heights andy2.0. This model is in the
same universality class as the DG model,15 but is easier to
handle analytically, being a field theory. A number of we
known results have been obtained from renormalizati
group treatments of Hamiltonian~2.2!.16 Summarizing, the
roughening transition is of infinite order, i.e., the surface f
energy shows an essential singularity atTR of the kind f
;exp$2AuT2TRu21/2%; belowTR the surface is flat, meanin
that the average surface heighth̄5^(1/N)( ihi& is well de-
fined, and the average square height difference approach
number at large distance. Precisely, one finds

^~hi2hj !
2&;2^~hi2h̄!2&1B expS 2

ur i2r j u
j D , ~2.3!

with a correlation lengthj diverging, as the roughening tem
perature is approached from below, asj;exp$C(TR
2T)21/2%.

Two decades ago, when renormalization-group meth
were in their infancy, Saito devised a variational theory
the roughening transition which, even if partly failing to r
produce the precise behavior atTR , nonetheless had the ad
vantage of capturing the main features of the roughen
phenomenon, being in addition transparent a
straightforward.12 In this approximation, the transition tem
perature is exact, and the infinite-order character of the t
sition is accounted for. More detailed, the form of the fre
energy singularity is slightly wrong, since one find
2 ln fsing; ln j;(TR2T)21, instead of (TR2T)21/2, for T
&TR . In dynamics, Saito’s theory correctly describes t
jump from activated to continuous surface growth, reprod
ing the results of the more rigorous theory.17,18

Given its simplicity and effectiveness, it is desirable
generalize this kind of variational theory so as to embody
additional possibility of preroughening. The usual way
introduce PR in a SOS Hamiltonian is to add some inter
tion between the surface steps. When parallel steps~i.e.,
steps of same sign! repel each other more than antiparal
steps, PR will generally occur at some temperatureTPR
,TR . BetweenTPR andTR , the surface is in a DOF state
characterized by a mesh of up-down correlated steps, lea
to a half-coverage of the topmost surface layer, that is t
half-odd-integer average surface height. One particular c
of antiparallel-step attraction, leading to PR, is realized
some surfaces which have a tendency toward missing-
surface reconstructions. When realized, as for example
Au~110!, these reconstructions consist of a statically orde
array of up-down steps, already leading to half-coverag
T50. In this case, the PR transition and the deconstruc
transition coincide.

III. MODEL AND ITS VARIATIONAL TREATMENT

Phenomenologically, preroughening can be mimicked
means of a sine-Gordon Hamiltonian, where the cosine
rameter sign can change.10 For example, it suffices to modify
the sine-Gordon model slightly as follows:
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H5
J

2 (
i ,d

~hi2hi 1d!21y2(
i

@12cos~2phi !#

1y4(
i

@12cos~4phi !#, ~3.1!

by keepingy4.0 constant, and by allowingy2 to change
sign at a temperatureTPR . To be specific, let us assume
linear T dependence

y2~T!5C~TPR2T!, ~3.2!

with C.0. Equations~3.1! and~3.2! can be considered as
coarse-grained approximation to the true microscopic Ham
tonian, in thatC, TPR , andy4 parametrize for a specific SO
lattice model exhibiting the same thermodynamic propert
An explicit mapping between a restricted SOS model w
parallel-step repulsion and a sine-Gordon-type free ene
with y2 changing sign at some temperatureTPR has been
recently produced using a plaquette mean-field theory.19

The mechanism inducing PR in the Hamiltonian~3.1! is
simply explained. Wheny4.0 and the temperature is no
too high, the cos(4ph) term pins the surface height indiffer
ently at either integer or half-integer values. However, asy2
becomes negative, i.e., upon crossingTPR , the average sur-
face height jumps from integer to half-integer, thus provo
ing PR of the surface.

Variationally, we can now approximate the exact, u
known free energy ofH by means of that generated by
simpler, soluble Hamiltonian:

H05
J

2 (
i ,d

~hi2hi 1d!21Jj22(
i

~hi2h̄!2, ~3.3!

with continuous heights. Here the average heighth̄ and the
correlation lengthj are variational parameters~both are as-
sumed to be dimensionless, measuring numbers of ver
and horizontal lattice spacings, respectively!. As in other
mean-field theories, the variational principle is provided
the Bogolubov thermodynamic inequality20

F<F01^H2H0&0 , ~3.4!

whereF0 is the free energy relative toH0 and ^¯&0 is an
average over the ensemble specified byH0 . At each tem-
perature, choosing suchh̄ and j that minimize F* 5F0
1^H2H0&0 will give the optimal free energy per site as

f best~T!5
1

N
min
$h̄,j%

F* ~T;h̄,j!. ~3.5!

At the same time, we shall identify the stable surface ph
according to the following ‘‘dictionary’’: j2250, rough
phase; half-integerh̄ andj22.0, DOF phase; integerh̄ and
j22.0, ordered flat phase.

Details of the calculation, which is straightforward, can
found in Appendix A. In the rough phase, the variational fr
energy reads:
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b f * ~j2250![
bF* ~j2250!

N

52
p

8
ln

p

bJ
1

p

8
@ ln~p2!21#1b~y21y4!,

~3.6!

with bJ51/T. Equation~3.6! gives the optimal free energ
wheneverD f * (j22)[ f * (j22)2 f * (0) is minimum atj22

50 ~i.e., strictly positive!. It is shown in detail in Appendix
A that

bD f * 5
p

8
ln„11~pj!22

…

2by2cos~2ph̄!@11~pj!2#2~p/4bJ!

2by4cos~4ph̄!@11~pj!2#2~p/bJ!, ~3.7!

with

sin~2ph̄!50 ~3.8!

and

Jj2252p2y2cos~2ph̄!@11~pj!2#2~p/4bJ!

18p2y4cos~4ph̄!@11~pj!2#2~p/bJ! ~3.9!

as necessary conditions in order thatD f * be extremal.
We have two classes of solutions forh̄ from Eq. ~3.8!:

integers @cos(2ph̄)51# and half-integers@cos(2ph̄)521#.
Given Eq.~3.2!, the ordered flat phase~integer h̄! is more
stable than the DOF phase~half-integerh̄! when T,TPR ,
and the opposite forT.TPR . Hence, PR occurs precisely
TPR . Moreover, y2cos(2ph̄)5uy2u, cos(4ph̄)51, and Eqs.
~3.7! and ~3.9! simplify to

bD f * 5
p

8
ln@11~pj!22#2buy2u@11~pj!2#2~p/4bJ!

2by4@11~pj!2#2~p/bJ!, ~3.10!

Jj2252p2uy2u@11~pj!2#2~p/4bJ!

18p2y4@11~pj!2#2~p/bJ!. ~3.11!

Equation ~3.11! is still too complex to solve analytically
However, we can at least analyze what happens nearTR and
TPR where, as can be readily shown, there are divergej
solutions to Eq.~3.11!.

Whenj@1, Eq. ~3.11! becomes

2
uy2u
J

~pj!2@12~T/TR!#18
y4

J
~pj!2@12~4T/TR!#.1,

~3.12!

whereTR54/p. If T&TR , then (pj)2@12(4T/TR)#!1 can be
ignored, and we obtain
j.
1

p
expF 1

2
lnS J

2uy2~T!u D
12

T

TR

G , ~3.13!

which diverges to1` as T→TR
2 , providedJ/@2uy2(TR)u#

.1, or C,C* (TPR), where

C* ~T!5
J

2~TR2T!
. ~3.14!

Wheny2 is a positive constant, Eq.~3.13! describes the be
havior near the roughening transition.12 HenceTR is recog-
nized as the roughening transition temperature. As alre
noted,j in Eq. ~3.13! diverges with the wrong power of 1
instead of1

2 . WhenC.C* (TPR), there is no divergent so
lution to Eq. ~3.11! for T&TR , andj remains finite atTR ,
which therefore is no longer the roughening temperature.
we shall see below, the true roughening is first order a
takes place atTR* .TR .

Now considerT.TPR , when TR/4,TPR,TR . In this
case, a divergentj must be such that

2CuT2TPRu
J

~pj!2@12~TPR /TR!#.1, ~3.15!

leading in turn to

j.
1

p S 2CuT2TPRu
J D 21/@2~12TPR /TR!#

;uT2TPRu2n,

~3.16!

with

n5
TR

2~TR2TPR!
. ~3.17!

Hence,j diverges as a power law at the PR transition. No
in particular, the absence ofy4 from both Eqs.~3.13! and
~3.16!. For this reason,y4 is irrelevant to the critical behavio
of the extended sine-Gordon model, at least so long asTPR
.TR/4.

According to Eq.~3.16!, the bestH0 at TPR is a Gaussian
model, i.e., the same as for the regular rough phase. Thus
a finite surface of lateral sizeN at T5TPR we have^dh2&
;(1/4pKc)ln N, with a roughness parameterKc5pn/(4n
22) ~Ref. 1! equal to

Kc5
p

4

TR

TPR
. ~3.18!

We note that the absolute surface roughness exactly at P
measured by the prefactor of lnN, namely, 1/4pKc , is just a
fraction TPR /TR of that at roughening, and will thus be pro
portionally lower, the lowerTPR is with respect toTR .

Given Eq. ~3.17!, the specific-heat exponent is obtaine
from the hyperscaling relation:

a5222n5
TR22TPR

TR2TPR
. ~3.19!

a is negative forTR/2,TPR,TR , varying from 2` as
TPR→TR

2 , to 1 2
3 as TPR→(TR/4)1. Nonuniversal critical
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PRB 59 3111VARIATIONAL THEORY OF PREROUGHENING
exponents have indeed been predicted for PR.1 Equations
~3.17! and ~3.19! indicate an approximate connection b
tween them and the transition temperatures.

Another important quantity is the PR order paramet
defined~in the smooth phase! as

P5U K 1

N (
i

~21!hiL
0
U. ~3.20!

After noting that (21)hi5ep ihi, we can use Eq.~A21! to
obtain P5@11(pj)2#2(p/16bJ). In particular, for T&TPR
we haveP;(TPR2T)bP, with

bP5
TPR

4~TR2TPR!
. ~3.21!

This result is consistent with Gaussian criticality at P
which would in fact predict the samebP , i.e., (p/4)/(4Kc
2p).4

WhenT5TPR5TR/4, Eq. ~3.11! becomes

Jj~TPR!225
8p2y4

11p2j~TPR!2 , ~3.22!

which gives a finite j solution, j(TPR)51/p@(8y4 /J)
21#21/2, wheny4.J/8. Otherwise, the only solution to Eq
~3.22! for y4,J/8 is j(TPR)51`.

When TPR,TR/4, there is noj divergence from Eq.
~3.11! nearTPR . In fact, j shows a cusplike singularity a
TPR , and PR becomes first-order~Sec. IV!. j(TPR) can still
diverge exponentially asTPR→(TR/4)2:

j~TPR!.
1

p
expF 1

2
lnS J

8y4
D

12
4TPR

TR

G , ~3.23!

but only if y4,J/8. Otherwise,j(TPR) remains finite as
TPR→(TR/4)2.

Finally, wheny450 andT.TPR , the correlation length
behaves like Eq.~3.16!, which is now valid for anyTPR
,TR . This means that the change from critical to first-ord
behavior atTPR5TR/4 only occurs wheny4.0.

We now evaluatê(hm2h̄)2&0 for hm5(1/N)( ihi , in or-
der to check how sharply ish̄ defined at equilibrium. Using a
similar device to Eq.~A10!, we obtain:

^~hm2h̄!2&05
1

N2 (
i , j

^~hi2h̄!~hj2h̄!&05
j2

2NbJ
,

~3.24!

which is to be considered as a good definition wheneverj is
finite, i.e., away from criticality.

Once j(T) is given, the average surface width follow
directly from the general relationship@after Eqs.~A20! and
~A27!#

^dh2&[
1

N K (
i

~hi2h̄!2L
0

5
1

8pbJ
ln@11~pj!2#.

~3.25!
r,

,

r

Using the above results, we can derive the behavior of^dh2&
near criticality. ForT&TR andC,C* (TPR), we have

^dh2&.

T

2p2 lnS J

2uy2~T!u D
TR2T

~3.26!

~power-law singularity at roughening!, whereas

^dh2&.2
T

2p2~TR2TPR!
lnS 2CuT2TPRu

J D ~3.27!

nearTPR , whenTR/4,TPR,TR ~logarithmic singularity at
PR!.

Finally, we analyze the free-energy singularity at the tw
transitions, as follows from Eq.~3.10! and from the abovej
solutions. WhenT.TR andj22!1, one has

bD f * .
1

8p
j22, ~3.28!

andj2250 is a local minimum ofD f * , but not necessarily
the lowest. On the other hand, whenT,TR , j2250 pro-
vides a local maximum forD f * ~i.e., zero!. When T&TR
andj22!1, it follows that

D f best.2
J

2 S 12
T

TR
DexpF 2

lnS J

2uy2~T!u D
12

T

TR

G ,

~3.29!

as long asC,C* (TPR). D f best then shows an essential sin
gularity atTR , but of the wrong type, as already commente
NearTPR , j only diverges forTPR.TR/4, in which case we
have

D f best.2
J

2 S 12
TPR

TR
D S 2CuT2TPRu

J D v

, ~3.30!

with

v52n5
TR

TR2TPR
. ~3.31!

We remark that the specific heat, proportional
]2D f best/]T2, behaves likeuT2TPRuv22 near PR; hencea
522v, a result consistent with hyperscaling@Eq. ~3.19!#.

All of the above indicates that PR only exists as a co
tinuous transition whenTPR.TR/4. We now move to the
numerical analysis and see whether the solutions found
ally provide in each case the absolute minimum free ene

IV. NUMERICAL RESULTS: FREE SURFACE

In order to make these results more tangible, we n
present a numerical exemplification. In Fig. 1, we plotj(T)
for TPR50.5, C50.5J, and y450.1J ~other values ofy4
were not found to affect substantially thej profile in Fig. 1!.
Note thatC,C* (0.5). Looking at Fig. 1, we see that th
correlation length distinctly diverges at PR as a power l
@cf. Eq. ~3.16!#, signalling a second-order phase transiti
~with a50.353!. When approachingTR from below, j di-
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verges even faster@cf. Eq. ~3.13!#, while remaining infinite
aboveTR . We also verified thatD f best has the expected be
havior nearTPR @cf. Eqs.~3.30! and~3.31!# and nearTR @cf.
Eq. ~3.29!#. The scenario represented in Fig. 1 is thought
be generic, as far asTPR.TR/4. In this case, our variationa
theory gives a reasonable account of the behavior of the
stricted SOS model of Ref. 4. There PR is signalled by
switch from integer to half-integer mean height, and also
the logarithmic broadening of the surface upon increasing
lateral size.

In Fig. 2, we plotj(T) for TPR50.25, C50.5J, in the

FIG. 1. Variational correlation lengthj(T) when TPR50.5, C
50.5J, and y450.1J. With these parameters,C,C* (0.5). The
correlation length is1` beyondTR54/p. Continuous lines give
the behavior near the two transition points@cf. Eqs. ~3.13! and
~3.16!#. We note from this picture that the critical region exten
well beyond a small neighborhood of the two transition points.

FIG. 2. Variational correlation lengthj(T) when TPR50.25,
C50.5J, for y450 ~h! andy450.1J ~3!. With these parameters
C.C* (0.25), and the correlation length remains finite atTR ,
which in this case is not the roughening temperature. There is
stead a first-order roughening transition atTR* 51.2785.TR . The
PR transition is critical fory450, but first order fory450.1J ~in the
inset, the free energybD f best for y450.1J shows a cusplike singu
larity at TPR!.
o

e-
e
y
ts

two casesy450 and y450.1J. Now C.C* (0.25). Al-
though thej profile for y450 is quite similar to Fig. 1, a
cusp develops atTPR when y450.1J ~D f best behaves like-
wise, signalling a first-order PR transition; see the inset
Fig. 2!. In both cases,j undergoes an infinite jump atT
5TR* 51.2785, slightly aboveTR51.2732~first-order rough-
ening transition atTR* !. This behavior should be represent
tive of the caseTPR,TR/4 in general. We verified tha
TR* (TPR) moves to the left, untilTR is reached, asC
→C* (0.25)1 „the same effect is also obtained by keepi
C50.5J fixed and increasingTPR up to TR2(J/2C)5TR

21…. This indicates that, althoughj2250 is a local mini-
mum ofD f * whenT.TR , it does not represent the absolu
minimum as far asT,TR* , since the branch providing th
minimum D f * for T,TR still gives the stablej solution
until T5TR* .

Then, we numerically check the sensitivity ofj to y4 ,
since there appeared@cf. Eq. ~3.23!# a change of behavior a
y45J/8. Taking C50.5J, we separately considery4,J/8
and y4.J/8. When y4,J/8, j→1` at PR providedTPR
.TR/4, while remaining finite whenTPR,TR/4. In this case,
j(TPR) grows to infinity asTPR→(TR/4)2 according to Eq.
~3.23!. When y4.J/8, we find thatj→1` at PR only if
TPR.TPR* (y4), whereTPR* is a slightly larger temperature
thanTR/4. Otherwise, forTPR,TPR* (y4), j remains finite at
PR, which is then first order. In fact, although a free-ene
minimum is present along the branch providing a divergenj
for any TPR.TR/4, this minimum is not the absolute min
mum until TPR5TPR* (y4). The interval betweenTR/4 and
TPR* is very narrow, and grows only slowly asy4 grows. We
find TPR* (0.126J)50.318 61 (j2250.022), TPR* (0.13J)
50.320 25 (j2250.124), andTPR* (0.15J)50.331 11 (j22

50.804). WhenTPR.TPR* (y4), we also find two further
transitions at temperatures not very far fromTPR ; one inside
the smooth phase~at T5T1,TPR!, and the other inside the
DOF phase~at T5T2.TPR!. They are first-order transition
with a finite jump in the correlation length. These transitio
appear as soon asTPR overcomesTPR* (y4), but they disap-
pear soon after, at two different values ofTPR . We quote
some results relative toy450.15: the transition atT1 is no
longer present forTPR.0.337, whereas the one atT2 has
already disappeared atTPR50.333; furthermore, forTPR
50.3325, we haveT150.3320 andT250.3346. These
prewettinglike transitions have not been described before
our knowledge. Their true physical relevance is at pres
unclear. Besides the evidence of aTR* (TPR).TR @when C
.C* (TPR)#, the only other anomaly found in the theoretic
scenario presented above is the existence of aTPR* (y4)
.TR/4 ~wheny4.J/8!.

In conclusion, we find that the PR transition in the e
tended sine-Gordon model is, according to our variatio
calculation, continuous forTPR.TR/4 and first order for
TPR,TR/4. In terms ofKc @Eq. ~3.18!#, second-order PR
will occur for p/4,Kc,p, while first-order PR will be ob-
served forKc.p. Thep threshold for continuous PR is als
found in the extended BCSOS model of Ref. 21. Moreov
the above results on the nature of the PR transition in
extended sine-Gordon model are in excellent agreement
renormalization-group theory.3 This is gratifying, even if

n-
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somewhat surprising, considering the nominal mean-field
ture of our theory. In fact, our trial Hamiltonian~3.3! em-
bodies nontrivial correlations between the heights, and
explains why the present theory is so informative.

V. GROWTH: LANGEVIN DYNAMICS

In this section, we analyze the near-equilibrium dynam
of the extended sine-Gordon model@Eq. ~3.1!#. We consider
the Langevin growth equation

dhi

dt
52

b

t

dH
dhi

1z i , ~5.1!

where a term2Dm( ihi ~with Dm.0! has been absorbe
into H to induce crystal growth. In Eq.~5.1!, t is the relax-
ation time, and$z i(t)% is a Gaussian white noise:

^z i~ t !&z50, ^z i~ t !z j~ t8!&z5
2

t
d i j d~ t2t8!, ~5.2!

where the averages are over a Gaussian distribu
Pz@$z i(t)%#}exp@2(t/4)*dt( iz i(t)

2#.
A first, limited, result is the exact solution of the Langev

equation for the mean surface heighthm5(1/N)( ihi , when
T5TPR andy450. In this case, Eq.~5.1! becomes
s
p
e

-

a-

is

s

n

dhm

dt
5

bDm

t
1zm , ~5.3!

with zm5(1/N)( iz i , ^zm(t)&z50, and ^zm(t)zm(t8)&z

5(2/Nt)d(t2t8). Integrating Eq.~5.3! and then averaging
we obtain

^@hm~ t !2hm~0!#2&z5S bDm

t
t D 2

1
2

Nt
t. ~5.4!

At equilibrium, Dm50, we find that the interface as a who
diffuses like a Brownian particle, with a diffusion coefficien
1/Nt which is vanishingly small in the infinite-size limit.

Next, we move to the general case. As usual, Eq.~5.1! can
be studied through the associated Fokker-Planck equatio22

]P~$hi%,t !

]t
5

b

t (
i

d

dhi
S P

dH
dhi

1
1

b

dP

dhi
D ~5.5!

for the height density function P($hi%,t)5^P id@hi
2hi„t,$z i(t)%…#&z , wherehi„t,$z i(t)%… is the solution to the
Langevin equation for a particular realization of the nois
Any noise average can be expressed as an ensemble av
over theP distribution, according to:
^F@ˆhi„t,$z i~ t !%…‰#&z5 K E DhP id@hi2hi„t,$z i~ t !%…#F~$hi%!L
z

5E Dh^P id@hi2hi„t,$z i~ t !%…#&zF~$hi%![^F~$hi%!&P .

~5.6!

It is shown in detail in Appendix B that, upon assuming a Gaussian forP, the average surface heighth̄(t) and the pair
correlation in momentum spaceg(p,t) are found to obey the equations

dh̄~ t !

dt
5

b

t FDm22py2sin„2ph̄~ t !…expS 2
p2

N (
p

g~p,t !21D 24py4sin@4ph̄~ t !#expS 2
4p2

N (
p

g~p,t !21D G , ~5.7!

d

dt
g~p,t !2152

4

t
g~p,t !21Fl~p!2g~p,t !12p2by2cos@2ph̄~ t !#expS 2

p2

N (
p

g~p,t !21D
18p2by4cos@4ph̄~ t !#expS 2

4p2

N (
p

g~p,t !21D G . ~5.8!
Equations~5.7! and~5.8! form a set of coupled equation
which appears hard to solve. As in Ref. 12, we decou
these two equations by neglecting the effect of a tim
dependenth̄ on the evolution ofg(p,t), which is then iden-
tified with the equilibriumg(p) ~quasistationary approxima
tion!. In this way, we wind up with:

dh̄~ t !

dt
5

b

t
$Dm2sgn~y2!Dmcsin@2ph̄~ t !#

2Dmc8sin@4ph̄~ t !#%, ~5.9!

where
le
-

Dmc52puy2u@11~pj!2#2~p/4bJ!,
~5.10!

Dmc854py4@11~pj!2#2~p/bJ!.

The form of the solution critically depends uponDmc and
Dmc8 . A special case is whenj is infinite ~PR, when critical,
and the rough phase!. In this case,Dmc5Dmc850 and Eq.

~5.9! is easily solved ash̄(t)5(bDm/t)t, which describes
continuous growth. This is well known,17,18and also found in
Monte Carlo simulations of restricted SOS models.4,23

The behavior ofDmc and Dmc8 , for T&TR and C
,C* (TPR), is easily found to be:

Dmc.2puy2u~pj!22T/TR, Dmc85O~Dmc
4!. ~5.11!
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Dmc is called the depinning field since the crystal does
grow for Dm,Dmc ~see below!. At first sight, it is puzzling
that, according to Eq.~5.11!, Dmc close toTR appears to be
set by the energy scaley2 ~the bare surface pinning potentia!
rather thanJ ~the renormalizedpinning potential!, as it
should be on physical grounds. For example, Nozie`res and
Gallet18 showed that the depinning field

Dmc;
ga2

j2 , ~5.12!

whereg is the renormalized surface stiffness atTR , anda
(here51) is the step height. Sincega25 p

2 kBTR ,18 which in
turn equals 2J, one hasDmc;2J/j2. However, a simple
algebraic manipulation@see Eq.~3.13!#,

~pj!2~2T/TR!.S J

2uy2u D
2T/~TR2T!

.
J

2uy2u ~pj!22,

~5.13!

shows that

Dmc.
J

pj2 , ~5.14!

that is, our result forDmc below roughening is in fact in full
agreement with Eq.~5.12!, and is correctly controlled byJ
and not byy2 .
-
e

w

lt
t Next, let us consider what happens to the depinning fi
just below and just aboveTPR . There are no previous result
about this. ForTPR.TR/4, PR is critical and we find from
Eqs.~5.10! and ~3.16!:

Dmc;uT2TPRuv, Dmc8;uT2TPRu4TPR /~TR2TPR!,
~5.15!

where v5TR /(TR2TPR) is the same exponent as for th
free energy@cf. Eq. ~3.30!#, and is typically much larger than
1. It follows that pinning of the flat surface to integer heig
values and that of the DOF surface to half-integer hei
values close to PR is much stronger in comparison with t
found below roughening. A glance at Fig. 1, for examp
shows thatj2 will grow large only very close toTPR , which
implies, via Eq.~5.14!, that only there doesDmc truly be-
come small.

Finally, we find that the role ofDmc8 is irrelevant: since
4TPR /(TR2TPR).v @cf. Eq. ~3.31!#, there exists a neigh
borhood ofTPR whereDmc8!Dmc , meaning thatDmc8 can
be neglected at least sufficiently near criticality.

We now wish to computeh̄(t). Equation~5.9! is exactly
solvable wheny450.12 We seth̄(0)50 and distinguish be-
tween a! Dm.Dmc and b! Dm,Dmc . In case~a!, we find
s

d

h̄~ t !5
1

p
arctanF sgn~y2!Dmc1D tanS pbD

t

t
2sgn~y2!arctan

Dmc

D D
Dm

G1n, ~5.16!

for (n21)(t/bD)1t0,t,n(t/bD)1t0 , n integer, with D5ADm22Dmc
2 and t05(t/bD)@ 1

2

1(1/p)sgn(y2)arctan(Dmc /D)#. h̄(t) is a stepwise increasing function of time with step periodt/bD. The increase become
linear asDm grows to infinity. h̄ is never stationary; however, its rate of increase is minimum ath̄5 1

4 1k, k integer, when
y2.0 ~smooth phase!; or at h̄5 3

4 1k, k integer, wheny2,0 ~DOF phase!. This feature is different from results of restricte
SOS simulations, where the staircase plateaus occur rather accurately at integer or half-integer numbers~whenT,TPR or T
.TPR , respectively!.4,23

Below the critical depinning field~case b!, Dm,Dmc, one finds

h̄~ t !5
1

p
arctanF sgn~y2!Dmc2D

Dm

e2pbD~ t/t!21

e2pbD~ t/t!2
sgn~y2!Dmc2D

sgn~y2!Dmc1D
G , ~5.17!
tal
up

us
l

ing
e

e

e

with D5ADmc
22Dm2. When y2.0 ~flat surface!, the de-

nominator is always positive andh̄ increases monotonically
up to 1/p arctan(Dmc2D)/Dm. Wheny2,0 ~DOF surface!,
the solution to Eq.~5.9! is again similar to that fory2.0.

However, ash̄ crosses 1
2 at (t/2pbD)ln@(Dmc1D)/(Dmc

2D)#, the right-hand side of Eq.~5.17! adds another 1, even
tually leveling off at a value,1. Hence, in this regime ther
are no oscillations and the crystal does not grow~in reality,
the growth mechanism would be nucleation, which is, ho
ever, beyond the scope of our theory!. HenceDmc really
represents the threshold which the driving force must u
-

i-

mately overcome in order to cause continuous crys
growth. Similar is the outcome of a renormalization-gro
treatment of the growth mode near roughening:18 a suffi-
ciently largeDm is needed in order to observe continuo
~i.e., substantial! growth forT,TR , whereas an infinitesima
Dm suffices forT>TR .

The last point to discuss is what happens when includ
Dmc8 . It turns out that this factor has little influence on th

evolution of h̄ as compared toDmc ~some numerical results
can be found in Fig. 3!. As before, we ask what are th

values of h̄ when its slope is minimum. Alternatively, w
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PRB 59 3115VARIATIONAL THEORY OF PREROUGHENING
seek for Z(h̄)5sgn(y2)Dmcsin(2ph̄)1Dmc8sin(4ph̄) being
maximum. Obviously, we here consider only the growth
gime, maxZ(h̄),Dm. A simple analysis shows that whe
Dmc8,Dmc/2 there is a uniqueZ(h̄) maximum at

h̄5
1

2p
arccosS 2Dmc1ADmc

2132Dmc8
2

8Dmc8
D 1k,

~5.18!

k integer, fory2.0; or at

h̄512
1

2p
arccosS Dmc2ADmc

2132Dmc8
2

8Dmc8
D 1k,

~5.19!

k integer, for y2,0. When Dmc8>Dmc/2, another local
maximum appears, but it never overcomes the first. Fina
asDmc8 increases, Eqs.~5.18! and~5.19! move from 1

4 1k to
1
8 1k, and from 3

4 1k to 5
8 1k, respectively. We note tha

these values differ from integers and half-integers typica
equilibrium and also of growth on SOS models,4,23 while
they are not inconsistent with the evidence provided by re
istic Lennard-Jones simulations.11

FIG. 3. Surface growth in our variational theory: average s

face heighth̄(t) as a function of time forTPR50.5, C50.5J, and
y450.2J, at three different temperatures: top,T,TPR ~smooth
phase; the following parameters were used:T2152.2, j22

50.123, Dm50.032J, and t50.033!; center,T5TPR ~we used
Dm50.012J and t50.02!; and bottom,T.TPR ~DOF phase; we
usedT2151.8, j2250.062, Dm50.02J, t50.018!. The smooth
jumps in the average height both below and above preroughe
are indicative of layer-by-layer growth in the linear-response
gime. Note, however, that the jumps do not occur between ei
integer~top! or half-integer values~bottom!.
-

y,

f

l-

VI. ADSORPTION ONTO AN ATTRACTIVE SUBSTRATE

The theory above is for a free surface. However, the m
experimental claims of surface preroughening have b
made for thin multilayer films of rare-gas solids adsorbed
attractive substrates. These data show that the film thickn
i.e., the average quantity of adsorbed matter, is, below
roughening temperature, a staircaselike function of chem
potential. More specifically, it is a function of the differenc
Dm between the chemical potential of the bulk interface a
that of the film~not to be confused with the quantityDm of
Sec. V, which is just the opposite!. Roughly, these layering
jumps occur between integer layer numbers at low temp
tures, and disappear due to roughening at high temperat
In detail, however, a reentrant behavior was observed in
for example: the jumps first disappear at about 82% of
melting temperature; then they reappear above this temp
ture, but this time between roughly half-integer layer nu
bers; finally they disappear for good at about 94% of
melting temperature, where roughening is known to ta
place.8 Other subtler features in the layering phase diagr
of Ar have also been reported, in the form of zigzaggi
heat-capacity peaks joining low- and high-temperature lay
ing transition lines.9 A very similar reentrant layering behav
ior has also been found recently in a grand-canonical Mo
Carlo simulation for Lennard-Jones particles.11

Den Nijs first suggested that the reentrant first-order l
ering transitions should be indicative of PR of the bu
interface.10 More recently, Weichman and Prasad provided
renormalization-group theory of adsorption which compa
well with the experiments.3 Here we show that our varia
tional theory is capable of accounting in detail for this ri
adsorption phase diagram. To this end, we follow ear
work by Weeks, who studied the standard case, with
PR.24 We use the extended sine-Gordon Hamiltonian~3.1!,
augmented by a term( iV(hi) describing the influence of the
substrate. The substrate potential mainly serves to defin
mean film thickness,h0;Dm21/3, diverging asDm goes to
zero. This can be accounted for by using the Weeks presc
tion for the potential,

V~h!5Dmh1
c

2h2 , ~6.1!

with c.0, and where the heights are zero at the substr
The first term in Eq.~6.1! favors the gas phase with respe
to the solid, and thus works against adsorption, whereas
second term describes van der Waals attraction by the
strate. Near its point of minimum,h05(Dm/c)21/3, V(h) is
approximated by

V~h0!1
1

2
V9~h0!~h2h0!2, ~6.2!

with V9(h0);(Dm/c)4/3. For simplicity, we assume form
~6.2! to be valid in general~the error made is small in the
thick-film limit !.

In the same spirit of Sec. III, we estimate the free ene
of our model@HamiltonianH1V(h)# using the Bogolubov
inequality, Eq.~3.4!. We obtain

-

ng
-
er



1 K ( V~hi !L 5V~h0!1
1

V9~h0!K 1
( ~hi2h0!2L 5V~h0!1

1
V9~h0!~ h̄2h0!21

V9~h0!
ln@11~pj!2#,

vides the

nd the
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N i
0

2 N i
0

2 16pbJ

~6.3!

and then, using earlier results@see Eq.~3.7!#, we arrive at the free-energy functional

bD f * 5bV~h0!1
b

2
V9~h0!~ h̄2h0!21

V9~h0!

16pJ
ln@11~pj!2#1

p

8
ln@11~pj!22#

2by2cos~2ph̄!@11~pj!2#2~p/4bJ!2by4cos~4ph̄!@11~pj!2#2~p/bJ!, ~6.4!

with j and h̄ being selected so as to minimizeD f * . Necessary conditions for this are

V9~h0!~ h̄2h0!12p sin~2ph̄!@11~pj!2#2~p/4bJ!$y214y4cos~2ph̄!@11~pj!2#2~3p/4bJ!%50 ~6.5!

and

Jj225
V9~h0!

2
12p2y2cos~2ph̄!@11~pj!2#2~p/4bJ!18p2y4cos~4ph̄!@11~pj!2#2~p/bJ!. ~6.6!

These equations must be solved numerically. When more than one solution is found, the such is chosen that pro
minimum D f best(T,Dm) of D f * .

In Sec. VII we solve Eqs.~6.4!–~6.6! numerically in a number of selected cases. However, one can even go beyo
quadratic approximation~6.2!. For example, if we keep up to fourth-order terms in the expansion ofV(h) aroundh0 , then Eq.
~6.4! must be modified as follows:

bD f * 5bV~h0!1
b

2
V9~h0!~ h̄2h0!21

b

6
V-~h0!~ h̄2h0!31

b

24
Viv~h0!~ h̄2h0!4

1

V9~h0!1V-~h0!~ h̄2h0!1
1

2
Viv~h0!~ h̄2h0!2

16pJ
ln@11~pj!2#1

Viv~h0!

512p2bJ2 ln2@11~pj!2#

1
p

8
ln@11~pj!22#2by2cos~2ph̄!@11~pj!2#2~p/4bJ!2by4cos~4ph̄!@11~pj!2#2~p/bJ!. ~6.7!

Equations~6.5! and ~6.6! are then replaced by

V9~h0!~ h̄2h0!1
V-~h0!

2
~ h̄2h0!21

Viv~h0!

6
~ h̄2h0!31

V-~h0!1Viv~h0!~ h̄2h0!

16pbJ
ln„11~pj!2

…12p sin~2ph̄!

3@11~pj!2#2~p/4bJ!$y214y4cos~2ph̄!@11~pj!2#2~3p/4bJ!%50 ~6.8!

and

Jj225
1

2 FV9~h0!1V-~h0!~ h̄2h0!1
1

2
Viv~h0!~ h̄2h0!2G1

Viv~h0!

32pbJ
ln@11~pj!2#

12p2y2cos~2ph̄!@11~pj!2#2~p/4bJ!18p2y4cos~4ph̄!@11~pj!2#2~p/bJ!, ~6.9!
rth
ap in

-
h-
respectively. We postpone a discussion of third- and fou
order corrections to results obtained within the quadratic
proximation until the end of Sec. VII.

VII. NUMERICAL RESULTS:
ADSORBED FILM ON A SUBSTRATE

First we consider the caseTPR.TR/4. To be specific, we
take TPR50.5, C50.5J, and y450.1J ~see Fig. 1 for the
-
-
bulk-interface behavior!. We setc5J in what follows. A
typical low-temperature adsorption isotherm is plotted

Fig. 4 (T50.4). Here we show bothj andh̄ as a function of
h0 . Besides a less interesting behavior at largeDm, we see

sharp jumps of the film heighth̄ between nearly integer val
ues every timeh0 equals an integer-plus-one-half, and wit
out any loss of continuity forD f best. This is the film coun-
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terpart of the bulk-interface smooth phase, whose degene
is removed by a nonzeroDm which selects among pure stat
the one with the nearest height toh0 . At every h̄ jump, a
cusp is found forj, which becomes less and less sharp ash0
grows, untilj attains the bulk-interface value~1.2394 forT
50.4!. Moreover, from Fig. 5 we see that jumps are a
found in the numericalDm derivative ofD f best; this is not
surprising, given that (]D f best/]Dm)b is the variational es-
timate of the average film width~to be compared withh̄ in
Fig. 4! when the originalV(h) is used@Eq. ~6.1!#. Starting
from h051.5, half-integer values ofh0 define first-order
transition lines ending in noncritical points whose tempe
turesT(1.5),T(2.5),T(3.5),... eventually converge toTPR as a
power law, TPR2T@n2(1/2)#;n2p1(TPR), with p1(TPR)
.2.510.

FIG. 4. Variational correlation lengthj ~3! and heighth̄ ~h!,
during growth, as a function ofh05(Dm/c)21/3 ~also drawn as a

continuous line through theh̄ data!, along the adsorption isotherm

T50.4, for TPR50.5. Sharp jumps ofh̄ between integer value
signal the crossing of first-order layering transition lines.

FIG. 5. Variational estimate ofh̄ through theDm derivative of
D f best, for T50.4 andTPR50.5. The small discrepancies from Fig
4 are due to the quadratic approximation of the substrate pote
@cf. Eq. ~6.2!#.
cy

-

In Fig. 6, the behavior atT50.6 ~the DOF phase in the
bulk interface! is reported. It is similar to Fig. 4, but nowh̄
and (]D f best/]Dm)b jump between half-integer values eve
time h0 is an integer. This is the adsorbed film remnant
the DOF phase. As before,j shows a cusp wheneverh̄
jumps, and increases eventually until the bulk value 2.77
Starting fromh052, integer values ofh0 define first-order
transition lines starting at temperaturesT(2),T(3),T(4),...,
which converge to TPR as a power law, T(n)2TPR

;n2p2(TPR), with p2(TPR).2.502. Weichman and Prasa
gave a renormalization-group estimate of the same expon
p1(TPR)5p2(TPR)542@p/Kc(TPR)#52.429,3 which is
encouragingly similar to ours. Finally, the transition lin
terminate in noncritical end points at temperatur
T8(2),T8(3),T8(4),..., which converge toTR as TR2T8(n)

;(ln n)2r, with r 51.406 ~for comparison, the
renormalization-group estimate isr 52!.25

Lastly, we study the behavior atTPR ~see Fig. 7!. Here
both j and h̄ grow monotonically withh0 , and there is no
first-order line ever crossed. To sum up, coming from lo
temperature, first-order layering transitions disappear just
low TPR , only to reappear soon after. At higher temperatu
they disappear again, and for good, when roughening
reached. The ensuing phase diagram is shown in Fig. 8.

Next we study the growth of the adsorbed film under co
ditions where the bulk PR is first order (TPR,TR/4). We use
TPR50.25,C50.5J, andy450.1J ~see Fig. 2 for the behav
ior at the bulk interface!. A typical low-temperature adsorp
tion isotherm is plotted in Fig. 9 (T50.2). The main differ-
ence with respect to Fig. 4 is in the supplementary s
aroundh051.5, which is found in theh̄ staircase@and in
(]D f best/]Dm)b as well#, signalling a more complex behav
ior than before. A more accurate analysis shows that the
additional first-order points actually belong to new transiti
lines, one of which~and precisely that at lowerh0 , line A!
bifurcates atT.0.238 into two first-order lines~one ending
at T.0.269 with vanishing h̄ jump, and the other a

ial

FIG. 6. j ~3! andh̄ ~h!, as a function ofh0 , along the adsorp-

tion isothermT50.6, for TPR50.5. Sharp jumps ofh̄ between
half-integer values signal the crossing of first-order reentrant la
ing transition lines.
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T.0.273! enclosing a region whereh̄.1.25. The other tran-
sition line (B) joins the first reentrant line on the DOF sid
of the phase diagram~see below in this section! at T
50.2919. Other details are similar to theTPR50.5 case:j
has a cusp at everyh̄ jump, growing eventually until the bulk
value 0.4978; the first-order lines ath051.5,2.5,3.5,... ter-
minate in noncritical end points, whose temperatu
T(1.5),T(2.5),T(3.5),... converge toTPR as a power law,TPR

2T@n2(1/2)#;n2q1, with q1.4.405.
The phase with coverageh̄.1.25 is an unexpected rea

ization of Den Nijs’su-DOF phase,26,19 in the presence of a
strong substrate. We now wish to understand how it com
about. It is shown in Appendix A thatu-DOF phase solutions
characterized by some fractional coverageh̄ generally do
exist as local free-energy minima@cf. Eq. ~A31!#. Without a

FIG. 7. j ~3! andh̄ ~h!, as a function ofh0 , along the adsorp-
tion isothermT5TPR50.5. The correlation length increases to i
finity as Dm→0, and no transition line is ever crossed.

FIG. 8. Phase diagram of the film forTPR50.5, C50.5J, and
y450.1J. With these parameters, the bulk preroughening is critic
Our data points~including noncritical end points! are marked with
an 3. The low-temperature layering transition lines are followe
past the preroughening point, by another series of lines wh
bound phase-diagram regions where the film height is half-inte
s

s

substrate, however, they can be global minima only ify4
,0. This is a rather common circumstance, although mod
which realize it have only recently been discussed.19

What we find here is that a strong attractive substrate
a large correlation lengthj can stabilize a phaseh̄.1.25
near PR, even wheny4.0. The key factor is thatj tends to
develop maxima at coverageh̄5(2n11)/4. This can be
seen directly in Figs. 10 and 11, and understood in Eq.~6.6!,
for y250, y4.0. Since cos(4ph̄)521 at thish̄, the last term
cancels part ofV9, hencej becomes large. Given a largej
and a strong substrateV9, consider, for example, the tota
free energy~6.4! for y250, y4.0, ath051.25. We see tha
h̄5 5

4 can prevail because the main destabilizingy4 term is
reduced by a largej, so that the main stabilizingV9 term
~which vanishes only ath̄5 5

4 but is otherwise positive! can

l.

,
h
r.

FIG. 9. j ~3! andh̄ ~h!, as a function ofh0 , along the adsorp-
tion isothermT50.2, forTPR50.25. We notice the additional ste

around 1.5 and the relatedj jumps. Sharp jumps ofh̄ signal the
crossing of first-order layering transition lines.

FIG. 10. Same as in Fig. 9, along the adsorption isothermT
50.3, for TPR50.25. The film height jumps between half-integ
values, each time a first-order reentrant layering transition line
crossed.



er

r

ly

h
a

o

m
-
r

e

e

es

he
no
in

ce
h-

par-
ly,

r-

. 8
is

al

on-

nal
-

en-
R

ni-

the
era-
to

wth

rst

i-

in
er.

films

PRB 59 3119VARIATIONAL THEORY OF PREROUGHENING
take over. A more physical way to rationalize a quart
coverageu-DOF phase is to note that close to (2n11)/4 the
substrate acts to renormalize the value ofy4 , which may
become effectively negative.

In Fig. 10 theT50.3 isotherm is shown. A very simila
behavior to that of Fig. 6 is found:h̄ jumps ~and theDm
derivative ofD f best behaves the same! between half-integer
values every timeh0 takes an integer value; corresponding
j has a cusp, while increasing withh0 up to the bulk value
0.8376. Starting fromh052, integer values ofh0 define first-
order transition lines originating atT(2),T(3),T(4),..., which
converge toTPR asT(n)2TPR;n2q2, with q2.3.802. We-
ichman and Prasad gave an estimate of 4 forq15q2 ,3 which
is close to ours. The transition lines survive only below t
roughening temperature; they end in noncritical points
T8(2),T8(3),T8(4),..., showing a nonmonotonic trend t
TR* (0.25).

The T50.25 isotherm~Fig. 11! gives a conclusive indi-
cation of the overall structure of the film phase diagra
when TPR,TR/4. At TPR , there is a radically different be
havior than that represented in Fig. 7. Besides the pai
jumps which occur when the fork stemming from lineA is
crossed, further jumps ofh̄ are found ath051.751(n/2)
(n50,1,2,...), theformer at the crossing of lineB, and the
others along the ‘‘zipper’’ that joins theT,TPR first-order
lines to theT.TPR first-order lines. In the end, the phas
diagram of the film looks like Fig. 12.

The ‘‘zippering’’ behavior found forTPR,TR/4 is quite
similar to the experimental results,9 as well as to the outcom
of renormalization-group theory.3 In fact, the zipper which is
present in the phase diagram of argon films strongly sugg
first-order PR of Ar~111!. We note that for the Ar~111! sur-
face TPR569 K, TR580 K, so the conditionTPR,TR/4 is
far from being verified. We conclude that there must be ot
physics, not contained in our modeling, and probably
contained in any rigid lattice model, which is at work
making quantitatively the PR of Ar~111! first order.

Finally, we add some remarks on the changes introdu
in the foregoing results when including third- and fourt

FIG. 11. j ~3! and h̄ ~h!, as a function ofh0 , along the ad-

sorption isothermT5TPR50.25. We notice the additionalh̄ step
around 1.25 and the relatedj jumps.
-

,

e
t

of

ts

r
t

d

order terms in the substrate potential. We considered, in
ticular, the isotherms plotted in Figs. 4 and 11. Actual
only minor changes have to be noted~i.e., no further transi-
tion line is found!. In both cases, the main quantitative co
rections come about, as expected, for lowh0 . First of all, h̄
jumps will occur at slightly lowerh0 values than before, with
appreciable differences only for largeDm. This suggests a
small bending downwards of all the transition lines in Figs
and 12. More important, each time a transition line
crossed, the correlation length also makes a jump~while a
cusp was seen before!. Moreover, the first~and most impor-
tant! j maximum is slightly depleted. Finally, the numeric
agreement betweenh̄ and (]D f best/]Dm)b considerably im-
proves, and this provides a successful check of internal c
sistency of our numerical procedure.

VIII. CONCLUSIONS

In this paper, we have introduced a mean-field variatio
theory of preroughening~PR! of crystal surfaces, which gen
eralizes previous approaches devoted to roughening.12,24 We
find that many features of both preroughening and rough
ing are well described in this simple theory. In particular, P
of a rigid lattice model is correctly predicted to be a nonu
versal second-order transition, at least whenTPR.TR/4. In
this case, the theory connects the critical exponents and
roughness parameter at PR to the ratio of the two temp
tures. ForTPR below this threshold value, PR is predicted
become first order, in agreement with Ref. 3.

Surface dynamics is also described by the theory. Gro

FIG. 12. Phase diagram of the film forTPR50.25,C50.5J, and
y450.1J. With these parameters, the bulk preroughening is fi
order. Our data points~including noncritical end points! are marked
with an 3. We show in more detail in the picture below the add

tional basin whereh̄.1.25. At variance with the phase diagram
Fig. 8, the two series of transition lines are now sewn by a zipp
Similar features are seen in the phase diagram of rare-gas
deposited on graphite~Ref. 9!.
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is continuous at both PR and roughening~when not first
order!, as well as—of course—in the whole rough phase;
all other cases, the growth mode is layer by layer. In t
regime, there is a threshold which the driving force m
overcome in order for the crystal to become depinned
start growing, both below and aboveTPR . This is the direct
extension to preroughening of the known result, obtained
Nozières and Gallet18 in the simple sine-Gordon model, an
by Kotrla and Levi in a kinetic solid-on-solid model,23 that
the interface mobility for a finite driving force is enhance
just below the roughening temperature. The behavior of
depinning field close toTPR is critical, with the same expo
nentv of the free energy.

Finally, we find that the variational approach can rep
duce many of the subtle features of the layering phase
gram of noble gases adsorbed on an attractive substrat
particular, if parameters are chosen such that bulk PR is
order, clear evidence is found for the zippering behavior
served in the experiments9 and also predicted by
renormalization-group arguments.3,19 A substrate-induced
u-DOF phase is also predicted, leading to a quarter-cove
region in the phase diagram.
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APPENDIX A: VARIATIONAL FREE ENERGY

In this appendix, we compute some surface quanti
which are averages over the ensemble specified by the
dratic HamiltonianH0 in Eq. ~3.3!, with continuous heights
We first simplify the notation by defining a matrixV, such
that

bJ

2 (
i ,d

~hi2hi 1d!25(
x,y

hxVx,yhy[hVh. ~A1!

We usex,y, . . . , aswell as i , j , . . . , throughout this section
to indicate the sites of a square lattice. Equation~A1! yields

Vx,y5bJ~4dx,y2d ux2yu,1!5Vy,x . ~A2!

Translational invariance ofV imposes the existence of plan
wave eigenvectors

(
y

Vx,ye
ip•y5l~p!eip•x, ~A3!

with eigenvalues

l~p!52bJ~22cospx2cospy! ~A4!

~we choose a unitary horizontal lattice spacing!. We use pe-
riodic boundary conditions to fix thep values. For a rectan
gularLx3Ly box, we havep5(nx /Lx)bx1(ny /Ly)by , with
nx50,1,...,Lx21, ny50,1,...,Ly21, bx52pex , and by
52pey .

Using orthogonality of plane waves, Eq.~A3! can be eas-
ily solved in Vx,y , as
n
s
t
d

y

e

-
a-
In

st
-

ge

,

s
a-

Vx,y5
1

N (
p

l~p!eip•~x2y!. ~A5!

A similar formula gives the inverse-matrix elements

Vx,y
215

1

N (
p

eip•~x2y!

l~p!
. ~A6!

The infrared divergence in Eq.~A6! can be healed up by
introducing a small mass term which must eventually be
to zero when evaluating measurable quantities like, for
stance, the pair correlations@see Eq.~A11! below#.

In order to calculate thermodynamic averages over q
dratic Hamiltonians, the Gaussian integral

E Dh e2hVh1bh5pN/2~det V!2~1/2!e~1/4!bV21b, ~A7!

is useful, where V is any positive-definite matrix,h
5$...,hi ,...%, and b is any complexN-component vector.
We used the notationDh5Pxdhx . Observe that detV is
simply the product of theV eigenvalues~all positive!. In
particular

E Dh e2hVh5PpS p

l~p! D
1/2

~A8!

is the partition functionZCG of the continuous Gaussia
~CG! model, which is rough at any temperature. This can
seen from the expression for the average square height
ference:

^~hx2hy!
2&CG5

2*Dh~hx
22hxhy!e

2hVh

*Dhe2hVh . ~A9!

Using the result

E Dh hxhye
2hVh5S ]2

]Jx]Jy
E Dh e2hVh1JhD

J50

5
1

2
ZCGVx,y

21 , ~A10!

one finally obtains

^~hx2hy!
2&CG5

1

N (
p

12eip•~x2y!

l~p!
;

1

2pbJ
lnux2yu,

~A11!

which diverges at large distance, although as slow as a lo
rithm.

Another matrix we introduce isW, defined through

bJ

2 (
i ,d

~hi2hi 1d!21bJj22(
i

hi
2[hWh. ~A12!

It is fairly simple to show that

Wx,y5bJ@~41j22!dxy2d ux2yu,1# ~A13!

and

(
y

Wx,ye
ip•y5g~p!eip•x, ~A14!
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with

g~p!52bJS 22cospx2cospy1
j22

2 D . ~A15!

At variance withl(p)21,g(p)21 acquires a mass termj22

in the large-N long-wavelength limit

bJg~p!21'
1

p21j22 . ~A16!

The outcome of this is that a term likeJj22( ihi
2 in the

Hamiltonian makes the surface flat, since it gains a fin
correlation lengthj. This follows from the estimate of the
average square height difference at large distance,ux2yu
@j,12

^~hx2hy!
2&05

1

N (
p

12eip•~x2y!

g~p!

;
1

2pbJ S ln j2A pj

2ux2yu
e2~ ux2yu/j!D .

~A17!

Given all of the above, we calculate the right-hand side
Eq. ~3.4!. The first ingredient we need is

bF052 1
2 (

p
ln@pg~p!21#. ~A18!
b

a

a

e

f

Then, usinghi85hi2h̄, we have

b~H2H0!5hVh2h8Wh81by2(
i

@12cos~2phi !#

1by4(
i

@12cos~4phi !#. ~A19!

The average of the first part of Eq.~A19!, given the formula
(yVx,y50 and using Eq.~A10!, comes out as

^hVh2h8Wh8&05^h8~V2W!h8&05(
x,y

~Vx,y2Wx,y!

3^hx8hy8&05 1
2 (

x,y
~Vx,y2Wx,y!Wx,y

21

5 1
2 (

p
@g~p!21l~p!21#. ~A20!

Then it follows from Eq.~A7! that

^eibh&05eibh̄e2~1/4!bW21b, ~A21!

with bh̄5h̄( ibi . In particular:

^e62p ihx&05e62p i h̄e2~p2/N!(pg~p!21
. ~A22!

Collecting together all the foregoing results, we finally o
tain
n

bF* [bF01b^H2H0&052 1
2 (

p
ln@pg~p!21#1 1

2 (
p

@g~p!21l~p!21#1Nby2

3F12cos~2ph̄!expS 2
p2

N (
p

g~p!21D G1Nby4F12cos~4ph̄!expS 2
4p2

N (
p

g~p!21D G . ~A23!

Choosingg(p) andh̄5^hi&0 as free parameters, we select them by requiring thatbF* be minimum. A necessary conditio
for that is to havedF* 50, from which

g~p!5l~p!12p2by2cos~2ph̄!expS 2
p2

N (
p

g~p!21D 18p2by4cos~4ph̄!expS 2
4p2

N (
p

g~p!21D ~A24!

and

sin~2ph̄!Fy214y4cos~2ph̄!expS 2
3p2

N (
p

g~p!21D G50. ~A25!
Among the solutions to the two joint equations~A24! and
~A25!, we must ultimately choose the one providing the a

solute minimum ofbF* . In turn, this gives thoseh̄(T) and
j(T) that qualify the thermodynamic phases of the surface
described by the Hamiltonian~3.1!.

We can further simplify Eqs.~A24! and~A25! by making
explicit the j dependence. In the thermodynamic limit,

sum (pF(p) is evaluated as N*BZ@dp/(2p)2#F(p)
-

s

'(N/2p)*0
ppF(p)dp. We thus find

2 1
2 (

p
ln@pg~p!21#

52
N

8
p ln

p

bJ
1

N

8p
~p21j22!

3 ln~p21j22!1
N

4p
j22ln j2

N

8
p, ~A26!
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1
2 (

p
@g~p!21l~p!21#52

N

8p
j22ln@11~pj!2#,

~A27!

expS 2
p2

N (
p

g~p!21D 5@11~pj!2#2~p/4bJ!.

~A28!

In particular,bF* in the rough phase is given by:

bF* ~j2250!52
N

8
p ln

p

bJ
1

N

8
p@ ln~p2!21#

1Nb~y21y4!. ~A29!

Choosing the free energy of the rough surface as the re
ence, we have

bD f * [
1

N
@bF* 2bF* ~j2250!#

5
p

8
ln@11~pj!22#

2by2cos~2ph̄!@11~pj!2#2~p/4bJ!

2by4cos~4ph̄!@11~pj!2#2~p/bJ!. ~A30!

From Eq.~A25!, we obtain three possible choices forh̄:

~1! h̄5...,22,21,0,1,2,...,

~2! h̄5...,2 3
2 ,2 1

2 , 1
2 , 3

2 ,..., ~A31!

~3! cos~2ph̄!52
y2

4y4
@11~pj!2#3p/4bJ.

Solutions of type~1! correspond to the ordered flat surfac
and those of type~2! to the disordered flat~DOF! surface.
Type ~3!, finally, corresponds to the so-calledu-DOF sur-
face.26,3,19 In particular, a necessary condition for solutio
of type ~3! to be valid isj<1/p@(4y4 /uy2u)4bJ/3p21#1/2.
Plugging Eq.~A31! into Eq. ~A30!, we obtain three possible
expressions for the free energy:

bD f 1* 5
p

8
ln@11~pj!22#2by2@11~pj!2#2~p/4bJ!

2by4@11~pj!2#2p/bJ,

bD f 2* 5
p

8
ln@11~pj!22#1by2@11~pj!2#2~p/4bJ!

2by4@11~pj!2#2~p/bJ!, ~A32!

bD f 3* 5
p

8
ln@11~pj!22#1

by2
2

8y4
@11~pj!2#p/2bJ

1by4@11~pj!2#2~p/bJ!.

We immediately see that free energy of type~3!, when it
does exist, is always larger than the other two, so long
y4.0. This is no longer true wheny4,0, where stable
r-

,

s

u-DOF phases can appear.3,19 Even fory4.0, solution type
~3! may become relevant in presence of a strong subst
~see Sec. VII!. For a free surface, and withy4.0, we can
ignore this, and thej functional to minimize becomes

bD f * 5
p

8
ln@11~pj!22#2buy2u@11~pj!2#2~p/4bJ!

2by4@11~pj!2#2~p/bJ!, ~A33!

with h̄ being an integer forT,TPR and a half-integer for
T.TPR . Similarly, Eq.~A24! can be rewritten as

Jj2252p2uy2u@11~pj!2#2~p/4bJ!

18p2y4@11~pj!2#2~p/bJ!. ~A34!

Minimization of the variational free energy~A33! is dis-
cussed in Sec. III, together with the analysis of the solutio
to Eq. ~A34!.

Our final comment is about the lattice geometry. One m
ask whether the above conclusions retain their validity i
different host lattice is used. In particular, here we consi
here the case of a triangular lattice. We expect that o
nonuniversal quantities like the transition temperatures
pend upon the lattice geometry. In order to prove this,
start from Eqs.~A2! and ~A4!. In the hypothesis of a trian
gular host lattice, they are to be modified as follows:

Vx,y5bJ~6dx,y2d ux2yu,1! ~A35!

and

l~p!52bJF32cospx2cosS px1)py

2 D2cosS px2)py

2 D G
'

3

2
bJp2, ~A36!

respectively. Similarly, Eq.~A16! becomes

bJg~p!21'
1

3
2 p21j22

, ~A37!

with different wave vectors than before. They now readp
5(nx /Lx)bx1(ny /Ly)by , with bx52p@ex2(1/))ey# and
by5(4p/))ey . In particular, the area of the first Brillouin
zone is now (2pA2/))2, and the rule for summing up ove
all wave vectors becomes:

1

N (
p

F~p!.
)

2 E
BZ

dp

~2p!2 F~p!'
)

4p E
0

A2/)p
pF~p!dp

5
1

2p E
0

p

p8FSA 2

)
p8D dp8. ~A38!

Given Eq.~A38!, and definingJ85)J, j8225j22/), we
see that any expression involving only sums ofg(p) func-
tionals, like the free energy~A23!, becomes equivalent to it
square-lattice form if we just replaceJ with J8 and j with
j8. In this way, the theory exposed above is still valid@with
the only exception of Eq.~A17!, to which Eq.~A38! is not
directly applicable#, but with a new temperature scale~J8/kB
instead ofJ/kB! and also a rescaled correlation length.
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particular, surface roughening on the triangular lattice wo
occur at 4)/p ~in units of J/kB!.

APPENDIX B: FOKKER-PLANCK EQUATION

This appendix is meant to help the reader follow our de
vation, which is formally somewhat different from that o
Saito,12 even if close in its essence. We derive different
equations for the average height and the pair-correla
function in nonequilibrium conditions when a Gaussian a
satz is made on the height distribution functionP($hi%,t),
abbreviated asP(h,t). The latter obeys the Fokker-Planc
equation~5.5!, which we here reproduce for the reader’s co
venience:

]P~h,t !

]t
5

b

t (
i

d

dhi
S P

dH
dhi

1
1

b

dP

dhi
D . ~B1!
em

e

.

d

i-

l
n
-

-

HereH contains a term2Dm( ihi which makes the crysta
grow at the expense of the vacuum. Note that the station
solution to Eq. ~B1! for Dm50 is Peq(h)}exp(2bH),
which ensures Boltzmann fluctuations at equilibrium.

We denote aŝ¯&P the average*Dh P(h,t)(¯) over
the height distribution. First we calculate the evolution of t
height at a given site of the lattice:

d

dt
^hi&P5E Dh

]P~h,t !

]t
hi52

b

t E DhS P
dH
dhi

1
1

b

dP

dhi
D

52
b

t K dH
dhi

L
P

, ~B2!

where we used the fact thatP goes to zero at infinity. Then
we consider the second cumulantŠ(hi2^hi&P)(hj
2^hj&P)‹P , whose first-order time derivative reads
E Dh
]P~h,t !

]t
~hi2^hi&P!~hj2^hj&P!52

b

t F E DhS P
dH
dhi

1
1

b

dP

dhi
D ~hj2^hj&P!1E DhS P

dH
dhj

1
1

b

dP

dhj
D ~hi2^hi&P!G

52
b

t F K dH
dhi

~hj2^hj&P!L
P

1 K dH
dhj

~hi2^hi&P!L
P

2
2

b
d i j G . ~B3!

Equations~B2! and ~B3! are to be made explicit by specifying the form ofP. We make two assumptions.12 ~1! homoge-
neity, ^hi&P5h̄(t); and ~2! Gaussian distribution for the heights, i.e.,P(h,t)}exp$2(i,j@hi2h̄(t)#Wij(t)@hj2h̄(t)#%, with Wi j
5Wji 5Wi 1k, j 1k . This last assumption is not bad, provided the system is not much far from equilibrium. Using

dH
dhi

52J(
d

~hi2hi 1d!12py2sin~2phi !14py4sin~4phi !2Dm, ~B4!

we readily obtain

dh̄~ t !

dt
5

b

t FDm22py2sin@2ph̄~ t !#expS 2
p2

N (
p

g~p,t !21D 24py4sin@4ph̄~ t !#expS 2~4p2/N!(
p

g~p,t !21D G ,
~B5!
where the following resolution was used:

Wxy
21~ t !5

1

N (
p

eip•~x2y!

g~p,t !
. ~B6!

Note that in the absence of any driving force the syst
gradually approaches equilibrium, and Eq.~B5! gives back
Eq. ~A25!.

Then we need the evolution equation ofg(p,t). To this
end, we use Eq.~B3! which we now make less cumbersom
First, we have@cf. Eq. ~A10!#

^@hi2h̄~ t !#@hj2h̄~ t !#&P5 1
2 Wi j

21~ t !. ~B7!

Upon inserting Eq.~B4! into Eq.~B3!, we are led to evaluate

^@hi2h̄(t)#sin(2phj)&P . Using the same trick as in Eq
~A10!, we obtain
.

^@hi2h̄~ t !#e62p ih j&P56p iWi j
21e62p i h̄~ t !

3expS 2
p2

N (
p

g~p,t !21D ,

~B8!

and finally

^@hi2h̄~ t !#sin~2phj !&P5pWi j
21cos@2ph̄~ t !#

3expS 2
p2

N (
p

g~p,t !21D .

~B9!

Likewise, we have
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^@hi2h̄~ t !#sin~4phj !&P52pWi j
21cos@4ph̄~ t !#

3expS 2
4p2

N (
p

g~p,t !21D .

~B10!

Finally, using Eqs.~B7! and ~A4!, we obtain

K (
d

~hi2hi 1d!@hj2h̄~ t !#L
P

5
1

2 (
d

~Wi j
212Wi 1d, j

21 !

5
1

2bJ
l~p!Wi j

21 . ~B11!

Collecting together all partial results, and usingdxy
5(1/N)(pe

ip•(x2y), we find, in the end
t

u

B

.

S

d

dt
g~p,t !2152

4

t
g~p,t !21

3Fl~p!2g~p,t !12p2by2cos@2ph̄~ t !#

3expS 2
p2

N (
p

g~p,t !21D
18p2by4cos@4ph̄~ t !#

3expS 2
4p2

N (
p

g~p,t !21D G . ~B12!

Again, in stationary conditions, Eq.~B12! gives back the
equilibrium result~A24!.
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