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ABSTRACT 
Thermal anisotropic roughening of vicinal surfaces is well known and well 

studied. Here, we consider the possibility that a separate pre-roughening 
transition might take place, prior to roughening. Within the framework of a 
terrace-step-kink model, we identify possible interaction mechanisms for 
promoting pre-roughening (PR) and the ensuing disordered flat (DOF) phase. 
In particular, the most likely to occur in real systems is a short-range repulsion 
between equally oriented parallel kinks. When this interaction is strong, PR 
shows up and the DOF phase is characterized by antiparallel order of kinks 
within a step. Next, we discuss the relevanee of this scenario for real vicinals, 
in particular Ag( 1 15), where high-accuracy scanning tunnelling microscopy data 
are available. 

(3 1. INTRODUCTION 
Stepped surfaces of metals have recently attracted much interest, both theoreti- 

cally and experimentally, as they provide a valuable tool for investigating the inter- 
action and dynamics of various types of defect on a surface, including steps, kinks 
and adatoms. In particular, the presence of steps already at  zero temperature makes 
it possible for a vicinal surface, that is a surface consisting of a regular array of 
terraces, to roughen a t  a much lower temperature than the melting temperature 
(Villain et af. 1985). This leads to a complete decoupling of the two phenomena of 
melting and roughening and allows for a neat observation of surface roughening 
through the use of scanning tunnelling microscopy (STM), such as recently reported 
for Ag(115) (Hoogeman et u1. 1996, 1999, Hoogeman and Frenken 2000). In fact, 
any vicinal surface would be rough down to T = 0 if the steps did not repel each 
other. However, the elastic distortions which appear in the neighbourhood of any 
surface defect provide an  ubiquitous source of repulsion between the steps. Together 
with the entropy gained from the enhanced vibration of step particles. this elastic 
repulsion is held responsible for the thermodynamic stability of vicinal surfaces at  all 
but the very low temperatures where they could simply be metastable (Frenken and 
Stoltze 1999). 
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11 Email: tosatti@ sissa.it 

P/iI/o.wphicd Mcigozine B ISSN 1364-281 2 print/lSSN 1463-641 7 oilline 2001 Taylor & Francis Ltd 
http://www.tandf.co. uk/journals 

DOI: 10.l080/1364?8 101 100.50.567 

D
ow

nl
oa

de
d 

by
 [

C
on

si
gl

io
 N

az
io

na
le

 d
el

le
 R

ic
er

ch
e]

 a
t 0

6:
10

 1
6 

Fe
br

ua
ry

 2
01

5 



638 S. Prestipino and E. Tosatti 

Across the roughening transition, a macroscopic change is observed in the mor- 
phology of the vicinal. Below the roughening temperature TR, steps remain suffi- 
ciently ordered. Above TR,  steps meander freely and kinks abound (a kink is a step 
in the step), giving rise to divergent fluctuations in the position of the surface height 
profile. However, the roughening behaviour can be more complex if kinks are taken 
to interact. In particular, we know from elasticity theory that a repulsive interaction 
should be expected between two identical kinks at distance r on a step (parallel 
kinks), which asymptotically decays as F 3  (Marchenko and Parshin 198 1, 
Rickman and Srolovitz 1993). If this repulsion is strong enough, it could be possible 
to stabilize a disordered flat (DOF) phase, characterized by strong antiparallel cor- 
relations between consecutive kinks in the same step. This phase would be disordered 
in that kinks are present in a large amount along the steps, but flat, because of the 
limited step lateral excursion. A new phase transition would occur in this case, called 
pre-roughening (PR) in similar contexts (Den Nijs and Roinmelse 1989), whereas 
roughening would be shifted at a higher temperature. 

In this paper, we investigate this possibility through a specific model, and find 
that promotion of a DOF phase by kink-kink repulsion is indeed possible. This is an 
important result, since it shows that a vicinal surface can exist in a phase that was 
never considered before. Moreover, even in the absence of any interaction between 
the kinks, a DOF phase could nonetheless be stabilized by a sufficiently strong and 
long-range step-step repulsion. 

A PR transition is strongly believed (Den Nijs 1991, Weichnian and Prasad 1996. 
Jagla et al. 1999, Prestipino and Tosatti 1999, Celestini et al. 2000) to underlie the 
well-documented re-entrant layering observed on the (1 11) surface of rare-gas solids 
(Youn and Hess 1990, Day et al. 1993, Youn et al. 1993). The deconstruction 
transition of some metal surfaces such as Au(ll0) can also be regarded as a realiza- 
tion, although less interesting, of PR. It is still an open issue whether a stable DOF 
phase is present in an unreconstructed metal surface, although the possibility of a 
DOF phase separation has also been envisaged in this case (Prestipino and Tosatti 
1998). In particular, it is possible that the incomplete melting observed on Pb(100) 
and on Au(100) could be accompanied by PR. With our emphasis on the vicinal 
DOF phase, we wish to draw the attention of experimentalists towards a new class of 
metal surfaces where a concrete realization of PR could be found. 

Our suggested PR of vicinals is general. However, owing to the excellent char- 
acterization of one particular vicinal, Ag( 1 15), provided by Hoogeman et d. (1 996, 
1999) and Hoogeinan and Frenken (2000), we shall specialize the quantitative 
aspects of our study to that surface. Hoogeman and co-workers have addressed 
the problem of roughening of Ag( 115) through the measurement of a kink-kink 
correlation function which is found to level off at large distance below TR, while 
being logarith~nically divergent as a function of surface size above T R .  However, an 
inconsistency is found in that study between the thermal behaviour of the pre-factor 
of the kink-kink correlation function and the correlation length. While the former 
indicates roughening at around 490 K, the correlation length points to a divergence 
at a lower temperature (about 440 K). Accepting the reported accuracy on the cor- 
relation length, a possible way out could be the existence of a DOF phase in the 
interval 440490 K. In the light of t h s  possibility, it is of interest to reconsider the 
nature of the phase transition observed in Ag(115), trying to see whether a new, 
possibly more accurate schematization of it (with parameters extracted from the 
experiment) gives support to the view of a single roughening transition around 
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430K (Hoogeman et al. 1999, Hoogeman and Frenken 2000) or, rather, reveals a 
more complicated scenario, with both PR and roughening. 

This paper is organized as follows. In $2, we introduce a modified terrace-step- 
kink (MTSK) model for the fcc (1 15) surface. Our model is a generalization of the 
standard Villain-Grempel-Lapujoulade (VGL) model, where interactions between 
the kinks are also taken into account. Next 3 3 is an intermezzo, devoted to seeking 
an analytic solution of a modified VGL model where an extended step-step repulsion 
acts as a mechanism for promoting the DOF phase. In $4, the results of a Monte 
Carlo simulation of the MTSK model are analysed, confirming the existence of PR 
for strong enough kink-kink repulsion. Then 9 5 is devoted to an attempt to fit the 
MTSK model to Ag(115). With this aim, one could in principle use atomistic 
potentials to estimate the MTSK parameters. However, kink-kink interactions are 
generally given as differences in the step energies, which are in turn very difficult to 
obtain accurately by numerical studies of crude models such as the embedded-atom 
method. Therefore, we shall only tackle the question of whether, within the MTSK 
model, the incomplete information available from the STM experiment is compatible 
with the existence of the DOF phase. Further comments and conclusions are offered 
in $6. 

$2. A TERRACE-STEP-KINK MODEL WITH INTERACTING KINKS 

An ideal high-index (vicinal) surface consists of terraces of a low-index facet, 
separated by straight steps running along a direction of strong bonding. In this 
paper. we consider a fcc metal (1 15) surface as a specific example (figure 1), having 
in mind the case when the fcc metal is Ag. This vicinal is formed by (001) terraces of 

Figure 1. A small portion of a fcc metal (1 15) surface is shown with a terrace above, 
delimited by a secondary step formed by kinks along the primary (1 11) steps. It can 
be appreciated from the side view that, owing to the terrace, the height of the surface 
along its normal [115] direction becomes increased by a fraction sin a = 6”’/9 of the 
lattice parameter a, N being the mean slope of the vicinal over the .x-y plane. 
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640 S. Prestipino and E. Tosatti 

width 2.5u, where a is the distance between nearest-neighbour atoms in the fcc lattice 
( a  zz 2.9 A for Ag). Two adjacent terraces are separated by a (1 11) (primary) step. 
Other steps are formed by kinks along primary steps (they are called secondary 
steps); proliferation of secondary steps is responsible for vicinal roughening. Upon 
moving from one terrace to the next, all atomic positions at the surface become 
displaced by u / 2  along the x and y directions; this allows identification of two 
different square sublattices on this plane. Finally, the normal direction to the surface 
forms an angle a of 15.8" with respect to the vertical [OOl] direction; this angle Q is 
the average slope of the vicinal over the x-y plane. 

We are interested in describing the thermal disordering of the fcc metal (1  15) 
surface. However, we do not want to consider the high-temperature melting beha- 
viour of the vicinal or even approach the roughening temperature of the (001) facet 
(since the melting temperature is much greater, there is no room here for an interplay 
between PR and surface melting of the type investigated by Jagla et al. (1999), which, 
above TPR, would rather require a description in terms of continuous degrees of 
freedom). In such a low-temperature regime, a good approximation is to exclude the 
possibility of adatoms (i.e. poorly coordinated particles) on terraces; in this case, the 
only relevant variables that are left in the problem are the step positions. We assume 
that migration of step atoms across the boundaries of a selected surface region acts 
to maintain full grand-canonical conditions inside this region. Finally, a solid-on- 
solid condition is assumed to hold over all the step length, in such a way that, taking 
the y axis in the direction of steps at T = 0, the step position with respect to T = 0 
can be encoded by a variable u,(y) (M? = 1, .  . . , N ,  being the step label and 
1' = 1 , .  . . , Ny the abscissa along the step). 

This so-called terrace-step-kink (TSK) model is very old (Kossel 1927, Stranski 
1928). It assumes some sort of repulsion between neighbouring steps and an energy 
cost for forming kinks along the steps. This model has the advantage of being simple 
enough and also amenable in some cases to an exact statistical treatment; yet. it gives 
an accurate description of the roughening transition in vicinals. 

A particular TSK model was introduced for this problem by VGL. In their 
model, y and unl(ji) are both integers and the difference between um(y+ 1) and 
u,,(y) is restricted to 0, *1 (i.e. only kinks of unitary length are permitted). The 
Hamiltonian of the VGL model (which is in fact specific to the sc (001) vicinal 
surfaces) is 

with 

for Au 2 0, 
for A u =  -1, 

+CC for Au < -1. 

With two parameters only, W ,  and U 1 ,  the Hamiltonian (1) is only appropriate for 
step densities which are not too low, where u,,+,(j~) is strongly disfavoured by the 
small terrace width from being smaller than u,(y) - 1. WI > 0 is the kink formation 
energy, while U1 > 0 accounts for a short-range repulsion between the steps. 
Periodic boundary conditions (PBCs) are meant to hold in the s direction in order 
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Kink-kink interactions of vicinal suyfrces 64 1 

to prevent the step array from ‘evaporating’ (i.e. conservation of the step number in 
any given sample is always implied). PBCs are also applied in the y direction. 

Model (1) is exactly solvable in the large-anisotropy W ,  / U ,  --f +cm limit, corre- 
sponding to an infinite bond strength in the y direction (Villain et al. 1985). In this 
limit, the Hamiltonian (1) can be mapped on to a well-studied one-dimensional (1D) 
quantum spin problem (see 5 3) .  In particular, a Kosterlitz-Thouless phase transition 
is predicted to occur at a temperature TR given by 

This transition is interpreted as surface roughening in that the correlation function 

is bounded from above as ni goes to infinity when T < TR, while it diverges loga- 
rithmically in the same limit when T > TR. Above TR, owing to proliferation of 
thermally excited kinks, steps are no longer confined near 21 = 0 and the mean sur- 
face slope becomes undefined. 

We have modified the Hamiltonian (1) by including terms which represent inter- 
actions between the kinks. These interactions generally arise from the mutual inter- 
ference of the elastic strain fields as determined by the individual kinks. In particular, 
we allow for a short-range repulsion between parallel kinks in the same step and also 
between parallel kinks in neighbouring steps. Instead, no interaction will be assumed 
between antiparallel kinks. Finally, the number of atomic positions along the y axis 
has been doubled, so as to take into account the two-sublattice structure of the fcc 
(115) surface (figure 2). As a result, the restriction to unitary kinks now reads as 
um(y + 2) - unl(y) = 0, *l. With the further prescription that y values are, say, odd 
for I N  odd, and even for rn even, our MTSK Hamiltonian looks as follows: 

where f l  and f 2  are defined as 

for Au > -1, 

for Au = -1, 

+cc for A u <  -1, 
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642 S. Prestipino and E. Tosatti 

m m + l  

Y f 

f t  
u=o u=o 

Figure 2. Schematic view of the MTSK surface, with a number of permitted excitations and 
their energy cost. Atomic positions along a step are all even or all odd according to 
which sublattice the terrace atoms on the left of the step belong to. 

for Ail > -3, 
for A u  = -2, 

+m for Au < - 2 .  

In equation (9, n7 runs from 1 to N,, 1' takes (depending on the parity of m) either 
the odd or the even values from 1 to 2NY, S(. . .) is the Kronecker function and all 
parameters are positive. In particular, W2 and W3 discourage parallel kinks from 
occurring at first- or second-neighbour positions on the same step, while U,  repre- 
sents a short-range repulsion between parallel kinks in neighbouring steps. Within 
this set-up, we expect that a strong kink-kink repulsion could induce a DOF phase 
into the MTSK model (see $4). 

Even if kinks were non-interacting, U,  = W, = W, = 0, the DOF phase could 
nevertheless be favoured by a suitably long-ranged step-step repulsion which may 
encourage step localization without discouraging kink proliferation. However, repul- 
sive forces between the steps decay as rp2 at large distance (Marchenko and Parshin 
1981, Rickman and Srolovitz 1993). When a step is displaced from its reference 
position, the excess interaction energy at distance r approximately changes by 
( r  + 1)-* + (i. ~ 1 ) - 2  - 2r-' FZ rp4; this means that the (excess) step-step repulsion 
is heavily suppressed at  large distances. For this reason, we believe that kink-kink 
repulsion is the only relevant mechanism for the appearance of the DOF phase in a 
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Kink-kink interactions of vicinal surfaces 643 

vicinal. In spite of this, the effect of a longer-range step-step repulsion on the phase 
diagram of the VGL model is worth considering anyway, and it is moreover amen- 
able to an analytic treatment. This is the subject of the next section. 

9 3. EXTENDED STEP-STEP REPULSION IN THE VILLAIN-GREMPEL-LAPUJOULADE 
MODEL 

The Hamiltonian (1) was designed in such a way as to be equivalent, in the large- 
ansiotropy limit, to a solvable ID quantum problem (the spin-; Heisenberg anti- 
ferromagnetic (AFM) Ising chain) (Villain et al. 1985). This isomorphism rests 
ultimately on the equivalence between the partition function of the original model 
and the imaginary-time propagator of a suitable quantum system with one less space 
dimension (Hertz 1976). In particular, the free energy of the statistical model is 
simply proportional to the ground-state energy of the quantum model; as a result, 
any phase transition in the former will convey a singularity in the latter. However, a 
crucial requirement in order to accomplish this mapping is that the coupling in one 
spatial direction must be much stronger than the coupling(s) in the other direction(s). 
In particular, the imaginary time direction always corresponds to the direction of 
strong coupling. More information is given in appendix A. 

In order to favour the step confinement without hindering the left-right mean- 
dering of primary steps typical of a DOF surface, a general method (alternative to 
switching on the interaction between the kinks) is, as we learned from experience on 
solid-on-solid (SOS) models (Prestipino et al. 1995), to extend the range of step 
repulsion in a suitable way. The simplest way to do so is by including a further 
term in equation (l), representing a repulsion between steps that are second neigh- 
bours. Precisely, we include in the VGL Hamiltonian a term 
Cm,,g(~,+2(Y) - um(Y>>, with 

for A u  3 - 1, io +a for Au < -2. 
g(Qu) = U3 for nu= -2, (7 )  

It is evident from equation (7) that a supplementary cost of U3 only appears for a 
horizontal separation of 3a between steps in and nz + 2. Although a similar interac- 
tion would generally exist in a real vicinal with a U3 much smaller than U , ,  it is 
worth considering here U3 to be generic, in order to see whether the modified VGL 
model can sustain a DOF phase whatsoever. By extending the method of Villain et 
al. (1989, we show in appendix A how to map the extended VGL Hamiltonian on to 
the following ID quantum problem: 

where c, and c: (for w = 1, . . . ,2NJ are anticommuting spinless-fermion operators. 
n, = cLc, is the number (charge) operator, J,  = [@U, exp (flW1)]/2, and 
53 = [PU3 exp (PW,)]/2.  In particular, both J,  and J3 = ( U 3 / U l ) J z  are increasing 
functions of ,8 = l/(ksT). The free energy of the modified VGL model is the same as 
the ground-state energy Eo of equation (8), on condition that PU, ,  pU3 << 1 << P W,,  
and provided that the 1D lattice is half-occupied (see appendix A). 

The ground state of equation (8) at half-filling cannot be easily calculated; thus 
an approximation scheme is in order, and the most natural by far, when different 
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644 S. Prestipino and E. Tosatti 

ground-state structures compete together to give the lower energy, is the variational 
method. In this scheme, a number of trial (solvable) Hamiltonians is considered, 
each containing one or more adjustable parameters, and the ground-state average 
(OIHQIO) is calculated for each. For given values of U3/U1 and Jz ,  the physical 
solution will be that providing the lower minimum of (OlHQlO) in the parameter 
space. Obviously, in order to keep contact with the original statistical problem, only 
those trial Hamiltonians are to be used whose ground state is in a clear correspon- 
dence with a surface phase. Following Santoro et a/. (1996), we choose a site-centred 
charge density wave (CDW) with a wavelength of two lattice spacings as the quan- 
tum-mechanical counterpart of an ordered flat surface, while we take a bond-centred 
CDW (of equal wavelength) as representing a DOF surface. This can be rationalized as 
follows. Consider first the perfectly ordered surface; with the same notations as in 
appendix A, we have v,(y) = 2m for all y ,  so that - 1 and spins strictly alternate, 
and the same occurs for n, between 0 and 1. Conversely, a spin state where the charge is 
peaked on one bond every two is the exact counterpart of a surface having an effective 
half-integer vm(y)  equal, for all m and y ,  either to 2m + or to 2m - i, that is each step 
position is on average or - i, respectively, as expected in a DOF surface. 

In appendix B, the two competing estimates of the ground-state energy of the 
Hamiltonian (8) are derived, namely E s ( U )  for a site-centred CDW and EB(U)  for a 
bond-centred CDW, where U is an adjustable amplitude. Both variational estimates 
are functions of U3/U1 and J,, while U is tuned to obtain the minimum possible 
energy. If the absolute minimum falls at U = 0, then the X Y  (tight-binding) solution 
takes over, corresponding to a stable rough phase. 

For a fixed U 3 / U , ,  the temperature is varied acting on J,. We first consider the 
standard VGL model ( U3 = 0). In this case, roughening occurs for J ,  M 0.4 (instead 
of 1 as in equation (3)), and there is no PR, that is the DOF phase never acquires 
more stability than the ordered flat (OF) phase. Next, we set U,  = U1. Also in this 
case, however, we find that the DOF phase is never stable within our mean-field 
approach, while roughening is found to occur at J,  z 0.1 1, that is the roughening 
temperature has moved upwards with respect to U3 = 0. By strengthening U3 sub- 
stantially, we expect that the DOF phase will eventually appear. In fact, for example, 
for U3 = 5U1, roughening has moved down to J,  M 0.04, while a PR transition now 
appears at J,  M 0.5, accompanied by a jump in U ,  which is hence first order. 

In conclusion, we found that a sufficiently strong U3 coupling is able to stabilize 
the DOF phase in a range of temperatures that becomes wider, the larger U3 is 
compared with U1. However, very large values of U3/  U1 (larger than 1) are needed, 
at least within mean-field theory, to promote the DOF phase, and this makes the 
picture rather unrealistic. In view of this, we believe that the only mechanism of 
practical relevance for stabilizing the DOF phase in a vicinal is a strong repulsion 
between parallel kinks. It remains to be seen whether this is realized in a given model. 
In the following section, the specific case of a fcc metal (1 15) surface is considered, 
given that accurate STM measurements are available for Ag( 1 15). 

0 4. WHAT PHASES OCCUR IN THE MODIFIED TERRACE-STEP-KINK MODEL? 
Now, we report the results of a detailed Monte Carlo (MC) analysis of the 

MTSK model (equations (5) and (6)) designed to model a fcc metal (001) vicinal 
surface such as the Ag( 1 15) surface. The main outcome of this study is the following: 
if the short-range repulsion between parallel kinks is strong enough, the vicinal 
exhibits three different phases: a low-temperature OF  phase, an intermediate DOF 

D
ow

nl
oa

de
d 

by
 [

C
on

si
gl

io
 N

az
io

na
le

 d
el

le
 R

ic
er

ch
e]

 a
t 0

6:
10

 1
6 

Fe
br

ua
ry

 2
01

5 



Kink-kink inteructions of vicinnl surfcrct)s 645 

phase and a rough phase at high T .  On the other hand, a weaker repulsion between 
the kinks is insufficient to stabilize the DOF phase, and the roughening behaviour 
will be the same as for the VGL model. 

As a preliminary test, we check our MC program (see description below) against 
exact results. With this aim, we carry out transfer-matrix calculations for a strip 
of four steps. The strip is infinitely long in the y direction, while PBCs hold along 
x. For our purposes, it is convenient to rewrite the Hainiltonian as 
N,Ny(U,Eu, + W,Ew, + ...), where the remainder does not depend on U ,  and 
W , ;  then, the following relation holds, involving the exact free energy per site: 

We set /3U2 = pW2 = pW3 = $00 and W ,  = lOU,, and we vary PU,  from 0 to 0.3. 
While the free-energy derivative on the left-hand side of equation (9) is evaluated 
numerically from the transfer-matrix data, the right-hand side is obtained from the 
simulation. The lattice is 4 x 400 in this case and 2.5 x 106 sweeps are generated at 
equilibrium, 1 sweep consisting of one average attempt per site to change the local ZI 

value by *l. By looking at figure 3 (b)  it is clear that the quantities on the two sides 
of equation (9) are undoubtedly the same. 

0 

-0.2 

-0.4 

-0.6 

-0.8 
0 0.1 0.2 0.3 

pu, 
(b)  6 

5 
5 4 
‘t=- 
%-2 

$ 3  

1 
0 

0 0.1 0.2 0.3 

P U I  

Figure 3. Check of our MC program for the MTSK model through a comparison with exact 
transfer-matrix results. We use W ,  = 10Ul and C12 = W, = W, = +m. (a) Exact free 
energy per site of a 4 x oc, lattice strip: (-), spline interpolant which, by construc- 
tion, has zero derivative at the boundaries. (0): MC results (0) for the right-hand side 
of equation (9), together with the numerical derivative of the above-mentioned inter- 
polant (-). 
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646 S. Prestipino and E. Tosatti 

Next, we prove the existence of a DOF phase in the MTSK phase diagram. The 
most favourable situation from the DOF is when U2,  W2 and W3 are all infinite. We 
take W ,  = 20Ul and vary PUl from 0 to 0.18. We use standard Metropolis MC 
simulation and PBCs. The lattice consists of NJ, positions for each of a number N ,  of 
steps. A MC move consists of a local updating of ti, which is changed by *1 at given 
171 and J' chosen at random; then, the move is accepted or rejected according to the 
usual Metropolis rule (the move is always rejected if any of the constraints embodied 
into the model is going to be violated). After due equilibration of the sample. as 
many as 1.5 x lo6 sweeps are generated. Averages are updated every 10 MC sweeps. 
Besides other quantities, we calculate the mean square step lateral excursion 
6u = ( [ i i m ( y )  - GI2) (with U, = C, U , , ~ ( ~ ) / N ~ , ) ,  the parity order parameter 
P = ((-l)unr(y)) = ( P ) ,  with P = I C:,,,,,(-l)""'('''/(N.~N~)l, and the order-parameter 
susceptibility x p  = NYN,,(  (P2)  - (P)- ) .  We expect that strong antiparallel correla- 
tions between consecutive kinks in the same step will result, in the thermodynamic 
limit, into a vanishing P and a finite 6u2, which will characterize the DOF phase if 
present. In that case, if PR is critical, 6u2 is expected (Prestipino and Tosatti 1999) to 
increase logarithmically at  TPR. 

To corroborate our conclusions, we spend some more time on the evaluation of 
the statistical uncertainties affecting the relevaiit averages. As usual, these are defined 
as rms deviations of statistical averages, once many independent estimates of these 
quantities (block averages) are made. For most quantities, grouping MC states in 
blocks of 10' sweeps suffices for all purposes. However, particular care must be taken 
for the susceptibility, whose values could be correlated over much longer 
segments of MC trajectory than 10' sweeps. Finally, errors are particularly severe 
close to second-order transition points, owing to unlimited growth of decorrelation 
times. 

In figure 4, siinulation data are plotted for three values of N,, namely 8, 16 and 
24 (we take N y  = 20N,). Although such step numbers are not very large, the clear- 
cut maximum of 6u' is the most likely signal of a PR phase transition occurring at 
PU, RZ 0.08 (a logarithmic increase in this maximum with increasing system size is 
roughly consistent with our data). Moreover, beyond that temperature, 6u2 remains 
finite in the thermodynamic limit, even at the infinite temperature, meaning that the 
rough phase is totally absent in this case, so that the high-temperature phase of the 
model is DOF (statistical errors are so small that the above conclusions are safe). As 
a result, the vicinal surface would be rough only at the isolated PR point, and flat 
both below and above. Therefore, infinite parallel-kink repulsion effectively acts to 
confine the steps around u = 0 at any temperature without, however, hindering a 
strictly left-right zigzagging of steps at  high temperature. This meandering contri- 
butes a large entropy to the steps which lowers the surface free energy, thus counter- 
balancing the energy cost for kinks. As to the order of the PR transition, we find that 
xp diverges at  TPR while the specific heat remains finite (see figure 4, inset). Hence, 
PR is second order with a negative specific-heat exponent. 

In figure 5, a small part of the vicinal at U1 = 0 is shown. This picture reveals 
what is the general structure of the DOF phase; kinks are very numerous along the 
steps but the correlation between two consecutive kinks is strictly antiparallel, so 
that the overall surface is flat; its slope on the x-1' plane the same as for the perfect 
vicinal surface. Indeed, the DOF state in figure 5 is nearly ideal; each of the steps 
strictly meanders between two positions with equal probability; hence 6u' = 0.25. In 
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Kink-kitik interactions of vicitiul swfirces 647 

0.6 

0.4 

0.2 

0 
0 0.04 0.08 0.12 0.16 

PU,  
Figure 4. MTSK model: MC data for three different step numbers, N ,  = 8 (A), N ,  = 16 (0) 

and N ,  = 24 (O), with N ,  = 20N, in each case. Here, the parameters are,chosen to be 
W ,  = 2011, and U,  = W, = W, = +m. Results are shown for P and 6ii - .  Error bars 
are smaller than the symbol sizes. In the inset, the results for y p  and the specific heat 
are shown. A rather sharp PR transition occurs a t  BU,  zz 0.08, and no rough phase is 
observed in this case. Although general arguments suggest a logarithmic growth of F i r -  
at T = T,, as a function of the surface size, our samples are too sinall (and too few) to 
extract this behaviour from the data. 

practice, a real DOF surface will be generally characterized by a 6u2 value substan- 
tially larger than 0.25, owing to defects superimposed on the ideal DOF pattern. 

The tendency of kinks towards antiparallel order can be measured by the relative 
amount of kink-antikink pairs with respect to kink-kink neighbour pairs. Both in 
the DOF and in the ordered phase, there is a comparatively lower number of con- 
secutive parallel kinks than near TPR, implying that the absolute density of kink- 
kink neighbour pairs has a maximum close to TPR (figure 6). 

Further independent evidence of the DOF phase comes from the measurement of 
the free-energy cost of a kink. This is defined as ql  = N,/3(f i  -, fo), wherefo is the 
free energy per site when full PBCs are applied and .f; is the same quantity after 
insertion of one further kink in each step. In order to perform this, the use of proper 
'periodic-kink boundary conditions' along y is mandatory. The standard method for 
ql, which makes use of the transfer matrix (Den Nijs and Rommelse 1989, Prestipino 
and Tosatti 1997), does not work in this case; calling x the direction of transfer and 
given a configuration for the nith step, the number of possible states for step 111 + 1 is 
not bounded, since there is no upper limit for the distance between two adjacent 
steps in the MTSK model, that is there are not enough constraints to keep the 
'coordination number' of a step state finite when the number of steps goes to infinity. 
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648 S. Prestipino and E. Tosatti 

Figure 5.  A snapshot from the same MC simulation as in figure 4. The view is from [llS]. 
Here, N ,  = 16 and ,9U, = 0 (only a sinall part of the lattice with eight steps is shown). 
Left and right kinks strictly alternaie along the steps, leading to a n  almost perfect 
realization of a DOF surface (i.e. 6u- ZZ 0.23. 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 0.05 0.1 

PU, 
Figure 6. MTSK model: MC data for N ,  = 16 and N y  = 320, with W ,  = 20U1 and 

U2 = w2 = W3 = +oc. Results are shown for the kink density &, the density P k  ak 

of consecutive antiparallel kinks, and the density pk-k = Pk - /Ik-ak of consecutive 
parallel kinks (error bars are smaller than the symbol sizes). The normalization is 
such that, for example Pk = 4 means a kink every two step positions while, for example 
pk-ak = pk indicates 100% of kink-antikink neighbour pairs. 
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Kink-kink interactions of vicinal surfaces 649 

This notwithstanding, at least the thermal derivative of q1 can be obtained in a MC 
experiment by inserting a right kink in each step and recording the change in EU, and 
Ewi .  In fact. using equation (9), one has 

By its very definition, q1 is non-zero in any flat phase (where steps are straight on 
average), while it is expected to vanish as N,' at a second-order PR and in the whole 
rough phase (owing to N i 2  scaling of free energies at criticality) (Den Nijs and 
Rommelse 1989). In a finite system, ql will be a minimum at a temperature T* 
close to T,,, hence the thermal derivative of ?ll will be negative for T < T* and 
positive for T > T*. Indeed, considering that 

this is what we observe (figure 7 ( r r ) ) .  On the contrary, no such feature is present 
when PR is not seen, as for instance in the VGL model (figure 7 (b)). This indicates 
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y o  
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1 0  F 
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I I I I I I 

- u =w =w =+w I I 
- 2  2 3 
- 

0 0.04 0.08 0.12 0.16 

1 . . . . . . . . . . . . . . . . . . . . . 

0 0.04 0.08 0.12 0.16 
PUl  

Figure 7. ,rivative of the kink free energy with respect to inverse temperature: (a)  F TSK 
model, with W i  = 20U1 and U2 = W, = W3 = too;  (b)  VGL-like model ( W ,  = 20Ul 
and U2 = W, = W,  = 0). Results are shown for N ,  = 8 (A) and N ,  = 16 (O), 
1.5 x lo6 sweeps are produced at equilibrium. Error bars are at most comparable 
with the symbol sizes. Negative values of the free-energy derivative for low /3Ui are 
the fingerprint of the DOF phase which sets in a t  /3Ui = 0.08 in ( ( I ) .  A zero value for 
the same quantity above a certain temperature is clear evidence for the rough phase in 
(b). 
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650 S. Prestipino and E. Tosatti 

that we need U2 and W, (or, at least, one of them) to be very large in order to 
observe both PR and roughening. 

To prove this, we perform an extensive MC simulation of the MTSK model for 
WI = 20Ul, U2 = W2 = 2000U1 and W, = 0. In figure 8, we plot the average square 
step displacement 6u2 and the order parameter P (error bars are of the same size as 
symbols or smaller). From their behaviour, we conclude that all three phases are 
present, the DOF phase being stable in the interval between ,BUl = 0.0007 and 
,BU, z 0.05 (note that TPR/TR M 0.014). PR is probably second order here. We 
also monitor the L[ values during the run and find that, inside the DOF region, the 
current mean step position 11 takes the same half-integer value for all steps, with 
occasional jumps during the run from a half-integer number to the next (left or 
right), which are more frequent for smaller surface size. This behaviour closely 
resembles that originally observed in the DOF phase of the face-centred SOS 
model (Prestipino et a/. 1995). Further note that a positive W, is unnecessary for 
the very existence of PR. The only effect of including W, is to shift the PR tempera- 
ture downward, so as to increase the extent of the DOF region (see also figure 4). 

0.8 

0.6 

2 0.4 

0.2 

0 

N 

0 0.002 0.004 0.05 0.1 0.15 

0.1 

0.05 

0 
0 0.002 0.004 0.05 0.1 0.15 

Figure 8. MC results for the MTSK model of equations (5) and (6), with WI = :OUl, 
U2 = W, = 2000U1 and W, = 0. (a) The average square kink displacement 6u- and 
(b) the order parameter P are shown as functions of the inverse temperature PU, for 
lattices that are very elongated in the y direction, N,, = 20N, for N ,  = 8 (A), N ,  = 16 
(0) and N ,  = 24 (0). After equilibration, from 3 x lo6 to 5 x lo6 sweeps are gener- 
ated. Error bars are not shown since they are smaller than the syFbol sizes. The 
surface is rough at high temperatures (PU, < 0.0007). The 6u' maximum at 
p U l  RZ 0.05 indicates PR at this temperature in the infinite-size limit. Note that 
W, > 0 is not really essential for PR. Removal of W, has only the effect of shifting 
TPR upwards, thus reducing the interval of stability of the DOF phase (see figure 4). 
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Kink-kink interactioris of vicinal swfaces 65 1 

It is interesting to explore the evolution in temperature of the kink free energy q1 
in this case. In figure 9, its derivative is plotted: 

whose thermal evolution should be compared with that of figure 7 (a). Using equa- 
tion (1 l),  it is not difficult to deduce from figure 9 the following description of vl ( T )  
in the thermodynamic limit: ql is positive at low temperature, vanishing first at 
TPR(pUI E 0.05). On heating, it recovers a positive value in the DOF phase until 
it vanishes again and for ever upon reaching the roughening temperature TR 
(PUI E 0.0007). As a result, proliferation of kinks and concurrent delocalization 
of steps first occur at TpR but. owing to a non-zero q1 value between TPR and TR, 
kinks maintain a strong antiparallel correlation in the DOF phase, causing steps to 

100 
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40 

30 

20 

10 

0 

-10 

0 0.002 0.004 0.05 0.1 0.15 
PUI  

Figure 9. Derivative of the kink free energy with respect to the inverse temperature for 
W ,  = 20U1. U,  = W, = 2000Ul and W', = 0. Data are plotted for N, = 8 (A), 
N, = 16 (0) and N, = 24 (0). From 3 x 10' to 5 x 10 sweeps are produced at 
equilibrium. Near /3U, = 0.005. the largest errors are comparable with the symbol 
sizes. From this picture, the following infinite-size behaviour of vl is deduced: v1 is 
positive in both the flat phases, while it is zero at PR (bU1 M 0.05) and in the whole 
rough phase (pUl < 0.0007). 
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652 S. Prestipino and E. Tosatti 

0.2 

remain straight on average. One must wait until TR for the steps to become deloca- 
lized again, this time permanently. 

Another interesting subject is that of correlations between the kinks. We study in 
detail the character of such correlations for N, = 24, which is our largest system size. 
In particular, the relative orientation of consecutive kinks has been investigated, 
finding a clear bias towards antiparallel correlation in the whole interval of tempera- 
tures where the DOF phase is stable. In figures 10 and 11, we show the profile of the 
correlation function 

0 0.05 0.1 
PU, 

- 

I I I I I I I I I I I I I I  

as a function of both rn (for y = 0) and y (for in 0), for a number of ,LjUl values in  
the relevant temperature range (note that G(0, 1) = (EwI) is the kink density). 
Superimposed on it is a logarithmic least-squares fit drawn froin the work of 
Selke and Szpilka (1986) and also used by Hoogeman et ul. (1999) and Hoogeman 
and Frenken (2000): 

0 2 4 6 8 1 0 1 2 1 4  
m 

Figure 10. Kink-kink correlations G(m, 0) along the x direction for AT., = 24, with the same 
MTSK parameters as in figure 9. G values are updated every 5000 sweeps: (-1 best 
(i.e. least-squares) fits obtained from equation (14) after discarding the first (in = 1) 
and the last (m  = 12) point; (- - - -) best fits obtained from equation (15) in the range of 
values between rn = 5 and 171 = 10. The numbers on the right are PU, values, and 
different symbols are used for /3U, < 0.05 (A), /3Ul = 0.05 (0) and PU, > 0.05 (0). 
Error bars are much smaller than the symbol sizes. In the inset, the corresponding 
estimates of X and I, are provided, suggesting roughening at  PU,  e 0.0005 and PR 
somewhere between, say, PU, = 0.05 and 0.1. In the thermodynamic limit, ex is 
expected to grow exponentially as a function of TR - T when T goes to  TR from 
below, while a power-law divergence is expected near TpR. 
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Kinh-lcink interactions of vicinal surfaces 
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653 
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Y 
Figure 11. Kink-kink correlations (. . . . . .) along the 13 direction for N ,  = 24, with the same 

MTSK parameters as in figure 9. (-) least-square fits obtained with the use of 
equation (14) in the interval between y = 11 and y = 230. The numbers on the right 
are P U ,  values. Statistical errors are not relevant. It is evident that the G data are not 
well fitted over the entire y range to equation (14); hence our best X and K (not shown) 
are poorly significant. Anyway, it can be still deduced from this picture that the steps 
are spatially localized in the DOF region, between PU, = 0.0007 and 0.05. 

G(i?I,O) CY - ~ K(T) In [ni-l-t x(r)-*] + c ( T ) .  (14) 2 
In fact, in order to extract the correlation lengths along x and 12, a more natural 
choice would have been to use, for the large-distance profile of G(nt,y), the beha- 
viour typical of a Gaussian model (Prestipino and Tosatti 1999), namely 

G(nz, 0) N K (ln& - &) 'I2exp (- E)) , 
for m >> 0, and 

for y >> 0. This behaviour has a far more solid foundation than equation (14), whose 
leading Q(nz-') correction to the asymptotic K In X form has no theoretical justifica- 
tion. However, the fit (14) proves to be more effective, in the whole range of .Y 
distances, than the exponential fit (1 5).  Moreover, information about the location 
of phase transitions is equally accurate from the fit (14). In fact, although X is not 
the correlation length, X and E behave similarly at any temperature, since they are 
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654 S. Prestipino and E. Tosatti 

both finite or both infinite. In particular, the transition points are both characterized 
by a very large X value, as demonstrated in figure 10, inset. Obviously, the beha- 
viours of X and reported in figure 10 is of mostly qualitative significance; no finite- 
size study of these quantities has been attempted; thus no clear proof can be obtained 
from figure 10 of the divergence of X and E at PR and in the whole rough phase. 

Equally not reliable, owing to the small slze of the system along x and to the 
intrinsic inaccuracy of the formula, is the value of K that is extracted from the 
logarithmic fit, at least in the PR region. Although the universal 2/n2 value of K 
at roughening (see appendix C) is consistent with the value (0.22) that we find at 
BU, = 0.0005, K is expected (Prestipino and Tosatti 1999) to take at  PR a non- 
universal value smaller than 2/n2, while in fact we find it to be larger ( K  NN 0.27). 

In figure 11, we plot G ( 0 , y )  for the same temperature values as in figure 10. This 
time, neither the exponential fit nor the logarithmic fit works well in the whole range 
of y values. Incidentally, the optimal X or E are one ordei- of magnitude larger than 
the same quantities for G(m, 0): this is due to the anisotropy of the problem, that is 
to the fact that W ,  >> U 1 .  

To conclude, the DOF phase is stable in the MTSK model at least when both U, 
dnd W, take a very large value. Moreover, PR appears to be critical even when 
TPR < TR/4, contrary to the expectation founded on a variational theory of PR 
(Prestipino and Tosatti 1999). At present, the question as to whether a set of 
MTSK parameters exists which leads to a first-order PR remains unanswered. In 
the next section, we shall move to a possible MTSK modelling of Ag( 115), seeking 
for clues of a DOF behaviour in some temperature interval around 460K. 

5 5 .  THE CASE OF Ag( 1 15) 
In a recent STM study (Hoogeman et 01. 1996), the kink formation energy and 

the step repulsion of Ag(ll5) were measured at room temperature, thus providing 
values for W1 and U1. These couplings have been independently estimated; while W ,  
is essentially calculated from the density of kinks along a [I101 secondary step, U ,  is 
evaluated through the fluctuations in the relative position of kinks along secondary 
steps running close to the [55?] direction. In particular, a value is obtained for U I  of 
19 K (half of the value reported by Hoogeinan et ul. (1996); the step repulsion per 
atom in our model is actually 2 U I ) .  

The kink energy could in principle be determined through the measurement of 
the density of kinks along primary steps. In fact, a kink is always accompanied by a 
shortening of distance between two neighbouring steps, that is by a supplementary 
cost due to step repulsion of 2U1 per atomic position. If U1 is unknown. the only 
possibility of determining W1 is to consider step configurations where a broadened 
terrace of width 3.52 appears in the vicinal owing to a local surface misorientation, a 
likely event in a real surface. This induces in the surface a [I101 secondary step, 
whose cost of meandering does not involve U 1 .  In fact, the kink density depends 
only on W1 in this case and is estimated to be (Hoogeman et al. 1996) 

p =  11 + $ e x p ( / ~ ' ~ ~ ) ] ~ ' .  (17) 

From the observed density of kinks on [llO] secondary steps, y = 0.019, it thus 
follows that W1 = 1323 K. Equation (17) should be contrasted with the expression 
p = [ 1 + exp (pWl)Ip1 which refers to a [I101 secondary step obliged to run parallel 
to the y direction (see appendix D). 
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Kink-kink in teructions of vicinal surfaces 655 

Hoogeman e f  al. (1996) reported the statistics of kinks only for step configura- 
tions where no two consecutive parallel kinks are present. Thus, no clue can be 
obtained from the STM study as to the strength of the short-range kink-kink inter- 
action in Ag( 115). Since a value of 260 K was reported for the repulsion between 
kinks in neighbouring steps, we tentatively assume that as the value of U,. The 
problem remains as to the values that must be attributed to W2 and W,. Since we 
do not know how to estimate W, and W, for Ag, we tentatively assume them to be 
infinite (i.e. very large). The rationale behind this choice is that, if no PR occurs with 
W2 = W3 = +co, which is the most favourable situation for the occurrence of PR, 
then it would be impossible to support the view of a DOF phase in Ag(l15), within 
the strict MTSK model. 

With the above parameters, we carry out a MC simulation of the MTSK model, 
with N ,  = 8,16,24,32 and Ny = 30N, in all cases, since the aspect ratio of a corre- 
lated region, that is the ratio of the correlation lengths in the y and s direction, 
should be close to W,/(2U,), at least far from criticality. From 4 x 10' to 8 x lo6 
sweeps are produced at equilibrium. Simulation data are reported in figure 12. First, 
we note that, notwithstanding 8 x 10' sweeps are a huge number of M C  moves, the 
relevant averages are still affected by an appreciable error, especially so for the larger 
sizes. However, there is indication that the order parameter goes to zero at about 
410 K, where its susceptibility diverges, suggesting a second-order phase transition 
which can be either roughening or PR. In principle, the profile of 6u2 should allow us 
to discriminate between the two possibilities. However, the errors on data points are 
so large that no sharp conclusion is allowed on the existence of PR in this case (error 
bars on the 6u' data are of the same size as symbols in figure 12). 

Some clue about the nature of the phase transition at 410 K can nonetheless be 
obtained from the following considerations. When W ,  = 20U1 and all the other 
MTSK parameters are infinite, PR falls at  TpR M U1/0.08 = 240K (34). 
Similarly, we have verified that, when the ratio of W1 and U I  is 60 (i.e. the same 
as for Ag( 115)) and U2 = W, = W, = +m, the rough phase is still absent but PR 
has moved to TpR E U1 /0.03 = 630 K. Now, a large but finite U2 (as in the case of 
the MTSK modelling of Ag(ll5)) can hardly affect PR in such a way that Tp, 
becomes substantially lower than 630 K; rather, it will certainly stabilize the rough 
phase beyond a certain temperature. In particular. if roughening were to occur too 
early, that is well before 630 K,  PR would be washed out and the DOF phase will not 
appear. This suggests that the phase transition found at 410 K is just ordinary rough- 
ening. 

A further piece of evidence comes from the kink-kink correlations which have 
been characterized experimentally (Hoogeman et al. 1999, Hoogeman and Frenken 
2000). We use equation (14) to fit the data, which proves to be good over the entire 
range of distances. at least for correlations in the direction perpendicular to the steps. 
According to the Kosterlitz-Thouless picture for roughening, K (  T) would be an 
increasing function of T ,  attaining the value of 2/7? at  roughening; moreover, the 
quantity ( K  - 2/1r')~ would be proportional to T - T,, for T 2 T R .  

In figure 13, we plot C(m,O) for N,y = 32 as a function of n7 (up to 
n? = N,/2 = 16) for various temperatures. The best-fit parameters are in turn 
shown in figure 14 for both N ,  = 24 and 32. These results are consistent with the 
view that only a single roughening transition exists, somewhere between 410 and 
420K. within the MTSK model and with this choice of parameters. Moreover, X 
apparently saturates beyond 410K (seemingly, at the largest value as possible for the 

D
ow

nl
oa

de
d 

by
 [

C
on

si
gl

io
 N

az
io

na
le

 d
el

le
 R

ic
er

ch
e]

 a
t 0

6:
10

 1
6 

Fe
br

ua
ry

 2
01

5 



656 

A A A 

S. Prestipino and E. Tosatti 

0.6 

0.4 

0.2 
Lo 

0.8 
0.6 

a 0.4 
0.2 

0 

450 

g 300 

150 

0 
350 400 450 500 

T (K) 

Figure 12. M C  simulation data for the MTSK model with U ,  = 19K, W ,  = 1323K. 
U, = 260K and W, = W, = too .  Data are plotted for N ,  = 8 (A), N ,  = 16 (a), 
N ,  = 24 (0) and 32 (*) with Ny = 30N, in each case. Averages are calculated over 
4 x 10'sweeps for N ,  8 and 16 and over 8 x lO6su.eeps for N ,  = 24 and 32. Error 
bars on the susceptibility data for N ,  = 32 are indicated (decorrelation times are of the 
order of 1 x lo6 sweeps near T = 400 K; this is estimated through a comparison of 
averages calculated by grouping MC states in blocks of increasing length; the value of 
x p  roughly saturates for block dimension larger than 1 x 106sweeps). The suscept- 
ibility peak could either indicate PR, or simply roughening (see text). 
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Figure 14. MTSK model, with the same parameters as in figure 12. Best fit-parameters, 
based on equation (14), to the kink-kink data in figure 13. are plotted as functions 
of temperature. Data are p$tted for N ,  = 24 (A) and N ,  = 32 (0). (u)  In particular, 
K attains the universal 2/n- value (. . . . . .) typical of roughening at T = 410K. (b)-(d) 
Beyond this temperature, (b)  ( K  - ~ / T c ’ ) ~  is approximately linear in T ,  (4 C / K  is close 
to 2 and (c) X levels off at a large constant value. This behaviour of parameters is 
consistent with conventional roughening at 410 K. 

given Ny). Beyond this temperature, the ratio of C to K is not far from 2, which is 
what one expects in the rough phase (Selke and Szpilka 1986). 

In conclusion, with MTSK parameters chosen to model roughly Ag( 1 15), we do 
not find a clear PR with a DOF phase below roughening. Either the DOF window is 
so narrow that much larger sizes and longer runs are needed, or else only roughening 
is present. In the latter case, which at the moment appears to be the more conserva- 
tive conclusion, we obtain that parameters extracted from current STM data for 
Ag(l15) (data which suggest a DOF phase between 440 and 490K) do not lead in 
fact to PR and a DOF phase within the MTSK model. One possible defect of this 
model is its failure to include long-range interactions. In fact, effective kink-kink 
interactions are of a long-range nature and this could possibly turn the roughening 
behaviour of Ag( 1 15) from conventional to two-stage, that is with PR. 

9 6. CONCLUSIONS 
In a vicinal surface, there is a general tendency to develop a DOF phase. 

favoured by repulsive elastic interactions between steps and even more between 
parallel kinks. Alternatively, a DOF phase can be promoted by an extended repul- 
sion between the steps, similar in spirit to SOS models of low-index facets. Although 
a DOF phase could in principle be stabilized by this mechanism too (4 3), we believe 

D
ow

nl
oa

de
d 

by
 [

C
on

si
gl

io
 N

az
io

na
le

 d
el

le
 R

ic
er

ch
e]

 a
t 0

6:
10

 1
6 

Fe
br

ua
ry

 2
01

5 



658 S. Prestipino and E. Tosatti 

this is a far less realistic route to PR than kink-kink repulsion. We have built a 
MTSK model which allows for a short-range repulsion between parallel kinks in the 
same step and also between parallel kinks in neighbouring steps. Using mainly MC 
simulation, we have shown that a DOF phase indeed occurs in the MTSK model if 
kinks repel each other sufficiently strongly, even if only at short range. This is already 
a fine result, complementary to that obtained by Den Nijs and Rommelse (1989) for 
low-index surfaces. 

In trying to find an experimental realization of vicinal PR, we have then recon- 
sidered recent STM results for Ag(115) that might be interpreted as providing the 
evidence of a DOF phase in the interval 440490 K. In order to test this conjecture, 
we have used parameters extracted from experimental data (Hoogeman et al. 1996). 
However, with this choice of parameters, our results with the MTSK model do not 
show any clear DOF phase. 

We suspect that long-range parallel-kink repulsion could be an important miss- 
ing ingredient. Since the inclusion of long-range kink-kink interactions into the 
MTSK model appears at first sight to be problematic, we cannot, at the moment, 
do better than suggest new experiments on Ag(l15). Probably, a scattering experi- 
ment in antiphase or else a refinement of the STM experiment of Hoogeman et ul. 
with a more thorough study of kink-kink correlations might decide whether the two- 
stage PR-roughening scenario here proposed for the thermal disordering of Ag( 1 15) 
is realistic or not. 
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A P P E N D I X  A 

MAPPING OF THE MODIFIED VILLIAN-GREMPEL-LAPUJOULADE MODEL ONTO A QUANTUM 

We outline here the derivation of equation (8), by extending the method devel- 
oped in Villain et al. (1985). However, we first recall how to map the thermo- 
dynamics of a classical D-dimensional statistical problem on the ground-state 
landscape of a (D - 1)-dimensional quantum Hamiltonian (Fradkin and Susskind 
1978; Kogut 1979). Although not all Hamiltonians are naturally suited to be mapped 
on to a quantum problem, nevertheless, when this is possible, a far deeper insight is 
obtained about the original statistical model, including a sketch of its overall phase 
diagram. 

The transfer matrix (path integral) method lies at the heart of this mapping. 
Consider a general classical lattice Hamiltonian H and let J.’ be a selected spatial 
direction. Then, the reduced Hamiltonian can be written as /3H = C,=, L(S,.,  S,,+l), 

where, depending on D, y denotes a single site (D = l), or an entire row of sites 
(D = 2), etc., and S, is the generic system state on the (D - 1)-dimensional manifold 

SPIN CHAIN 

N ,  
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Kink-kiiik iiiteractions of vicinal siirfuces 659 

orthogonal to y. We call N,  the total number of states on this manifold. PBCs are 
always implied. 

Let Ta,h = exp [-L(a, b)]  be the transfer matrix (the partition function Z of the 
model is the trace of T N y ) .  Then, a useful connection with a quantum problem 
follows if we are able to determine a quantum system endowed with an N,-dimen- 
sional Hilbert space, a mapping u -+ 1.) and a Hamiltonian HQ such that either 

= (b/  exp (-ayHQ)la),  with an arbitrary a,; or, what is more easy to fulfil, 
Tc,~[) = (b((1 - uyHQ)la),  but with a, so small that the substitution 
1 - u, HQ z exp (-ayHQ) is authorized (i.e. the matrix elements between any two 
states of a basis should be almost the same for the two operators). In this event, it 
readily follows that 2 w Tr [exp ( - T f f Q ) ] ,  with T = Nvuy (the trace being viewed as 
either the partition function of the quantum system or its propagator in imaginary 
time t = -ihT). 

So far, N ,  is general. A more interesting connection emerges in the thermody- 
namic limit N ,  + 00, where a nice relation shows up between the free energyf of the 
classical model and the (non-degenerate) ground-state energy Eo of the quantum 
model. In fact, 7 -+ 00 as well (even if small, a, is a constant!), and 

Trexp ( -THQ) = exp (-7Eo)(l + O(exp [-+-(EL - E o ) ] } ) ,  (A 1) 

in such a way that 

flf = - lim (K)  In Z = - !iir (: In {Tr [exp ( - ~ H Q ) ] } )  = u,,Eo, (A3) N, +cc 

which links any phase transition in the classical model to a singularity in the ground- 
state energy Eo of the quantum model. Similarly, the inverse correlation length of the 
original model can be shown to be simply proportional to the energy gap EI  - Eo. 

Having described the general method, we now apply it to the VGL model with an 
extended step-step repulsion (see equation (7)). We first repeat the rather concise 
derivation by Villain et al. (1985) in order to set the stage for its further general- 
ization. We call I the terrace width and s,,,(~) = i d  + un7(y) the absolute position of 
the mth step (m = 1 . . . , N,)  at row y and assume, for later convenience, a hard wall 
at the left lattice boundary Y = I - 1 and another at the right boundary x = N , l  (in 
the thermodynamic limit, any boundary effect will be negligible). We also define a 
new integer variable wm(y) as w m ( y )  = u,(y) + 2m, so that the constraint 
U , , , + ~ ( Y )  - u,,,(y) 3 - 1 becomes 7 1 ~ + ~ ( y )  > ~ , , ~ ( y )  + 1, while v l (y)  3 1 and 
wN,( ) , )  6 2N,. As a result, 

1 6 .I(v) < wZ(.y) < ' "  < u N , ( y )  6 2N\.  (A 3) 

For any 1 < w 6 2 N x ,  a spin S, ,  is defined as S,, = i if v,,(y) = w for some value of 117, 

while S,, = - otherwise. In particular, we note that 

ZN, 

CS. = 0. 
u= 1 

Hence, a chain of 2N, spins (with as many 4 as -i) is associated with a row 
{ u m ( j . ) ,  m = 1, .  . . N ~ , }  of step positions. We quantize these spins by associating 
hard-core boson, spin-4 operators uc, with them. That is to say, a: and (T, are 
taken to commute on different sites (v # w), while they anticommute on the same 
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660 S. Prestipino and E. Tosatti 

site (v = w). Now. we try to determine a Hamiltonian Ha such that, for a sinall LI,,, 

the following relation holds: 

Iy) = IS1,. . . , S2N,) being a product of C T ~  eigenstates, and 

We observe that the whole set of states ISI,. . . , S2N,) ,  with the prescription that the 
sum of S,, be zero, spans the subspace of zero total-spin z component. Considering 
that the value of the matrix elements of a,,HQ should be much smaller than unity, we 
note that, given a state for the y chain, not all the N ,  = ( 2 N , ) ! / ( N , ! ) ’  chain states 
need to be considered for row y + 1, but only those which are the ‘leading’ states in a 
consistent way; that is to say, on choosing an order uy as the reference, Ho will 
contain only those operators that strictly suffice to obtain the leading matrix ele- 
ments (i.e. those of order a,,) correctly. 

Given Iv) = ISI,. . . , SZN,), we first consider the effect of Iy + 1) = ly) .  In that 
case, urn(j3 + 1) = u,,,(y) for all 112, and 

(A71 

which is approximately unity (for typical u,(y) values) only if PU, << 1. Under this 
assumption, we can write 

exp [-L(Y,Y + 111 M 1 - P c f(Unt+I  (I’) - 4 , , ( Y ) ) .  (A 8) 
m 

Since the constraint on u,+~ (I)) - un,(y) has already been incorporated into the 
definition of the spins, the mth term under the sum on the right-hand side equals 
either U1 (for zfn,+l(y) = U , ~ , ( . V )  - 1) or zero. Then, we must count a U1 for any 
v,,,+~ ( y )  = q F 1 ( y )  + 1, and a zero for Z I , , + ~  ( y )  > um(y) + 1. Accordingly, if we call 
w = u,,,(y), we have SI1,+l = S,,, = 4 in one case, while S1l,+l = -S,,, = - in the 
other. As a result, we can write 

(ylaj,HQly) = PUl (st, f i)(Sv+l + (A 9) 
U 

which, apart from an additive constant, can be recovered if a piece PU,  C,” C T ~ , C T ~ + ~  is 
present in u,,HQ. 

Now suppose that the step positions at  row y + 1 differ from those at row y for 
one kink only. This implies that 

which is close to unity only if we assume that PW, >> 1,  in such a way that 
exp (-awl) is of order a,, (in this case, the right-hand side of equation (A 10) is 
almost equal to exp(-bWl)). An operator in HQ which does this job is 

Finally, if the states at rows y and y + 1 were to differ by more than one spin, we 
would have exp [-L(y,  y + l ) ]  M exp (-n/3W1), with a number II > 1 of kinks at  the 

exp (-PW,) c,, (&;+I + G4+ti)>. 
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Kirik-kink interactions of vicirial surfaces 66 1 

yth coordinate, and this is negligible (of order a;) with respect to the previous case 
17 = 1. As a result. no other operator is necessary in HQ,  and its final expression is 

U 71 

with /3Ul << 1 << PW, (implying, in particular, that W,/U1 >> I ,  i.e. strong aniso- 
tropy in the VGL model). 

The first term in equation (A 11) is X Y  like, while the other is AFM Ising like. 
Thus. HQ describes a Heisenberg AFM king model. The character of the ground 
state depends on how strong PU,  is compared with 2exp (-/3Wl). Precisely, when 
J, = PU,  exp (PW1)/2 > 1, there is AFM order along z and a gap in the excitation 
spectrum (hence, the correlation length is finite and the vicinal isflat). When J ,  = 1, 
the gap vanishes, and it remains zero for all Jz < 1. In this case, the behaviour is X Y  
like (leading to an algebraic decay of correlations in the original model, i.e. to a 
rough vicinal). In the end, the transition temperature is given by equation ( 3 ) .  We 
note that condition (A 4) (restricting the Hilbert space of all spins ou to a subspace of 
zero total-spin z component) is a crucial requirement, since otherwise the ground- 
state structure is not just as indicated and, in particular, no abrupt change in beha- 
viour will occur as a function of J ,  (i.e. no phase transition in the VGL model). 

Next, we include the g interaction (7). When 1)' + 1) = Iy), we have 

exp [-W,.?J + 111 = 1 - P Cf(um+lb) - 4 J l ( ? . ) )  - P c g(um+2(Y) - %I(!))> 

f f 1  I I I  

(A 12) 

with both PU,  << 1 and PU, << 1. Observe that g(u,,,+2(y) - ~ , , ~ ( y ) )  = U3 only when 
LI,,,+&J) = u,,,(y) - 2, or ~ , , + ~ ( y )  = , u f l l ( ~ , )  + 2 (which also implies that 
I ) , , ~ + ~  ( y )  = w,,?(y) + 1). This means that, if iv = 71, , , (~9) ,  three consecutive spins are 
equal, S,,, = = SW+? = 4. and 

= u3 ( S V ~ V + I S ? ! + 2  + SP%+I + $ t s u + 2 )  

+constant. (A 13) 

I '  

When J y +  1) and Iy) differ by one kink only, the treatment is exactly the same as 
before. Hence, the final Hamiltonian is 

Ha can be also written in an equivalent form, in terms of spinless fermions, by 
performing a Jordan-Wigner transformation (which changes hard-core boson 
operators into anticommuting fermion operators ct, and c:) (Fradkin 199 1): 
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662 S. Prestipino and E. Tosatti 

which leads eventually to 
2 N .  

rr=l 

with nu = cAcv, and where a constant and another term proportional to the total 
fermion number has been discarded. Note that in terms of spinless-fermion opera- 
tors, equation (A4) is a half-filling condition for the ground state, that is 
CrI cec, = N , .  A variational estimate of the ground-state energy of the 
Hamiltonian (A 16), as a function of both J ,  and U 3 / U , ,  and hence a mean-field 
free energy for the extended VGL model, is derived in the following appendix. 

A P P E N D I X  B 

MAPPING ON A QUANTUM SPIN CHAIN: VARIATIONAL GROUND STATES 

In this appendix, we derive an expression for the average of the Hamiltonian (8) 
over the variational ground states representing an OF  phase and a DOF phase 
respectively. As explained in the main text, the quantum states that correspond to 
the two competing flat phases have the form of a site-centred and a bond-centred 
CDW respectively. In order to define these states, we need to modify only slightly the 
standard 1D tight-binding Hamiltonian, to allow for a two-site periodicity of the 
number operator in the ground state at half filling. Let the 1D lattice have an even 
number N of sites and periodic conditions at the boundary. Then, the following trial 
Hamiltonians are considered (for positive t and U values): 

n n 

where the energy is lower for occupied odd sites and unoccupied even sites, and 

n I 1  

where a lower energy is associated with the charge being concentrated on the bonds 
(2m - 1,2m), for m = 1,2, .  . . . 

We first consider Hs. All the eigenvalues can be obtained by Fourier transform- 
ing the fermion operators. Call a the lattice spacing and BZ the Brillouin zone 
[-n/a, ./a]. The use of PBCs fixes the k values, which are 2nn/(Na) - n /a ,  for 
n = 1,2, .  . . , N .  For simplicity, we use the same symbols for the operators and 
their Fourier ‘coefficients’, defined by 

t It is worth noting that ck  and ck obey the same anticoinmutation rules as the original 
operators. After introducing the magnetic (reduced) Brillouin zone (MBZ), 
[-n/2u,n/2a], we eventually end up with 
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Kink-kink interactions of vicinal stirfilces 663 

where d, = ek+ii/a for any k E MBZ, and tk = -2tcos (ka) .  By the rotation 

cosQk - sin&) (;;) (e) = ( sin& COSQk 
1 

with tan ( 2 Q k )  = U/ck < 0, Hs is eventually transformed to Ck Ek(akiik t - bkbk) ,  t 
where u k  and bk still behave as fermion operators. and Eh = (ti  + U2)1’2, so that the 
ground state is 

I )  being the vacuum state and kF determined from the lattice occupancy. For a total 
number N/2 of ferniions, the Fermi sea is obtained by filling all the states of negative 
energy up to kF = 7t/2a, the magnitude of the zone boundary vector. We note that, if 
QR is chosen between z/4 and n/2, then sin(2Qk) = U/Ek > 0 and 
cos (28,) = q. /Ek < 0. This in turn determines bl.: 

bL = - sin Qk ck + cos QR d i ,  (B 7) 
with sinQk = U/[2Ek(Ek  + tk) ] ’ / ’  and cosdk = U/[2Eh(Ek - c~)]~’~. 

Next, we consider HB. By the same Fourier transformation (€3 3 ) ,  we obtain 

which can be diagonalized through the unitary transformation 

cos Qk i sin Qk ) (LIZ) 
for k > 0, (:) = ( isinQk cosQk 

and 

where 

for any k E MBZ, and E k  = [ E ;  + 4U2 sin’ (kn)]”’. The Hamiltonian HB is then 
rewritten as Ck Ek(alak - bibk)  and the ground state still has the form (B6) (but 
with a different expression for bi in terms of cL and di) .  

Once the ground state has been obtained, and c, has been expressed in terms of 
c k  and dk operators, that is 

it remains to evaluate the ground-state average of the Hamiltonian (8). It is also 
convenient to express bB in terms of el and di (the exact relationship depending on 
the trial Hamiltonian being used, and for Hs also on the sign of k) .  After rather 
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664 S. Prestipino and E. Tosatti 

lengthy calculations, which we do not reproduce here, we arrive (in the thermody- 
namic limit) a t  the following results: 

(i) Site-centrrd CD W (Hamiltonian Hs):  

1 
(o~c~c,+llo) = -- c cos (ku) cos ( 2 4 )  

kEMBZ 

where ti-2 = 1 + U 2  and where 

and 

are the complete elliptic integrals of the second and first kind respectively. 
(ii) Bond-centred CD W (Hamiltonian HB) 
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Kink-kink interactiom Qf vicinul surfaces 665 

where 

and 

U 
2 

for U =;, 

2 2 for = -p  = I - 4 ~ .  

Since the ground state is a Slater determinant, more complicate averages such as 
t those of c!~~,c:~+~ c,,+~ and of C ~ ~ ~ , ~ C ~ ~ + , C ~ ~ + ~  c,,+~c,,+? can be expressed in terms of pro- 

ducts and sums of the few averages listed above. In the end, the following expres- 
sions for the ground state averages E s ( U )  and E B ( U )  of the Hamiltonian (8) are 
obtained : 

We further note that the original VGL model corresponds to U3 = 0, while the X Y  
estimate of the ground-state energy of equation (8) is obtained for U = 0. The latter 
would correspond, in surface language, to the mean-field free energy of the rough 
phase. 

A P P E N D I X  C 

KINK CORRELATIONS AT ROUGHENING 

We here provide the details of the very concise argument used by Den Nijs et af. 
(1985) and by Conrad ef al. (1986) in order to justify the general expectation of a 
universal 2/n2 amplitude for the correlation function (4) at  roughening, that is the 
same as in the discrete Gaussian SOS model. At first, it might not seem obvious why, 
near T R ,  one may disregard the asymmetry in the step-step interaction (2) and 
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666 S. Prestipino and E. Tosatti 

replace it with a symmetric square term U l ( h ~ ) 2 ,  as done by Villain et al. (1985). 
However, as typical A u  values remain close to zero, the Gaussian approximation is 
good. This is obvious in a simulation, where conservation of the step number in the 
lattice sample always makes Au N" 0. 

The main tool used by Den Nijs et al. (1985) is the Poisson summation formula, 
which allows one to convert a sum over discrete heights into an integral over field 
variables. In particular, the partition function of a general discrete SOS model 
Ifsos = CI,? V ( 4 >  - &; x - y ) ,  with integer heights & defined over a two-dimen- 
sional (2D) regular lattice of x sites, can be rearranged as follows (Chui and Weeks 
1976): 

with real 4s variables. The sine-Gordon partition function follows by inserting a 
small positive power-counting fugacity factor into the sum: 

or, in an equivalent way, 

I CXI 

ZsG = 1 D4 exp [-. V(4.y - 4~'; - y )  + 2zN cos (2nNd.x) 1 ( c 3 )  
x.,J .Y N = l  

where zN is assumed to be small for any N .  If z1 > 0 at any temperature, which 
corresponds to the no-PR case, the roughening behaviour of model (C3) is only 
controlled by the first term N = 1 in the sum. 

For bipartite lattices, as in the body-centred case, the only change to be made in 
the above equation (C 1) is in the way that the constraint on the height values is 
incorporated into the functional integral (whereas any possible restriction on the 
difference between nearest-neighbour heights is accounted for by the potential V) .  In 
the particular case of a bcc metal (001) surface, it is convenient to assign integer 
heights to integer sites (i.e. lattice sites having integer x and y coordinates) and half- 
integer heights to half-integer sites (the horizontal lattice spacing is a = 1). Then, the 
measure or weight function which takes care of the (vertical) constraints will be 

where a, is the difference between two consecutive height values in a column, and A 
and B are the square sublattices of integer and half-integer sites respectively. By use 
of the Poisson formula, and noting that exp (2xiN,x,/a) is 1 for x E A and (-l)Nt 
for x E B, we also have 

The sine-Gordon problem peculiar to body-centred SOS roughening, in that it 
belongs to the same universality class, is then 
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Kink-kink interactions of vicinal surfaces 667 

At roughening, the height-height correlation function would behave, according to 
renormalization group theory, as 

with a roughness parameter XI equal to 2/N$, N* being the smallest wave-vector in 
equation (C 6) for which the operator exp (2xiNx,/u) is not modulated at any of the 
lattice sites, that is to say, is 1 at  any x (Den Nijs rt af. 1985). It is obvious that 
N* = 2; hence the critical amplitude 2/n2 follows by noting that the difference 
between two nearest-neighbour heights is u2/2.  

We now turn to the fcc metal (1 15) surface case. Let a SOS condition be still 
assumed along [OOl] and call a the nearest-neighbour distance in the fcc lattice, as 
usual. If we imagine that all the three-dimensional fcc lattice sites are projected along 
the [552] direction (i.e. in such a way that the heights 4 of two consecutive atoms in a 
column will differ by a2'I2 cos N after projection, with cos Q = 5 x 31/2/9), then five 
different categories of sites (from A to E) can be identified in the x-y plane, accord- 
ing to the criterion that two sites are in the same class if their x coordinates differ by 
; n .  Calling 4' the projected heights, the weight function can thus be written as 

where in the last step the Poisson formula has been used. Now, the following asso- 
ciation is decided: we put into class A ,  B , .  .. , E  all the sites with 
x, = 0 + ksn,  n + k i a ,  . . . ,4a + ksa ,  k integer. Then, the weight function can be 
written in the more compact form 

What remains to be found is a proper Gaussian term in the sine-Gordon 
Haniiltonian which is a function of 4' variables only. In order to accomplish this 
task, we observe that the following relation holds: 
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668 S. Prestipino and E. Tosatti 

as obtained from the equations which transform the 4\ into 4; variables (i.e. a 
combination of a translation and a rotation of a"). In particular, the left-hand 
side of equation (C 10) is the usual squared height difference after a trivial term 
due to the average inclination of the vicinal on the x-y plane has been subtracted. 
In particular, equation (C 10) suggests the following sine-Gordon model as appro- 
priate to the roughening of the vicinal: 

where the denominator in the Gaussian part is the square of the distance, along 
[ 11 51, between two atoms that are consecutive in a column (see also equation (C 6), 
where a similar choice was made). At the roughening transition of the [ I  IS] facet, we 
should then have 

with X I  = 2 / N z ,  N* = 5 now being the smallest wave-vector in equation (C 11) for 
which the sine-Gordon operator exp (27tiN ex / a )  equals unity at any site. Equation 
(C 12) is the same as equation (1) of Den Nijs et al. (1985). 

Finally, suppose that x and y correspond to step atoms, that is let 4 be higher at 
x(\!) than at the next site on the right. In this case, x has a u , ~  associated with it,  and 
the same occurs for y .  Since 

5 . . y  

use of equation (C 12) leads to the expected behaviour of the kink-kink correlation 
function at roughening: 

a result which in fact holds identically for all the (1,1,2n + 1) vicinals (for the 
general proof, it suffices to take tancu2,,+l = 2'I2/(2n + 1)). 

In closing this section, we briefly comment on the experimental determination of 
the roughening temperature by X-ray or atom scattering. In the single-atom scatter- 
ing approximation, the scattered beam intensity is given by 

I I  1 2 \  

where Q (a 2D vector) and ql are the component of the momentum transfer in the 
substrate plane and along [115] respectively. Making a Gaussian Arzsarz for the 
distribution of heights, we obtain 
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Kink-kink internctions of vicirial swfcices 669 

which in the rough phase and in antiphase conditions (which for a vicinal is q1 = x/c .  
for c = asin cu) simplifies to (Ix - . ~ ( / a ) - ~  when /x - y (  >> n, where T = 1 for T = TR 
and T > 1 for T > TR. A similar behaviour would also occur at TpR, but with a non- 
universal T < 1. From the large-distance behaviour of the average (C 16), it then 
follows (Lapujoulade and Salanon 1992) that the total Bragg intensity vanishes in 
antiphase for all T 3 TR, and also for T = TpR. Conversely, in a flat surface (either 
ordered or disordered), large-distance saturation of G(m) implies delta Bragg peaks 
at any q I ,  Z(G, q l )  cx SQG, and hence a non-zero total Bragg intensity in antiphase 
for both T < TPR and TpR < T < T,. In conclusion, PR of a vicinal can in principle 
be detected from the behaviour of the coherent (Bragg) intensity in antiphase as a 
function of temperature, its fingerprint being a decrease (at TpR), followed by a 
recovery (in the DOF phase), and eventually by another decrease (at the entrance 
of the rough phase). 

A P P E N D I X  D 

KINK STATISTICS AT LOW TEMPERATURES 

In this appendix, the problem of the distribution of kinks in a primary step at low 
temperatures is considered. 

Let the temperature be low compared with the roughening temperature TR. 
Then, to a good approximation, the statistics of kinks can be computed by assuming 
that a step can only make small lateral excursions from its equilibrium position, both 
on the left and on the right, while the neighbouring steps are fixed and straight 
(Bartelt et 01. 1990; Sanders and Frenken 1992). In this case, the kink 
Hamiltonian which more naturally represents the low-temperature behaviour of 
model (5) is 

with uy = - 1,0,1 and ~ i ~ + ~  - ~ i ,  = 0, i- 1. This ID model can be treated in an exact 
way by the transfer-matrix method. A pair of consecutive step sites is the elementary 
lattice unit; it can be in any of seven states. In the thermodynamic limit, the exact 
free energy per site is equal tof’ = - $k,T In XI, where XI is the maximum eigenvalue 
of the transfer matrix. Thermal averages of interest are the fraction of step sites 
which are not in the equilibrium position given by 

the density of kinks given by 

and the density of bound pairs of parallel kinks given by 
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670 S. Prestipino and E. Tosatti 

In principle, a low-temperature measurement of these three quantities will enable us 
to obtain the values of W1 , W2 and U ,  . However, since in practice the ratio of W1 to 
U1 is very large, the density of kinks is so low that an accurate estimate of the 
couplings from the experiment is not possible. 

We see here how to express the same averages in equations (D 2), (D 3) and (D 4) 
in a matrix form. Following Sanders and Frenken (1992), the step itself can be 
viewed as a Markov chain, in that the probability of observing a pair of consecutive 
sites (2k + 1,2k + 2) in a certain state Sk+, (with k = 1,2 ,  . . .), on condition that the 
pairs labelled 1 ,2 , .  . . , k  are in states S I , S 2 , . .  . , S k ,  only depends on Sk (in the 
thermodynamic limit), and not on the states of other pairs. Precisely, this conditional 
or transition probability is 

T,,, being the transfer matrix (m,n  = 1 , .  . . , 7  are labels of pair states) and v,, the 
mth component of the leading T eigenvector (which is real and positive according to 
the Perron-Frobenius theorem, notwithstanding the fact that T is not symmetric). 
From equation (D 9, it is clear that P,,,,,, is a stochastic matrix. Moreover, the 
(unconditional) probability that a given pair of consecutive step sites is in state m 
obeys P, = P,P,,,,. Together with EL=, P,,, = I ,  the P,,, are easily determined, 
for example by Gaussian elimination. Once the PI,, are known, the probability weight 
of any local kink configuration can be easily calculated, including the averages at  
equations (D 2), (D 3) and (D 4). Using obvious symmetry considerations, we have 

I 

We have verified that, for W, = 2 W, = 40Ul, the expressions above give exactly the 
same results as determined from the numerical derivatives of the free energy (figure 

Once a Markov property has been recognized in the way that kinks are distrib- 
uted along the step, it is not difficult to calculate other quantities which are more 
representative of the correlations between the kinks. For instance, given a direction 
along the step, we may ask what is the probability n ( d )  that, starting with a kink at a 
certain site, the next kink (parallel or not) first occurs d sites after. The following 
expression for n ( d )  holds: 

D l (4) .  
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Kink-kink interactions of vicinal surfaces 67 1 

When W, = +m, the overall picture remains unchanged. Simply, all curves in figure 
D 1 become depressed as a result of the comparatively lower kink density at each 
temperature. 

Next, we consider the kink statistics over a [ l l O ]  secondary step running along 
the nominal step direction and thus confined between two fixed and straight primary 
steps. At variance with the previous case, step meandering is now restricted to two 
positions only, and the kink Hamiltonian thus is 
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672 S. Prestipino and E. Tosatti 

(a) v? 0.6 
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li 
a, 0.2 
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0 0.04 0.08 0.12 0.16 0.2 

( h )  

1 2  3 4 5 6 7 8 9 10 
distance 

Figure D I .  Exact results for the Hamiltonian (D l), for W, = 2W1 = 40U1: (a) the relevant 
thermodynamic averages of the fraction of displaced step sites (A), the kink density 
(0) and the density of bound pairs of parallel kinks (0); (6) the kink-to-kink separa- 
tion statistics for selected teinperature values /?U, = 0 (-), /?U, = 0.05 (. . . . . .) and 
gu, = 0.1 (- - -). 

where for example id1, = 0 , l  and W i  > 0 is a short-range repulsion between antipar- 
allel kinks. The lattice unit is still represented by a pair of consecutive step sites, and 
the total number of states is now four. The kink density and the density of bound 
pairs of antiparallel kinks are given respectively by 

= ~ ( O , l ) ~ ~ ( O , I ) , ( O , O )  + P(O,l),(O 1)) 

+ P(1 .O)  (P(l,O),( 1 ,0) + P( 1 ? O i , (  1 , l )  1. 
(D 14) 

We have verified (for W i  = 2Wl)  that the numerical derivatives of the exact free 
energy indeed coincide at all temperatures with the values obtained from the right- 
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Kink-kink interactions of vicinal surfaces 673 

hand side above (figure D 2 (a)). The probability U ( d )  of an excursion of length d is 
calculated accordingly as 

n(1) = ~ ( 0 , 1 ) ( ~ ( 0 , 1 ) , ( 0 , 0 )  + P(0,l) (0 , l ) )  

+ 1) = P(o , l )P~o, l~ , ( l , l )P~~~~, [ ,  l ) ( ~ f l , l j , [ o . o )  + P ( l , l ) , ( O , l j )  

+ P( I .O) ( P (  1 ,O)J 1 .oj + P(1 ,O).( I , I )  1 > 

+ ~ ~ I . o j ~ ~ I . o j , ( o , " ) ~ ~ ~ ~ ) , ( o , o j ~ ~ ( o , o j  (1,O) + P(o~o),(I,l))(n = 1,2. .  . . I 1  

(D 15) 

and 

In figure D 2 (h). the density of excursions is reported for a number of p W1 values, 
for W: = 2Wl .  

Finally, when Wi = 0, the problem (D 12) becomes equivalent to the 1D king 
model with Hamiltonian H = W 1 / 2 C , ( l  - SISi+l), where S, = -1 (1)  for 

I I I I I I I I I 

k 
" 0  

0 0.8 1.6 2.4 3.2 4 
P W I  

( 6 )  1 I I I I I I I 0.3 

5 0.2 

6 
.A m 

a 0.1 

0 
1 2  3 4 5 6 7 8 9 10 

distance 
Figure D2. Exact results for the Hainiltonian (D 12). for Wi = 2Wl:  (a)  the relevant ther- 

modynamic averages of the kink density (0) and the density of bound pairs of anti- 
parallel kinks (A); (h )  the kink-to-kink separation statistics for selected temperature 
values PW, = 0 (-). PW, = 0.4 (. . . . . .) and PWl = 0.8 (- - -). 
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674 Kink-kink interactions of vicinnl surfaces 

u, = 0 (1).  This is similar to the model considered by Sanders and Frenken (see 
equation (2.7) of Sanders and Frenken (1992) but with v = /3W,/2 and L = 0). In 
particular, the probability of having Si = f l  is 1 in either case, while the transition 
probabilities are 

The kink density is thus equal to 

= ( 1  +exp(/3W1))-'. (D 18) 

Note that this expression is different from that obtained by Hoogeman et  id. (1996) 
for the density of kinks along an unconfined [TlO]  secondary step. 
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