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Effects of gravity on supersolid order in bubble-trapped bosons
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Unveiling the principles behind self-organization in quantum systems is of paramount importance, both
intrinsically and practically, in view of foreseeable technological applications. Recently, increasing attention
has been paid to atomic systems in curved geometries, which are a promising platform for the discovery of new
emergent phenomena. A notable example is that of a gas of ultracold atoms loaded into a thin spherical shell,
according to a protocol introduced by Zobay and Garraway more than 20 years ago. However, gravity prevents
a dilute assembly of atoms from uniformly spreading throughout the shell, which explains why experiments on
the condensation and superfluidity of bubble-trapped gases are usually conducted in space under microgravity
conditions. In this paper, we focus instead on strongly interacting quantum particles in a bubble trap, choosing
the cluster supersolid of soft-core bosons as a testbed. To study the impact of gravity on supersolid order, we
consider a gedanken experiment in which the strength of gravity relative to the core repulsion is gradually
enhanced. Using path integral Monte Carlo simulations, we trace the parallel evolution of system structure and
superfluidity at low temperature, finding that the latter is sizable only when gravity is a small perturbation or, at
the other extreme, so strong that particles are all gathered in one cluster at the bottom of the trap. Finally, we
assess the relevance of gravity for the equilibrium behavior of ultracold Rydberg-dressed atoms in a bubble trap,
concluding that in some cases clues of the supersolid phase in the absence of gravity could be found even in a
laboratory on Earth.

DOI: 10.1103/PhysRevB.111.024512

I. INTRODUCTION

The problem of quantum particles in the presence of
curvature has always attracted interest. Although basic three-
dimensional shapes like spheres or cylinders are the backbone
of common exercises in undergraduate quantum mechanics
courses, they reduce to familiar solutions that hide the most
subtle and general aspects of the problem. Beginning in the
1950s, attempts were made to extend quantum mechanics to
spaces and surfaces with intrinsic curvature by modifying the
Schrödinger equation to include a covariant derivative and an
effective potential linked to curvature [1–4]. For a long time,
these efforts remained theoretical, due to the lack of realistic
experimental implementations. The past two decades have
seen the advent of nanostructures, which can be modeled into
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various and increasingly exotic shapes, stimulating research
into single-particle and transport properties of fermions in
curved geometries [5–7]. Bosonic and many-body physics in
curved geometries are also finally becoming experimentally
accessible, thanks to developments in ultracold atoms.

The technical advances occurred during the 1970s and
1980s in the cooling and trapping of neutral atoms by light
and static fields eventually culminated in 1995 with the first
observation ever of Bose-Einstein condensation (BEC) in a
quantum gas [8,9]. These important achievements, followed
in subsequent years by constant refinements in the customiza-
tion of atom-atom interactions (through, e.g., a clever use of
magnetic Feshbach resonances), have significantly improved
the experimental control over ultracold atoms, bringing it to
a level of sophistication sufficient to engineer weakly and
strongly interacting quantum systems of many sorts [10–12],
thus establishing atomic gases as a reliable platform for the
development of quantum simulators [13–15]. In particular, by
constraining atoms along one or two spatial directions [16],
quantum many-body physics in low dimensions can be tested
to an accuracy that was previously unattainable.
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A major step forward in the manipulation of interactions
was taken in 2001 when, by combining a quadrupolar mag-
netic field with a radiofrequency field, Zobay and Garraway
demonstrated how to induce an adiabatic potential confin-
ing atoms in a thin-shell configuration [17]. As long as
gravity can be compensated or neglected, atoms will be uni-
formly distributed in the trap. A new impulse to study these
shell-shaped (or “bubble-trapped”) atomic gases came after
the development, a few years ago, of microgravity facilities
enabling, for the first time, the investigation of curved quan-
tum systems not disturbed by gravity [18–20]. Curvature is
a property of crucial interest to condensed-matter physics,
high-energy physics, cosmology, and even biology [21–25],
which is the reason why the possibility to introduce a curved
constraint in ultracold atom setups has attracted so much
attention.

From a theoretical point of view, there are at present
open questions related to quantum many-body systems under
curved confinement, which would deserve a more in-depth
analysis. For example, by a judicious choice of the confin-
ing surface, we could manage to guide the self-assembly
of a many-body system and, in this way, engineer quantum
gases that exhibit anomalous phase behaviors, like reentrant
melting, inverse melting, or liquid-liquid transitions, already
demonstrated in classical fluids [26–28]. While the latter is
an ambitious program, a more immediate task is to charac-
terize superfluidity and supersolidity in a (finite) system of
bosons confined in a closed surface. In the paradigmatic case
of a spherical surface, where crystalline order is frustrated, a
supersolid phase is distinguished by a density field endowed
with a nontrivial symmetry group (i.e., a finite point group),
combined with a nonzero superfluid fraction. In less symmet-
ric cases, supersolids could simply be pictured as superfluids
with a self-sustained density modulation [29].

The microgravity experiments conducted so far have been
especially aimed at clarifying the features of BEC and super-
fluidity in dilute bubble-trapped gases, for which a number
of theoretical studies already exist [30–34], including dipolar
condensates under weak gravity [35]. Conversely, signifi-
cantly less is known about the phases of strongly interacting
atoms in a bubble trap, where, until recently, the only available
predictions came from zero-temperature mean-field theory
[36,37]. That is why we have recently carried out extensive
simulations of spinless bosons trapped in a spherical shell, us-
ing two different interactions, i.e., soft-core and dipolar [38].
Both potentials are known for providing stable supersolids in
flat space at low temperature, where particles are grouped in
clusters (or “lumps”) of the same size [39–45]. For polarized
dipolar bosons with realistic parameters, we have observed the
formation of a supersolid ribbon of clusters wrapped around
the sphere, perpendicularly to the direction of polarization. In
the case of penetrable bosons, we have identified a range of
particle masses where the ground state is a cluster supersolid
with polyhedral symmetry. Clearly, the realization of super-
solids on the sphere offers the chance to probe their physics in
even more exotic conditions, e.g., in the presence of varying
curvature or holes in the surface.

As anticipated, the distribution of particles in a bubble trap
is perturbed by gravity, at least in the weak-interaction limit
where particles are pushed to the bottom of the trap. However,

in a strongly interacting system things may go differently.
Indeed, the dipolar supersolid in Ref. [38] is robust to Earth
gravity, even though the clusters are now slightly shifted off
the equator. This unexpected outcome should serve as inspira-
tion to experimental physicists working with dipolar atoms, as
it indicates that strong enough interactions can counterbalance
the pull by gravity, allowing an easier investigation of the
effects of curvature on quantum systems.

In this paper, we aim to assess the effect of gravity on the
supersolid formed by soft-core bosons in a thin spherical shell.
To this purpose, we use path integral Monte Carlo simulations
to investigate how the structure and superfluidity of the system
evolve as the strength g of gravity is gradually increased
relative to the interparticle repulsion ε. As the original cluster
arrangement is being undermined, an important issue will be
the relationship between the residual clusterization and the
degree of superfluidity, as measured by the superfluid fraction
along the vertical direction and elucidated by the statistics of
permutation cycles. We shall see that clusters continue to exist
when gravity becomes increasingly strong, but their number
is reduced progressively until all particles condense in one
superfluid cluster at the bottom of the trap. Finally, by con-
sidering a realistic scenario in which the interaction between
bosonic atoms arises from Rydberg dressing, we reach the
conclusion that the supersolid phase of soft-core bosons can
even be revealed in a laboratory on Earth.

The plan of the paper is as follows. After surveying in
Sec. II the method employed in our study, we present and
discuss our findings in Sec. III. Section IV is devoted to con-
clusions and outlook. Additional details on the more technical
aspects of the simulation method are given in the Appendixes.

II. MODEL AND METHOD

Wishing to investigate the effect of gravity on an assembly
of strongly coupled quantum particles subject to a bubble-trap
potential, our choice naturally goes to the supersolid phase
of ultracold soft-core bosons, a system that we have recently
characterized by quantum simulation [38]. Already within a
mean-field framework [36], the stable high-density states of
this system are clusters of particles forming a crystal-like
structure, i.e., positioned at the vertices of a (semi)regular
polyhedron. The preference of soft-core bosons for clustered
configurations is a purely classical phenomenon, promoted
by the fat-Gaussian shape of the repulsive interparticle po-
tential, as being illustrated, e.g., by the density-functional
calculation presented in Ref. [46]: arranging the particles in
equivalent clusters gives the system a distinct free-energy
advantage at high pressure over diffuse partial overlap or
the single-occupancy crystal of the same structure. Quantum
indistinguishability adds a twist to the picture, since the emer-
gence of clusters sufficiently close to each other brings about
the possibility of a superfluid flow of particles, being more
likely the smaller the particle mass.

In Ref. [38], we considered N = 120 identical spinless
bosons of mass m, pairwise interacting via the potential
εθ (σ − r) (with ε, σ > 0), r being the Euclidean distance.
The trap exerts an external potential on the particles, keeping
them harmonically bound to a spherical surface of radius R.
We verified that, in a range of R and λ = h̄2/(2m) values, the
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thermodynamically stable phase is indeed supersolid at low
enough temperature.

To simplify things further, we assume here an infinitely
sharp trapping potential, and thus we consider soft-core
bosons pinned to a spherical surface of radius R, now in
the presence of gravity. In the following, we call the gravity
acceleration a, and g = ma. While this is in contrast to the
common notation for the gravity acceleration, it improves the
readability of our results. Then, gravity enters the calculation
through an additional g

∑N
i=1 zi term in the Hamiltonian, with

g > 0 and −R < zi < R, zi being the z coordinate of the ith
particle. Rather than assuming a specific g value, we will
consider a whole range of possibilities, so that we can obtain
the full spectrum of responses of the Bose system to gravity.

For our numerical study, we employ the path integral
Monte Carlo (PIMC) method [47], which allows us to com-
pute the equilibrium properties of a bosonic system at finite
temperature. In a PIMC simulation, the generic configuration
of the system is represented as a collection of closed “poly-
mers” (world lines), each one consisting of the imaginary-time
trajectories of a number of particles. To each quantum particle
we associate a polymer of M beads, corresponding to images
of the particle on different slices of imaginary time. Polymers
corresponding to separate particles can join together, forming
a long polymer, which is identified by a “permutation cycle,”
reflecting the order in which the component world lines are
joined together. The use of an ab initio Monte Carlo method,
which exclusively relies on the form of the Hamiltonian and
is exact up to numerical uncertainties, has strong theoretical
foundations. Therefore, our results are more reliable than
those provided by simpler approaches, e.g., those based on
the Gross-Pitaevskii equation, where the system is taken to be
condensed from the very outset, or other theoretical studies
relying on variational Ansätzes.

For the simulation to run efficiently, it is essential to allow
for a fast reshuffling of world lines. To this end, we implement
the worm algorithm [48], which efficiently samples bosonic
permutations. To deal with the spatial constraint, we resort
to a modified version of the PIMC method, which generates
world-line configurations confined on the spherical surface
[38], illustrated in full detail in Appendix A.

To assess the superfluidity of the system, we measure its
response to a slow axial rotation [49]. In a supersolid, this oc-
curs with a reduced moment of inertia relative to an ordinary
solid of the same mass. The superfluid fraction fs, namely the
relative reduction in the moment of inertia, can be accurately
estimated in a PIMC simulation by sampling the so-called
“projected-area estimator” [38,50]. Appendix B describes the
estimator for fs used in this paper.

For reasons of symmetry, we only inspect the superfluid
fraction along three orthogonal axes. For the isotropic soft-
core fluid, the superfluid fraction along any of the principal
directions is the same within errors. Conversely, for g > 0 the
anisotropy of the interaction makes f (z)

s different from f (x)
s and

f (y)
s over a wide range of parameters; therefore, in figures their

values are reported separately.
A powerful tool for analyzing the effects of quantum

statistics in a PIMC simulation is the distribution of cycle
lengths, reflecting the extent of quantum coherence in the

system [51,52]. Specifically, we consider the probability P(L)
to find permutation cycles made up of L polymers, with 1 �
L � N . This probability is obtained by periodically updating
the histogram of L. In the superfluid regime, we find permu-
tation cycles encompassing any number of particles. As the
kinetic energy decreases, the system may enter a supersolid
regime; in this case, we still observe permutation cycles in-
volving a large number of particles, though in a lesser amount
than in a superfluid, but still implying coherence among the
clusters. Finally, for smaller λ values the clustered system
becomes a normal (cluster) solid. Here, the only permutation
cycles occurring with significant frequency are those involv-
ing bosons within the same cluster, and quantum effects are
thus limited to the single cluster.

III. RESULTS

We hereafter present data for a system of N = 120 soft-
core bosons, i.e., sufficiently large to exhibit an emergent
behavior. In the following, all lengths are given in units of
σ , and all energies are given in units of ε. Temperatures are in
units of ε/kB, where kB is the Boltzmann constant.

The scaling of g is a delicate point, as we need to take
into account the typical length scales and particle masses
used in experiments. For example, we can consider a density
of 4 µm−2 on the spherical surface, and take the mass of a
rubidium atom m ≈ 87 × 1.67 × 10−27 kg. In this case, Earth
gravity at 9.8 m/s2 corresponds to g ≈ 8 in simulation units;
see more in Appendix C.

Choosing R = 1.4, λ = 0.16, and T = 0.2, in the absence
of gravity (g = 0) the system is supersolid: the clusters lie
at the vertices of a regular icosahedron, and the superfluid
fraction is fs ≈ 0.38. Then, we increase g gradually while
keeping the other parameters fixed, waiting at each step un-
til the structure stabilizes before recording the values of fs

and P(L).
In Fig. 1 we show typical equilibrium configurations for

a number of representative g values. In panel (a) (g = 10),
gravity is still weak enough that traces of the icosahedral
structure are visible, although the bosons originally hosted in
two clusters near the north pole are “redistributed” among the
remaining clusters. Looking at the spatial distribution of poly-
mer beads in panel (b), we see that particles are delocalized
throughout the sphere, especially in the southern hemisphere.
Understanding quantitatively whether the system is supersolid
requires us to look at the superfluid fraction.

When g reaches 20 [panels (c) and (d)], the cluster struc-
ture has completely changed, now exhibiting a flower shape
with a cluster at the bottom of the sphere surrounded by
five “petals.” The space between the clusters is almost free
of polymer beads, suggesting that bosons are localized. It is
important to stress that the “structural transition” occurring
between g = 10 and 20 is essentially classical, since the same
transition is observed in a system of distinguishable quantum
particles. From this evidence, we argue that it is the structural
transition that drives the “quantum transition” from particle
delocalization to localization, and not vice versa.

As g keeps on growing, the particles are pushed even
further down on the surface and the number of clusters is
progressively reduced [panels from (e) to (j)] until all bosons
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FIG. 1. Typical configurations of soft-core bosons on a sphere (N = 120, M = 120, R = 1.4, λ = 0.16, and T = 0.2) for increasing
gravity: (a), (b) g = 10; (c), (d) g = 20; (e), (f) g = 50; (g), (h) g = 150; (i), (j) g = 200; (k), (l) g = 220. Each blue dot represents a polymer
bead (see the text).

are confined in a single cluster centered at the south pole. This
latter case is illustrated in panels (k) and (l), corresponding to
g = 220. Since the temperature is very low, the coexistence
of all particles in the same cluster suggests that the system is
now superfluid.

We note that clusters containing a larger number of par-
ticles are not bigger in size. Indeed, the cluster radius is
essentially dictated by the range σ of the repulsive barrier. On
the other hand, the more particles are hosted in a cluster, the
more convenient is for those particles to stay in place, with the
result that the cluster boundary becomes sharper.

More insight on the degree of quantum coherence in the
system can be obtained from the probability P(L) to find poly-
mer chains (i.e., permutation cycles) involving L particles.

In Fig. 2 we report P(L) for a number of g values. For
g = 0, a sizable amount of polymers are formed by a number
of world lines close to N , which explains the finite value of fs.
In the absence of gravity, there is a perfect yet delicate equilib-
rium between the energetic advantage (lowering of potential
energy) of having the polymers wound up inside the clusters
and the “entropic” advantage (lowering of kinetic energy)
determined by having particles delocalized—i.e., polymers
spread out—over the entire surface.

However, already for g = 10 we see a substantial depletion
of large-L cycles, which could be sufficient to suppress su-
persolidity altogether. As g grows further, permutation cycles
get increasingly restricted to particles belonging to the same
cluster, and this will likely cause the complete loss of co-
herence between the clusters. Finally moving to g = 220, the

distribution of cycles develops a long tail, and superfluidity
would then be restored.

A more careful inspection of P(L) in Fig. 2 shows the
presence of steps/jumps in most curves, which are initially
tiny (e.g., for g = 10), while becoming more spectacular—at
least on a logarithmic scale—in the interval from g = 100 to

FIG. 2. Probability distribution P(L) of the length of permutation
cycles (semilog scale) for increasing gravity. Upper panel: g = 0
(blue), 10 (orange), 20 (green), and 50 (red). Lower panel: g = 100
(purple), 150 (brown), 200 (gray), 210 (cyan), and 220 (olive green).

024512-4



EFFECTS OF GRAVITY ON SUPERSOLID ORDER IN … PHYSICAL REVIEW B 111, 024512 (2025)

FIG. 3. Typical world line configurations. The number associ-
ated with each cluster is the mean number of particles contained in
the ellipse (see text): (a) g = 20, (b) 50, (c) 150, and (d) 200.

200, where they bring about the existence of a cutoff length
in the distribution. As already mentioned, the origin of these
steps must be traced back to localization of the particles,
implying that permutation cycles longer than the number of
particles per cluster are statistically suppressed.

However, a more refined explanation is needed for g = 20
and 50, where two steps are actually seen in the profile of P(L)
(see the upper panel of Fig. 2). To clarify this point, in Fig. 3
we have plotted the projections on the x−y plane of the poly-
mer beads in typical configurations for g = 20, 50, 150, and
200. The figure also shows colored ellipses that approximately
delimit the clusters. We associate a number of bosons to each
cluster by counting the number of world line beads inside the
ellipse and dividing by M.

Except for unimportant fluctuations, clusters are nonequiv-
alent for g = 20 and 50, while being equally populated for
g = 150 and 200. In the latter cases, the cluster size also
represents the cutoff length in P(L). Instead, for g = 20 each
petal contains fewer particles than the cluster at the south pole.
The number of particles in a petal (≈18) compares well with
the L value at which the first step occurs in the histogram.
This corresponds to having a significant probability only for
permutation cycles shorter than L ≈ 18. Likewise, the second
step at L ≈ 30 is related to the population of the central
cluster: cycles composed of more than ≈30 world lines have
a negligible probability.

For g = 50 the interpretation is similar. Now, the four clus-
ters present are only equivalent in pairs (the more populated
ones being those closer to the south pole). The two sizes,
L ≈ 22 and L ≈ 38, again correspond to the location of the
steps in P(L).

As discussed in Sec. II, we can assess the quantum char-
acter of the system by computing the superfluid fraction fs

from the simulation. The values of fs along the x, y, and z

FIG. 4. Superfluid fraction of soft-core bosons on a sphere plot-
ted as a function of gravity, along three spatial directions: f (x)

s

(orange), f (y)
s (blue), f (z)

s (green). The inset shows a magnification
of the low-g region.

directions are plotted in Fig. 4 as a function of g. Although
the temperature was T = 0.2, we have checked for a few g
values that f (i)

s remains practically constant at lower temper-
atures. For this reason, Fig. 4 actually provides ground-state
information.

Looking at the figure, we see three different regimes of
gravity, i.e., (a) g � 10, (b) 10 � g � 200, and (c) g � 210.
For g = 0, the superfluid fraction is nonzero thanks to the
combination of a very small temperature (which keeps the
world lines diffuse enough) and a well-tuned value of λ

(which gives quantum particles assembled in clusters the abil-
ity to contrast localization). In this perfectly symmetric case,
fs is the same along any direction.

In the whole (a) region, the quantities f (i)
s are the same and

nonzero (to within statistical errors). Thus, it seems reason-
able to conclude that—even though the original icosahedral
structure is deformed by gravity—the system is still super-
solid. However, as g grows from 0 to 10, the superfluid
fraction decreases until it vanishes close to g = 10.

The behavior of P(L) offers the key to read the fs data in
the (a) region—see Fig. 5, where the focus is on the statistics
of permutation cycles in the small-L range. On increasing g,
a step gradually arises in P(L) near L = N/6 due to poly-
mers wound up in a single cluster becoming more and more
preferred over polymers distributed among various clusters.
When the occurrence of long cycles becomes too low, which
happens for g ≈ 10, fs falls down to zero. The reason why
long cycles are more suppressed at stronger gravity calls upon
the exclusion/interdiction of polymers from a surface region
of increasingly larger area, making the benefits of delocaliza-
tion progressively smaller.

In the weak-gravity regime, we have also investigated the
behavior of fs as a function of temperature; see Fig. 6. We
find that the temperature where fs vanishes is progressively
reduced with increasing g. In other words, the width of the (a)
region shrinks when the temperature is increased.

In the (b) region (roughly from g = 10 to 200), grav-
ity is sufficiently strong that the system does not support
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FIG. 5. Magnification of P(L) in the low-L region for a few
values of g: 0 (black), 2 (red), 4 (green), 6 (blue), 8 (yellow), 10
(violet), 12 (orange), and 14 (cyan). The arrows indicate the direction
of growing g.

superfluidity any longer. In particular, the quantities f (x)
s and

f (y)
s are nearly zero. In contrast, superfluidity along the field

direction starts from zero at g = 10 and then grows steadily
with g while remaining small anyway (the nonzero value of
f (z)
s is probably just a finite-size effect).

As a side comment, it is amazing that for a gravity as strong
as g = 200, the system still prefers to form two clusters rather
than a single cluster at the pole. This is due to the energetic
advantage of a configuration with two clusters over one with
a single cluster.

Beyond g ≈ 210 [i.e., in the (c) region], gravity definitely
overcomes the soft-core interaction, and f (z)

s jumps to values
close to 1 ( f (x)

s and f (y)
s remain zero). Anisotropy of the su-

perfluid response is not new, since the same occurs for dipolar
bosons on the sphere [38]. The resurgence of superfluidity
in the (c) region happens in conjunction with the transition
from two clusters to one. When there are two clusters, their
spatial separation is so high that permutation cycles longer

FIG. 6. Superfluid fraction plotted as a function of temperature
for a few values of g: g = 0 (blue), 4 (orange), 10 (green), and 20
(red).

than N/2 = 60 cannot occur, and f (z)
s vanishes. If, instead, the

system is all in one piece, then it can host permutation cycles
of any length and it becomes superfluid.

Finally, in order to ascertain the size dependence of our
results, we have doubled the system size while keeping the
density fixed. By carrying out long PIMC simulations on a
sphere with radius

√
2 times larger than before, we have veri-

fied that, in the low-g regime, the superfluid fraction remains
substantially unchanged relative to N = 120.

Our analysis would not be complete if we did not make
an attempt to estimate the effective value of g for a system of
Rydberg-dressed atoms subject to Earth gravity.

As mentioned above, we can take as an example a sur-
face density of 4 µm−2, and the mass of a rubidium atom,
m ≈ 87 amu. In this case, vanishing superfluidity would occur
at gravity acceleration around a ≈ 12 m/s2, meaning that the
atoms would still be supersolid in the presence of Earth grav-
ity. For heavier bosonic atoms, superfluidity would vanish at
smaller values of a. Details of the calculation are presented in
Appendix C.

IV. CONCLUSIONS

In the study of the emergent properties of an ultracold gas
of bubble-trapped atoms, the gravitational pull is a critical
issue since it precludes a uniform distribution of atoms in
the shell. We have explored whether this effect is milder in
a strongly interacting system well beyond the dilute limit,
taking the cluster supersolid of soft-core bosons on a sphere
as our case study.

In the absence of gravity, the clusters are centered at the
vertices of an icosahedron. Using path integral Monte Carlo
simulations, we track the evolution of the system structure
as a function of the gravity strength g, assumed to be a free
parameter. We thus find a sequence of transitions in the ar-
rangement of clusters, which reduce in number as g increases,
until only one cluster is left at the bottom of the sphere. In turn,
also the superfluid response along the vertical axis is strongly
affected by gravity, which makes it (nearly) vanishing already
for g ≈ 10 (in our units), until the final recovery when all
particles condense at the bottom of the trap (g > 200). In this
regard, the statistics of permutation cycles proves effective
in unraveling the connection between cluster structure and
superfluidity. While the tail of the distribution informs on
the extent of superfluidity in the system, its fine structure
(jumps and cutoff length) carefully reflects the number and
size dispersity of the clusters.

It turns out that quantum coherence is assured only when
gravity is a weak perturbation (clusters are many and have
fuzzy margins) or fully dominant (clusters “merge” together
into one). It appears that, depending on the atomic species
involved, Earth gravity can be “weak”; in this case, signatures
of supersolidity of soft-core bosons in a spherical shell could
be even seen in a laboratory on Earth.

We hope that the numerical evidence provided in this pa-
per will stimulate experiments that explore strong-coupling
regimes in bubble traps, in a similar way to what happened
for supersolids in flat space, where theoretical and numerical
results have long preceded implementations in the laboratory.
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APPENDIX A: ANGULAR MOVES IN PIMC

As detailed in Refs. [47,53], the standard implementation
of PIMC is based on the generation of world-line configura-
tions drawn from a probability distribution corresponding to
the free-particle density matrix. The proposed configurations
are then accepted or rejected based on the strength of the
potential terms.

In the standard PIMC formulation, the shape of a world
line follows that of a free quantum particle at temperature
T : a particle occupies a space proportional to the cube of the
thermal wavelength � =

√
2π h̄2β/m. Clearly, in order to take

the spherical constraint into account, the standard sampling
procedure must be modified to ensure that the world lines
entirely lie on the spherical surface.

In practice, segments of world lines with starting position
ri and end position r f are constructed through a diffusion
process, which bears the name of Levy bridge. For each new
bead j, with j = i + 1, . . . , f − 1, a temporary position r0

j is
selected on a straight line from r j−1 to r f . Then, the temporary
position is displaced by a vector, sampled from a Gaussian
distribution derived from the free-particle density matrix ρfree.
Through these steps, the new position r j is generated and the
process is repeated for the other beads. In the case of particles
bound to a spherical surface, both steps need to be changed.

(i) Instead of centering the temporary position r0
j on a

straight line from r j−1 to r f , we place it on the arc connecting
r j−1 to r f along the surface of the sphere.

(ii) Instead of drawing the displacement vector from a
three-dimensional Gaussian distribution of width �, we first
draw a two-dimensional vector from a Gaussian distribution
of width σθ , which is usually close to �. The resulting vector
v must be converted to an angular displacement 
θ on the
sphere. There are different ways to do this, so the specifics of
the move can vary, but this is not important since detailed bal-
ance will ensure that small differences in the generated paths
are smoothed out. For example, we can generate the length
of arcs along the sphere; in this case, we draw the vector lθ
from the two-dimensional Gaussian distribution. We use its
modulus lθ = |lθ | as the arc length, and we set 
θ = lθ /R.
Another option is that lθ is the length of a chord, in which case
θ = 2 arcsin(lθ /2R). We have tested both solutions and found
no significant differences in the results. We use the first option
in our algorithm. The probability to draw a specific choice of

θ is then

P(
r,
θ ) = 1

2πσ 2
θ

e
− 
θ2R2

2σ2
θ . (A1)

Given the starting and final position, we find the normal
unit vector n̂ = r j−1 × r f /|r j−1 × r f | and the angle between
them α = arccos (r j−1 · r f /|r j−1||r f |). Then, we make use of
the definition of rotation matrix in d = 3,

R(n̂, α) =

⎡
⎢⎣

tn2
x + c tnxny − snz tnxnzy + sny

tnxny + snz tn2
y tnynz − snx

tnxnzy − sny tnynz + snx tn2
z

⎤
⎥⎦,

(A2)

where c = cos α, s = sin α, and t = 1 − c. Calling m = f −
( j − 1), we then have that the temporary position r0

j is at

b = R(n̂, mα) r j−1 + m
r
r j−1

|r j−1| . (A3)

Once we have chosen the vector b, it is convenient to
perform the calculation in a standard reference frame by
bringing b to coincide with the z axis. We first compute the
vector a = b × ẑ = (by/b,−bx/b, 0), then the rotation matrix
R(a/|a|, arccos(bz/b)). This is the rotation matrix that brings
b to be aligned with ẑ, while RT is the matrix that restores the
original vector.

Now, we generate a new position by drawing vθ from (A1).
The vector vθ gives both a displacement and a direction in
the x−y plane, which we convert into coordinates θ, φ on the
sphere: θ = |lθ |/b, φ = arctan(ly

θ /lx
θ ). The new vector is then

simply

c = b(cos φ sin θ x̂ + sin φ sin θ ŷ + cos θ ẑ), (A4)

and we go back to the original coordinate system by

r j = R(a/|a|, arccos(bz/b))T c. (A5)

The above procedure ensures that, when we build a Levy
bridge as part of a PIMC move, the new beads always lie
on the surface of the sphere. An analogous procedure can be
applied to off-diagonal moves to construct open world lines.

Since we have changed the sampling distribution, the ac-
ceptance rates of the Monte Carlo moves must also change in
order to satisfy the detailed balance condition. When going
from configuration s to s′, we must include a term of the form

∏
j P(
θ j, j+1)∏
j P(
θ ′

j, j+1)

∏
j ρfree(r′

j, r′
j+1)∏

j ρfree(r j, r j+1)
(A6)

with 
θ j, j+1 = arccos (r j+1 · r j/|r j+1||r j |).

APPENDIX B: SUPERFLUIDITY AND AREA ESTIMATOR

In bubble traps, fs is evaluated by sampling the so-
called “area estimator” [50,54]. This method draws a direct
link between the area encompassed by connected polymers
(describing the delocalization of bosonic particles) and the
reduction in the moment of inertia compared to the classical
case. In this paper, we examine the superfluid fraction along
three orthogonal axes by computing, for k = x, y, and z,

f (k)
s = 4m2

h̄2βI (k)
cl

(〈
A2

k

〉 − 〈Ak〉2), (B1)

Ak being the total area enclosed by particle paths projected
onto the plane perpendicular to axis k. In terms of particle
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positions, Ak reads

Ak = 1

2

N∑
i=1

M−1∑
j=0

(ri, j × ri, j+1)k . (B2)

Moreover, I (k)
cl in Eq. (B1) is the classical moment of inertia

relative to the k axis. Finally, the observable in Fig. 6 is
defined as fs = ( f x

s + f y
s + f z

s )/3.

APPENDIX C: ESTIMATE OF g

In our simulations, we use a unit of length l and a unit of
energy E corresponding to physical quantities lphys and Ephys.
In the main text, these units are taken to be the soft-core radius
σ and the barrier height ε.

To fix these values, we need to choose some physical
parameters. For the length unit, we fix the density to about
4 µm−2, as done in [38]. With N = 120 and R = 1.4, we then
have

Smks = N/nmks = 30.0 µm2, (C1)

Rmks = 1.545 × 10−6 m, (C2)

lmks = lRmks/R = 1.104 × 10−6 m. (C3)

Therefore, lmks ≈ 1.1 µm.
To define the unit of energy, we note that we can write for

our value of λ = h̄2/2m (set to λ = 0.16 in our simulation),

λ/l2E = λmks/l2
mksEmks. (C4)

Since l and E are 1 in the simulations, we write

Emks = λmks/λl2
mks. (C5)

We can calculate λphys = h̄2/2m using physical units. With
h = 6.63 × 10−34 and choosing the mass of a rubidium atom
m = 87 × 1.67 × 10−27, we find Emks ≈ 1.96 × 10−31 J.

In our simulations, we represent the gravitational potential
as V (z) = gz = maz. We need to establish the relationship
between the value of g in our simulations and that of amks.
We start from

gl/E = amks mmks lmks/Emks. (C6)

We can replace Emks with its expression in (C5), obtaining

amks = gλmks

mmks l3
mks λ

= g h̄2

2 m2
mks l3

mks λ
. (C7)

Replacing λ = 0.16 and lmks = 1.104 × 10−6 m, we obtain

amks = 2.59 × 10−50

m2
mks

g
m kg2

s2
. (C8)

Introducing mamu = mmks/1.67 × 10−27 kg, we can rewrite
Eq. (C8) as

amks = 9270

m2
amu

g
m

s2
. (C9)

For rubidium, mamu = 87 so that

amks = 1.22 g
m

s2
. (C10)

Thus, we see that a physical value of amks = 9.8 m/s2

corresponds to a value of g ≈ 8 in our simulations.
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