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Early stages of aggregation in fluid mixtures of
dimers and spheres: a theoretical and
simulation study

Gianmarco Munaò, * Santi Prestipino and Dino Costa

We use Monte Carlo simulation and the Reference Interaction Site Model (RISM) theory of molecular

fluids to investigate a simple model of colloidal mixture consisting of dimers, made up of two tangent

hard monomers of different size, and hard spheres. In addition to steric repulsion, the two species

interact via a square-well attraction only between small monomers and spheres. Recently, we have

characterized the low-temperature regime of this mixture by Monte Carlo, reporting on the

spontaneous formation of a wide spectrum of supramolecular aggregates [Prestipino et al., J. Phys.

Chem. B, 2019, 123, 9272]. Here we focus on a regime of temperatures where, on cooling, the

appearance of local inhomogeneties first, and the early stages of aggregation thereafter, are observed.

In particular, we find signatures of aggregation in the onset of a low-wavevector peak in the structure

factors of the mixture, as computed by both theory and simulation. Then, we link the structural

information to the microscopic arrangement through a detailed cluster analysis of Monte Carlo

configurations. In this regard, we devise a novel method to compute the maximum distance for which

two spheres can be regarded as bonded together, a crucial issue in the proper identification of fluid

aggregates. The RISM theory provides relatively accurate structural and thermodynamic predictions in

comparison with Monte Carlo, but with slightly degrading performances as the fluid progresses inside

the locally inhomogeneous phase. Our study certifies the efficacy of the RISM approach as a useful

complement to numerical simulation for a reasoned analysis of aggregation properties in colloidal

mixtures.

1 Introduction

At the mesoscale, complex fluids can be characterized as
systems capable of self-assembly, i.e. to spontaneously form
organized structures out of simpler building blocks. The com-
prehensive study of these patterns, along with the possibility to
control their shape and size by tuning the interaction law, is
among the greatest challenges of soft matter physics.

Recent studies have shown that a rich variety of mesoscopic
patterns are obtained for asymmetrically-shaped particles
whose constituent blocks interact through spherically-
symmetric potentials.1–4 In this regard, a versatile model is
represented by Janus dimers, i.e. heteronuclear dimers in
which one monomer is solvophilic and the other one is
solvophobic.5,6 The interest in this specific class of colloidal
particles stems from their capability to be synthesized in a large
variety of sizes, aspect ratios, and interaction properties,7–11

and from their high technological impact.12–14 Moreover, Janus
dimers are able to self-organize into various kinds of supracol-
loidal structures, provided that appropriate thermodynamic
conditions are met,15–17 as also observed in theoretical and
simulation studies.18–20

Recently, we have undertaken an extended investigation of
the phase behavior of a dilute colloidal mixture of Janus dimers
and spherical particles, by means of computer simulation.21–24

In our scheme, a dimer is modeled as a pair of tangent hard
spheres of different size, while the other species is represented
by a hard sphere. Beside the steric repulsion, the two species
interact via a square-well attraction between small monomers
and spheres. We take the square-well width to be small com-
pared to the size of spheres, as is usual for colloidal systems,
but at the same time large enough to allow for the formation of
aggregates of dimers and spheres at low temperature.24 More-
over, the absence of any dimer–dimer or sphere–sphere attrac-
tion reflects the implicit assumption that this kind of
interaction is significantly weaker that the dimer–sphere attrac-
tion. Finally, the significant size asymmetry between the mono-
mers constituting the dimers favors the encapsulation of
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spheres.22 Indeed, we have seen that, for sufficiently low
densities and temperatures, spheres gather together via an
effective mutual attraction mediated by small monomers,
whereas the uncontrolled growth of aggregates – followed by
coarsening into a macroscopic droplet – is prevented by the
hindrance exerted by large monomers, which form a protective
coating around the hard-sphere aggregates. As a result, liquid-
vapor separation is preempted by the formation of supramole-
cular aggregates. We have documented a rich phase scenario
arising for our mixture, in terms of diameter and concentration
of spheres:24 when the two species have similar sizes and the
concentration is small, we observe the onset of small clusters of
spheres covered by a layer of dimers; for larger concentrations,
we find other self-assembled structures (i.e. gel-like networks
and bilayers); finally, when spheres are substantially larger
than dimers, we observe the formation of membranes
(i.e. curved sheets) and occasionally vesicles. A wide variety of
aggregates also exists in two dimensions, both on a plane25 and
on a spherical surface.26

Recently, a colloidal mixture with characteristics similar to
ours has been synthesized and investigated experimentally.27 At
variance with the simulated mixture, real spheres tend to
coalesce, whereas the inclusion of Janus dimers stabilizes them
against aggregation, with an encapsulation mechanism in
gratifying accordance with our simulation results.

In this paper we study the fluid phase behavior of the
mixture, at fixed total density (higher than in previous studies)
and as a function of the sphere concentration. Upon lowering
the temperature from high values, local inhomogeneities first
appear, thereafter followed by the formation of aggregates.
Owing to the large number of parameters involved and due to
long relaxation times, a systematic analysis of the fluid sector
would greatly benefit from the availability of a theoretical
scheme complementing the much more costly simulation
approach. More generally, having reliable theoretical tools to
perform a quick analysis of the structure and thermodynamics
of a complex fluid with many parameters is of uppermost
importance.

With this in mind, we assess the performance of the
Reference Interaction Site Model (RISM) theory of molecular
fluids,28 which is benchmarked against the numerical data
generated by Monte Carlo. The RISM formalism is one of the
most effective tools to investigate the structure and thermo-
dynamics of molecular fluids. Derived as a molecular general-
ization of the Ornstein-Zernike theory of simple fluids,29 the
RISM approach was originally intended for rigid molecules
made up of hard spheres.30 Later on, the theory was extended
to more general systems by the inclusion of long-range forces
and attractive interactions. With these improvements, the RISM
theory was successfully applied to associating fluids like
water31,32 and other polar solvents.33,34 Recently, RISM has
been employed to investigate the statistical properties of
colloids,35–37 polymers,38 macromolecules,39 and nano-
particles.40 We have used the RISM theory to study pure fluids
of dimers, finding a reasonable agreement with simulation
results and other theoretical approaches.41,42

As argued before, the origin of inhomogeneities in the
sphere subsystem can be traced back to a competition between
a (dimer-mediated) short-range attraction and a longer-range
(again effective) repulsion. The same mechanism is actually at
work in one-component fluids of SALR (Short-range Attractive
and Long-range Repulsive) particles. While in SALR fluids the
competing interactions are directly encoded in the shape of the
isotropic pair potential, in our system the interplay between
attraction and repulsion arises from the interaction between
the species. SALR fluids are currently employed to mimic the
behavior of a variety of soft materials43–49 and, as such, they are
largely investigated in the current literature; four recent reviews
witness the broad interest in this topic.50–53 In view of the
intrinsic similarity of our mixture with a SALR fluid, we will
analyze the former system by the same tools applied for the
latter. In particular, since the onset of aggregation in a SALR
fluid is generally manifested in the appearance of a low-
wavevector peak in the static structure factor,54–57 we expect a
similar signature to occur in the various (partial and total)
structure factors of the mixture. Among them, we will analyze
those which convey the most sensitive information about the
microscopic state of the mixture. The interpretation of struc-
tural data in terms of the characteristics of microscopic
arrangement is another well established step in the study of
SALR fluids. Here, we follow a similar approach for the mixture,
by relying on the cluster analysis of Monte Carlo configurations
as a means to map out the mesoscale structures. In this regard,
we devise a simple and robust criterion to determine the
maximum distance for which two spheres can be considered
as bonded together, i.e. belonging to the same aggregate. This
parameter is crucial in the attempt to uncover the nature of
aggregates developing in the fluid.

The outline of the paper is the following. After describing
the model and methods in Section 2, we present and discuss
our results in Section 3. Concluding remarks and perspectives
for future studies are reported in Section 4.

2 Model and methods

In our system, a dimer is modeled as a pair of tangent hard
spheres with different diameters, s1 and s2, in a fixed ratio
s2 = 3s1. Spherical particles are represented as hard spheres of
diameter s3 = s2, see Fig. 1. All interactions are hard-sphere-like
with additive diameters sij = (si + sj)/2, except for the inter-
action between the small monomer and the sphere, which is
given the form of a square-well attractive potential:

u13ðrÞ ¼
1 if ros13
�e if s13 � ros13 þ s1
0 otherwise

8<
: (1)

In the following, s2 and e are taken as units of length and
energy, respectively, which in turn leads to a reduced number
density r* = rs2

3 and a reduced temperature T* = kBT/e, kB being
Boltzmann’s constant. Finally, we denote Nd and Ns the number
of dimers and spheres, respectively. Hence, N = Nd + Ns is the
total number of particles, wd = Nd/N and ws = 1 � wd are the
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relative concentrations of the two species, and we set
wds ¼

ffiffiffiffiffiffiffiffiffi
wdws
p

.
To explore the behavior of the model in the fluid phase we

employ the RISM approach: given an arbitrary molecular spe-
cies, represented as a geometric assembly of n distinct inter-
action sites (like in a ball-and-stick model), the RISM theory
provides a relationship between the set of n(n + 1)/2 site-site
total correlation functions hij(r) = gij(r) � 1 – with gij(r) being the
radial distribution functions relative to sites i and j of different
molecules – and the set of direct correlation functions, cij(r). In
reciprocal (wavevector) space, the RISM equation reads:29

H(k) = W(k)C(k)W(k) + rW(k)C(k)H(k), (2)

where H � [hij(k)] and C � [cij(k)] are n � n symmetric matrices
and r is the number density. The RISM formalism can be
derived as a generalization of the Ornstein–Zernike relation for
a mixture of monatomic species, where a matrix of intra-
molecular correlations W � [wij(k)] is introduced to account
for the bonds between the interaction sites of a molecule. In
particular,

wijðkÞ ¼
sinðkLijÞ
kLij

; (3)

where Lij is the bond distance between sites i and j of the same
molecule. The RISM eqn (2) must be complemented by a
‘‘closure’’ relation, to form a closed set of equations; we have
adopted to this scope the hypernetted-chain (HNC)
approximation,29

cij(r) = exp[�buij(r) + gij(r)] � gij(r) � 1, (4)

where gij(r) = hij(r) � cij(r) and b = 1/T*. HNC shows good
performances when applied to the study of colloids41 and
cluster-forming liquids:58 nevertheless, in the course of our
study we have assessed its accuracy in comparison with other
common closures, such as the Percus–Yevick and the Mean-
Spherical Approximation.29 In this way, we have ascertained the
clear superiority of HNC for the mixture at issue, especially in
the presence of aggregation, where the other schemes tend to
drastically overlook the progressive structuring of the fluid.

Eqn (2) can be generalized to mixtures of molecular species and
then specialized to the dimer–sphere system under study. In our
case, all the matrices entering the formalism are 3� 3 matrices, and
the intramolecular correlation matrix is explicitly given by

WðkÞ ¼
1

sinðks12Þ
ks12

0

sinðks12Þ
ks12

1 0

0 0 1

2
6664

3
7775 (5)

Finally, the density r in eqn (2) is replaced by a diagonal matrix D
with elements D11 = D22 = rwd and D33 = rws.

We solve the set of coupled RISM/HNC equations numeri-
cally by means of an iterative Picard algorithm, using a real-
space grid of 214 points and a mesh step of Dr = 0.001s2.

We shall present most of our structural results in terms of
k-space correlations, i.e. in terms of the various structure
factors characterizing the mixture. The dimer–dimer structure
factor Sdd(k) reads:

SddðkÞ ¼
1

22

X
i;j¼1;2

wijðkÞ þ
rwd
22

X
i;j¼1;2

hijðkÞ

� F kð Þ þ S
0
dd kð Þ:

(6)

The first term on the r.h.s. of (6) is the molecular form factor F(k),
which characterizes the shape of the dimer. The form factor accounts
for the interference of radiation scattered from different parts of the
same particle in a diffraction experiment. The correlations between

different dimers are instead expressed by S
0
ddðkÞ;, which depends on

the Fourier transform of the total correlation functions relative to
monomers only. The sphere–sphere structure factor is

Sss(k) � S33(k) = 1 + rwsh33(k), (7)

and the dimer–sphere structure factor, involving the Fourier trans-
form of the cross-correlation functions h13(r) and h23(r), is given by

SdsðkÞ ¼
1

2
rwds½h13ðkÞ þ h23ðkÞ�: (8)

In terms of the partial structure factors Sdd(k), Sss(k), and Sds(k), we
can also define ‘‘total’’ structure factors, describing correlations
between fluctuations of global variables, like for instance the total
number density:

SNN(k) = wdSdd(k) + 2wdsSds(k) + wsSss(k), (9)

which is hereafter referred to as the total structure factor (see
ref. 59 for details).

Moving to thermodynamic quantities, the isothermal com-
pressibility KT is given as a combination of k - 0 limits of the
partial structure factors:29,60

rkBTKT ¼
Sddð0ÞSssð0Þ � ½Sdsð0Þ�2

wsSddð0Þ þ wdSssð0Þ � 2wdsSdsð0Þ
: (10)

Finally, for a generic interaction-site model the internal
energy reads

U

N
¼ 2pr

X
i;j

wiwj

ð1
0

uijðrÞgijðrÞr2dr; (11)

Fig. 1 The species making up our mixture: A dimer consists of a small
(1, blue) and a large monomer (2, cyan) in a size ratio of s1/s2 = 1/3; the
spherical particle (3, red) has diameter s3 = s2. The grey halos around
particles 1 and 3 represent the attractive region, extending up to s1 beyond
the distance of closest approach s13, see eqn (1).
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where the sum runs over all interaction sites. For the present
mixture, this formula is simply reduced to

U

Ne
¼ �4prwdws

ðs13þs1
s13

g13ðrÞr2dr: (12)

In the present work, RISM predictions are assessed against
canonical-ensemble Monte Carlo (MC) simulations of a sample
of N = 1372 particles enclosed in a cubic box with periodic
boundary conditions. A larger sample of 4000 particles is
occasionally considered to estimate the size dependence of
our results. As a general protocol, we have employed a million
MC cycles to equilibrate the system, followed by twice longer
productions runs. In our scheme, a MC cycle involves N trial
single-particle moves; for a dimer, either a trial displacement or
a trial re-orientation is randomly attempted. The orientational
move is implemented by the Barker and Watts procedure,61,62

consisting in a trial rotation around a randomly chosen coor-
dinate axis. The maximum extent of a displacement and the
maximum rotation angle are adjusted during the equilibration
stage in such a way as to ensure an acceptance ratio between
40% and 60%.

With specific concern to the hard-sphere subsystem, we
have computed several properties to characterize the presence
of local inhomogeneities and aggregates. In order to identify
connected assemblies of hard spheres, we have used the
Hoshen-Kopelman algorithm,63 readily generalized to work
with an off-lattice system of particles. A thorough discussion
of the optimal choice of the ‘‘bond distance’’ between two hard
spheres is deferred to the next Section. The cluster-size dis-
tribution, N(s), is defined as in ref. 57 and 64:

NðsÞ ¼ s

Ns
hnðsÞi; (13)

where hn(s)i is the average number of clusters with size s per
single configuration; the normalization of N(s) is such that

P
sN(s) = 1. The cluster analysis is typically carried out on a set

of 1000 configurations taken from the last part of the produc-
tion run. We also monitor the total number of clusters, the
fraction of isolated particles, the size of the largest aggregate,
and the number of bonds per particle.

3 Results

We start discussing the accuracy of RISM calculations for the
equimolar mixture, i.e. ws = wd = 0.5, using MC simulation data
as a reference. Under equimolarity conditions, a quick survey
indicates that RISM works best for densities in the range
0.20–0.30, while the theoretical predictions become less accu-
rate for lower densities (for r* t 0.1). Hence, from now on we
will focus our analysis on the thermodynamic states with total
density r* = 0.30.

In order to establish a useful benchmark, we consider a
mixture of dimers and spheres at infinite temperature, where
the square-well attraction is ineffective and only steric repul-
sions survive. Under these conditions, the fluid behaves as a
homogeneous mixture of non-interacting hard dimers and hard
spheres. Total correlations between spheres only [h33(k)] and
large monomers only [h22(k)] are shown in Fig. 2A, as computed
by RISM and MC. Perhaps not surprisingly, the two functions
are practically coincident, even for ws = 1 (pure spheres) and
ws = 0 (pure dimers), due to the negligible contribution of small
monomers to the packing fraction of the mixture. Overall, RISM
predictions agree reasonably well with MC data, except for a
slight overestimate of the correlations at small wavevectors; it is
clear that these discrepancies are due to the inescapable
approximations of the theory, as well as to the known difficulty
to get accurate results in this regime from simulation.

The profile of the total structure factor SNN(k) is shown in
Fig. 2B. All the terms entering eqn (9) are also reported in the

Fig. 2 Mixture of dimers and spheres at infinite temperature and r* = 0.30. (A) RISM predictions (lines) and MC data (symbols) for h33(k) and h22(k)
(ws values are given in the legend); for clarity, the curves for pure fluids are vertically shifted by one. (B) RISM (lines) and MC (symbols) for the various
structure factors defined in eqn (6)–(9), for ws = 0.5. In the inset, Sdd(k) (full red line) is resolved into intramolecular [F(k), dashed cyan line] and
intermolecular [S’dd(k), dotted indigo line] contributions, see eqn (6).
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figure. It appears that the large k oscillations in SNN(k) are
mainly determined by the dimer–dimer contribution, which in
turn reflects the properties of the form factor F(k), as docu-
mented in the inset. Looking at the definitions, the various
structure factors tend to different limits for large k: Sdd(k) has
the same limiting value of F(k) [1/2 in our case, i.e. the inverse
number of molecular sites, see eqn (6)]; Sss(k) - 1, see eqn (7);
Sds(k) - 0, see eqn (8); therefore, SNN(k) - wd/2 + ws = 0.75 for
an equimolar mixture, see eqn (9). We can appreciate the
substantial agreement between RISM and MC, at least in the
considered conditions, thus confirming the very good perfor-
mance of the theory, which, we recall, was originally designed
to describe correlations in purely steric fluids.

As the temperature is lowered, the square-well attraction
becomes increasingly relevant and, in parallel, also the ten-
dency of hard spheres to aggregate becomes more and more
pronounced. In particular, a clear signature of aggregation is,
as in SALR fluids, the onset of a low-k peak in Sss(k), i.e. a peak
preceding the main diffraction peak, see Fig. 3; here, RISM
predictions (in panel A) are contrasted with MC results (panel
B), with a more stringent comparison between the two in the
inset. We see that the low-k peak falls at k0 t 2, i.e. well below
the main diffraction peak at E2p/s33. Looking first at the RISM
results, the onset of local inhomogeneities is signaled by the
development of an inflection point in the low-k region for
temperatures around T* = 1.0, which then transforms into a
shoulder for T* = 0.50, before finally evolving into a well-shaped
peak for T* = 0.35. As the temperature is further lowered, the
peak grows in height until reaching a maximum of E0.95 for
T* = 0.30. If we now try to reduce the temperature further, we
run into a drawback, since the RISM algorithm fails to converge
to a physically meaningful solution (typically, large oscillations
show up in real-space correlations even for large distances or
deep negative peaks appear in the structure factors). This
outcome is not unexpected since RISM – like any other theory

designed for homogeneous fluids – only works for sufficiently high
temperatures, where the spatial inhomogeneities are not too
marked (or where the fluid does not enter too much within a
liquid–vapor phase separation). Clearly, this problem does not affect
simulation, and the subsequent MC evolution of the sphere–sphere
structure factor below T* = 0.30 is reported in Fig. 3B. The small
downward shift in the position of the low-k peak on cooling, which
is observed both in the RISM and in MC data, signals a corres-
ponding reorganization of aggregates over larger and larger dis-
tances. The distribution of dimers in space follows the same trend
of spheres: in particular, a low-k peak emerges on cooling also in the
functions h13(k) and h23(k) (not shown). This similarity of behavior is
a clear manifestation of the crucial role of small monomers in
providing the bridging ‘‘glue’’ between spheres, hence the structure
factors of both species have the same gross features. The compar-
ison between theory and simulation, reported in the inset of Fig. 3B,
shows that RISM closely follows the MC evolution of Sss(k), even at
the lowest temperature attainable by theory. Only the height of the
low-k peak is slightly underestimated, which again reflects the
increasing difficulties encountered by RISM in keeping up with
the enhancing of inhomogeneities on cooling.

The way how incipient aggregation is reflected in the various
contributions making up the total structure factor SNN(k) is shown
in Fig. 4, referring to RISM calculations for T* = 0.30. Here, a low-k
peak is present not only in Sss(k), but also in the structure factors
involving dimers, i.e. Sdd(k) and Sds(k). As a result, SNN(k) exhibits a
local maximum at k E 1.5; the latter position is an average
determined from the superposition of various peaks located
between 1 and 2. More generally, the profile of SNN(k) faithfully
follows that of the cross contribution Sds(k) over the whole k range.
This should be contrasted with the previous observation that, for
purely steric interactions, SNN(k) closely reflects Sdd(k). For tempera-
tures lower than T* = 0.30, i.e. out of the reach of RISM, MC results
(reported in the inset of Fig. 4) show that the low-k peak grows on
cooling.

Fig. 3 Sphere–sphere structure factor Sss(k) at equimolarity and progressively lower temperatures (see the legends). RISM (A) and MC (B, symbols,
with lines as guides to the eye) are shown. Inset: Comparison between RISM predictions (thick lines) and MC data (symbols, with dashed lines as guides to
the eye).
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Concerning thermodynamic properties, the compressibility
of the fluid as computed by RISM is plotted in Fig. 5A as a
function of the temperature. Looking for an assessment of this
quantity by MC, we might think that an accurate check of RISM
data cannot be carried out, due to the well known problem to
extrapolate the k - 0 behavior of structure factors from finite-
size simulations. In an attempt to remedy this difficulty, rather
than extrapolating the individual MC structure factors down to
k = 0, we have computed the r.h.s. of eqn (10) over the whole k
range, see the inset of Fig. 5A. Here we note that RISM and MC
substantially agree near k = 0, implying that the compressibility
estimate provided by RISM can be deemed as good. From the
same inset we see that the only k region where RISM deviates
from MC is again near the low-k peak. Turning back to the main
panel, we observe that the compressibility moderately increases
as the temperature is lowered at fixed concentration and
density, with no hints at a diverging trend near the ultimate
threshold of convergence of the RISM algorithm; hence, we can
exclude any propensity of the mixture towards a macroscopic
phase separation. This conclusion is clearly consistent with the
presence of a low-k peak in SNN(k), possibly evolving – at lower
temperatures – to a divergence at finite k, like in other fluids
with local inhomogeneities.

The internal energy per particle is shown in Fig. 5B. We see
from this picture that, within its operating range, the RISM
theory closely follows MC results. This good agreement reflects
the accurate theoretical prediction of g13(r), as exemplified in
the inset of panel B for two different temperatures. In the main
panel, we see a progressive decrease of the internal energy on
cooling, with the parabolic trend for T* = 0.30 replaced by a
roughly linear behavior below this threshold.

Simulation offers the possibility to relate the emerging
structural and thermodynamic features with the local arrange-
ment of particles in the fluid. This opportunity prompts us to

carry out an extended analysis of aggregation properties, based
on the microscopic configurations generated by MC. In order to
characterize the aggregation properties of the mixture, a crucial
issue is the definition of the ‘‘bond distance’’ dbond, i.e. the
distance within which two particles can be considered as
bonded together. As a preliminary consideration, since spheres
are non-interacting beyond the hard core, it is not straightfor-
ward to associate dbond with the range of attractive interactions,
as is commonly assumed in studies of SALR fluids. In our
previous analysis,24 two spheres were considered as bonded
together when their distance was smaller than s3+ 3s1 � 2s2,
which represents – according to eqn (1) – the maximum
distance at which two spheres can experience a mutual attrac-
tion mediated by a small monomer placed in the middle.
However, this choice would lead to a too large value of the

Fig. 4 RISM SNN(k) resolved into various contributions, for T* = 0.30 and
ws = 0.5 (full lines); for comparison, we also report the predictions for
T = N (dashed lines), i.e. the same curves shown in Fig. 2B. Inset: MC
SNN(k) for low temperatures (in the legend).

Fig. 5 (A) RISM isothermal compressibility at equimolarity as a function of
temperature. Inset: The r.h.s. of (10) according to RISM (lines) and MC
(symbols), extended over the whole k range for two different temperatures
(see the legend). (B) RISM (lines) and MC (symbols) energies, for the same
thermodynamic conditions as before. Inset: g13(r) according to RISM and
MC for two different temperatures (see the legend); for the sake of clarity,
g13(r) for T* = 0.30 has been vertically shifted by two.
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bonding distance, given the relatively high density of our
sample. Indeed, we have checked that dbond = 2 returns the
unphysical outcome that all spheres belong to a single aggre-
gate spanning the whole simulation box, even in the high
temperature regime where attractive interactions are altogether
absent. The same conclusion follows if we adopt another
common choice, which is to set dbond equal to the position of
the first minimum in g33(r) (E1.8). At the opposite end, if we
were to use a too much restrictive criterion, for instance
dbond = 1.1, then we would conclude that aggregation is
practically absent even at very low temperature, at variance
with the picture emerging from the structural analysis.

Seeking an optimal bond distance in the interval between
1.1 and 1.8, we turn back to our high-temperature sample. We
have computed a few aggregation properties as a function of
dbond, based on the available microscopic MC configurations.
As reasonably expected, see Fig. 6 (left panel), the average
fraction of isolated hard spheres per single configuration
constantly decreases as dbond grows, whereas the opposite
occurs for the size of the largest cluster (middle panel). On
the other hand, in the right panel we see that the total number
of aggregates in the sample, whatever their size, shows a non-
monotonic trend as a function of dbond, with a maximum
around 1.25. This outcome can be explained by observing that
the number of aggregates initially grows with dbond, since more
and more spheres are allowed to join to each other at the
expenses of isolated particles. However, beyond a certain
threshold aggregates coalesce to form larger clusters and this
progressively lowers their number. At this point, it is reasonable
to take dbond E 1.25, namely to assume as bond distance the
value maximizing, at high temperature, the pool of possible
outcomes in terms of number of aggregates. By this choice, we
ensure that the counting of aggregates is the least sensitive to

small variations of dbond from the point of maximum. Slightly
anticipating the discussion of Fig. 9, the cluster-size distribu-
tion associated with dbond = 1.25 is characterized at high
temperature by a sharp decay with size, with practically zero
probability to find more than 10–12 particles connected
together. In other words, even in the absence of attraction,
small aggregates statistically form and dissolve following the
natural MC evolution of the mixture. It is clear that, according
to the proposed criterion, dbond needs to be calculated every
time the density of hard spheres is changed, for example when
we change the relative concentration at fixed total density.

Choosing dbond = 1.25, we have studied the same three
properties in Fig. 6 as a function of temperature, in order to
detect, from a microscopic viewpoint, the tendency of the
system to form aggregates. This analysis is reported in Fig. 7.
We see that the number of isolated spheres (left panel) drops
upon cooling, until, for T* = 0.25, only E10% of the spheres are
non-bonded. At the same time, small aggregates progressively
coalesce into larger units; as a result, the total number of
clusters (right panel) rapidly decreases, while the size of the
largest cluster (middle panel) increases, until it contains about
10% of all spheres in the mixture.

As the temperature is lowered, spheres reorganize them-
selves in space in such a way that their local environment
becomes progressively denser. This can be seen from Fig. 8,
where the number of bonds per sphere, Nbonds, is reported as a
function of temperature. We see that the fraction of spheres
engaged in one or more bonds steadily increases at the
expenses of isolated ones. In particular, for T* = 0.25 more
than 50% of the spheres are bonded to at least another sphere.
Interestingly enough, for T* = 0.30 we see the first occurrence of
a sphere with seven neighbors; spheres involved in eight bonds
first show up for T* = 0.28.

A more detailed picture of the microscopic arrangement of
hard spheres is provided by the cluster-size distribution
[eqn (13)], reported in Fig. 9 for ws = 0.5. We note that
N(s) undergoes a sharp decay for T* = 0.35. In the range

Fig. 6 MC data for the fraction of isolated spheres (left), the largest cluster
size (center), and the total number of clusters (right), as a function of dbond

for ws = 0.5 and infinite temperature. Average values per single configu-
ration, as computed over about 1000 configurations uniformly distributed
along the last part of the MC trajectory, are reported with the corres-
ponding statistical uncertainties. Lines are guides to the eye.

Fig. 7 Same properties as in the previous figure, but for fixed
dbond = 1.25s2, plotted as functions of temperature for ws = 0.5.
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T* = 0.30–0.27 the decay is less sharp and an inflection point
occurs, until eventually, for T* = 0.26, we find for the first time
the occurrence of a local peak in the distribution, signaling the
presence of clusters (or, better, ‘‘aggregates’’) preferentially
composed by E10 spheres (over a pool of 686 hard spheres),
whereas the largest aggregate involves about 70 spheres (see
also the middle panel of Fig. 7); only occasionally aggregates
with more than 100 spheres are seen.

At this point, we can gather together all structural (Fig. 3 and
4) and microscopic information (Fig. 9), to attempt a unified
picture of the phase behavior of the fluid mixture upon cooling.
Again, our reasoning is inspired by similar studies of one-
component SALR fluids.56,57 At very high temperature, no
low-k peak is found in the structure factors; in this case the
fluid is fully homogeneous and the cluster-size distribution is
characterized by a sharp decay of the probability associated
with the formation of clusters of increasing size – always

allowed by random fluctuations, even in the absence of any
attraction. As the temperature is lowered, a low-k peak first
appears and then steadily grows in height (T* = 1.00–0.27);
correspondingly, the fluid displays local inhomogeneities that
are progressively more marked; N(s) is still characterized by a
monotonic decay and the fluid is said to exhibit ‘‘intermediate-
range order’’;56,57 as soon as a maximum appears in N(s) (here
for T* = 0.26), a more definite ‘‘clustered state’’ is entered, with
the location of the maximum signaling the typical size of
clusters.

The analysis presented so far already demonstrates the
appearance of aggregates in the system at low temperature.
However, it gives no information about their structure. Even
though a geometric characterization of the aggregates is out of
the scope of the present paper, some information can be got
from a visual inspection of microscopic configurations. To
exemplify, we show the top panel of in Fig. 10 a typical snapshot
of the equilibrated sample for T* = 0.25. To avoid the breaking
of aggregates at the boundary of the box, we have first com-
puted the center of mass of each aggregate, according to the
procedure devised by Bai and Breen;65 then, for each particle in
a given aggregate we have considered its closest replica to the
center of mass. We see that a large aggregate generally takes an
elongated, relatively open conformation, with no appreciable
branching. This evidence can be explained by looking at the

Fig. 8 Number of bonds per sphere plotted as a function of temperature
for ws = 0.5. From top to bottom, Nbonds = 0,1, . . ., 8.

Fig. 9 Cluster-size distribution of hard spheres for a few selected tem-
peratures (see the legend) and for ws = 0.5.

Fig. 10 Top: Microscopic picture of an equilibrium configuration for
T* = 0.25 and ws = 0.5. For a better visualization, neither dimers nor
isolated spheres (E80) are shown. Most aggregates are formed by less
than 10 spheres (in grey). The largest cluster (in red) is formed by
E90 spheres, followed in descending order by aggregates with 75
(orange), 42 (green), 26 (purple), and 17 (blue) spheres. Bottom: Detail of
the largest aggregate, with spheres (red) drawn together with their neigh-
boring dimers; according to the color convention of Fig. 1, large mono-
mers are colored in cyan, small ones in blue.
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detailed structure of the largest aggregate, shown in the bottom
panel of Fig. 10, where each sphere is plotted together with its
neighboring dimers, which are those for which the 1–3 distance
falls within the attraction range of eqn (1). As is clear, spheres
are joined together by small monomers placed in the inter-
stitial spaces between them; large monomers form a layer
around spheres, with a double effect; on one hand, this inert
coating prevents the possibility for spheres to come closer to
each other, thus preventing aggregates to assume a more
compact, globular form that is associated with the common
concept of ‘‘cluster’’ of particles. Secondly, the same hindrance
effect prevents aggregates from coalescing together, so to form
a single or few large droplets which would typically herald a full
phase separation. We do not follow the ultimate fate of our
fluid at still lower temperatures, where it eventually becomes
structurally arrested.24

Having broadly characterized the properties of the mixture
under equimolar conditions, the last part of our study is
devoted to the analysis of other values of the sphere concen-
tration ws, while still holding the overall density fixed at
r* = 0.30. In this regard, we observe that changes in the
concentration of spheres do not appreciably affect the overall
convergence properties of the RISM algorithm; in particular,
the lowest temperature that can be attained by RISM is still
T* = 0.30. RISM predictions will be discussed near this low-
temperature threshold only.

Starting from thermodynamics, MC and RISM energies per
particle are shown in Fig. 11 for various concentration values.
Both schemes substantially agree in signaling that the stron-
gest cohesion between spheres and dimers is attained when the
former are slightly less numerous than the latter (i.e. for
ws E 0.3–0.4). More precisely, RISM predicts a minimum energy
for ws = 0.45, only slightly shifted from the MC datum ws = 0.40.
Overall, RISM agrees with MC all over the concentration range,
though the RISM minimum is more rounded and slightly
overestimated.

In order to link the energy information with the microscopic
arrangement of particles, we have preliminarily determined the
value of dbond for a number of concentration values, by repeat-
ing the same calculation previously described for ws = 0.5
(where dbond = 1.25). Results are shown in Fig. 12A. When the
number of spheres is large, e.g., for ws = 0.9, the bond distance is reduced to dbond = 1.15, which is coherent with the general

premises of our method: at higher densities, spheres are closer
together; hence a maximum in the number of aggregates falls
at shorter dbond. As the concentration of spheres decreases,
dbond increases until it attains the upper limit of dbond = 2 for
ws = 0.1. In this limit, the contact distance becomes equal to the
interaction distance. Simulations with 4000 particles for ws = 0.1
(open circles in Fig. 12A) show that, despite a systematic
increase in the number of clusters, the general shape of the
curve and the location of the maximum are left unchanged.

Once the value of dbond has been set for every ws, we can
compute the cluster-size distribution for T* = 0.30 (see
Fig. 12B). For a better comparison between the various con-
centrations, the cluster size has been normalized to the number
of spheres present in the mixture at the given ws. The overall

Fig. 11 RISM (lines) and MC (symbols) internal energies per particle,
plotted as functions of the concentration for T* = 0.30 and r* = 0.30.

Fig. 12 (A) Total number of clusters plotted as a function of dbond for
decreasing concentration of spheres (see the legend) at infinite tempera-
ture. Open circles refer to a sample composed by a total of N = 4000
particles. (B) Cluster-size distribution for a few ws values (see the legend),
for T* = 0.30. For a better comparison, the cluster size s has been
normalized by the number of spheres at the given concentration. Inset:
Fraction of isolated particles vs. ws.
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appearance of N(s) complies with the picture emerging from
the behavior of internal energy: when spheres dominate (e.g.,
for ws = 0.9), the few dimers present are insufficient to provide
the ‘‘glue’’ necessary to join all the spheres together, thus
leading to a sharp decay of N(s), which is tantamount to a
large fraction of isolated spheres (E40%, see the inset). Things
change when dimers are progressively added. When ws drops to
0.5, still 25–30% of the spheres remain isolated and N(s) is
shifted towards larger s. At the opposite end (ws = 0.1), dimers
are so many that the number of isolated spheres is reduced to
E17%; in this case, N(s) extends to larger s in comparison with
ws = 0.7 or 0.9. In between, the largest number of contacts
between spheres and dimers is obtained for ws = 0.3–0.4, where
only a few spheres (roughly 10% of the total) are not involved in
the aggregation process and N(s) extends to the largest s values
of all. All indications now agree to conclude that the optimal
conditions for the stabilization of the mixture are met for

ws = 0.3–0.4. Looking at Fig. 12B, we see that N(s) shows a
monotonic decay for ws = 0.1 and in the interval 0.5–0.9; as
discussed before, under these conditions the fluid exhibits
intermediate-range order. On the other hand, N(s) shows a
plateau for ws = 0.4, which for ws = 0.3 gives way to a shallow
local maximum around s E 5, indicating the preferential
development of aggregates with that size. In both cases, the
mixture is closer in temperature to conditions favorable to the
development of a clustered state, similarly as found for ws = 0.5
and T* = 0.26.

Finally, the total structure factor SNN(k) is reported in Fig. 13
for T* = 0.30, where results from MC simulation (A) and RISM
theory (B) are shown for various concentrations of spheres. As
for MC, a low-k peak is practically absent for ws = 0.9 and only
hardly seen for ws = 0.7 (see also the inset); a more distinct peak
is visible for ws = 0.1 and 0.5, whereas the low-k peak reaches its
maximum height for intermediate concentrations, i.e. for
ws = 0.3, and 0.4. Hence, a gratifying agreement is found
between the shape of the low-k peak and the information
gathered from the previous cluster analysis. All this witnesses
the good quality of the procedure followed in the definition of
dbond, since a coherent indication is returned from two inde-
pendent (microscopic and structural) sources. We may appreci-
ate in Fig. 13B how RISM theory faithfully reproduces the same
trends emerging from MC; in particular, the low-k peak is
slightly higher for ws = 0.3 than for ws = 0.4. As already discussed
in the equimolar case, for the lowest temperatures RISM under-
estimates the structural correlations; this can be seen from the
inset of panel B, where the height of the low-k peak is plotted as
a function of concentration.

4 Conclusions and perspectives

Using RISM theory and Monte Carlo (MC) simulations, we have
carefully investigated early stages of aggregation in the fluid
phase of a colloidal mixture of asymmetric dimers and sphe-
rical particles. All interactions in the model are hard-sphere-
like, except for an additional square-well attraction between the
small monomer and the sphere. Our study is carried out in a
temperature regime where the fluid exhibits local inhomogene-
ities, which on cooling evolve into more structured aggregates.
The origin of these spatial modulations can be rationalized in
terms of the competition between a short-range (small
monomer-sphere) attraction and a longer-range repulsion
(due to the steric hindrance of large monomers). A clear
structural indication of the emergence of spatial inhomogene-
ities is provided by the development of a low-wavevector peak in
the structure factors of the mixture, as indeed signaled by both
theory and simulation. In order to acquire microscopic evi-
dence of the existence of aggregates, we have carried out a
cluster analysis of a high number of representative microscopic
configurations taken from simulation.

As a matter of fact, as the fluid mixture proceeds towards the
full-fledged aggregated state, the RISM algorithm eventually
fails to converge to a physically meaningful solution. Despite

Fig. 13 (A) MC SNN(k) for various ws values (see the legends) and T* = 0.30.
Inset: Magnification of the low-k peak. (B) Same property, as predicted by
RISM. Inset: Height of the low-k peak according to MC (squares) and RISM
(line).
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being only appropriate for moderately inhomogeneous sys-
tems, the RISM theory agrees reasonably well with MC within
its range of applicability, in that it provides reliable structural
indications of the existence of inhomogeneities in the system,
which become fully developed slightly outside the thermody-
namic region where the theory is well-behaved.

With the indications acquired from theory, we plan to
complement the information obtained from simulation so as
to arrive at a thorough understanding of the mixture behavior
as a function of density, temperature, and concentration. In
particular, it would be interesting to connect the fluid phase
properties with the low-temperature behavior in the high dilute
regime, where we have documented a rich phase scenario with
the formation of different supramolecular aggregates, whose
specific nature depends on the size ratios and relative concen-
tration of the species.24

A particularly relevant issue when employing a theory like
RISM concerns the possibility to characterize the underlying
microscopic arrangement of an aggregating fluid only in terms
of structural indicators, namely without explicitly resorting to
microscopic data from simulations. Much effort toward this
interpretation has been devoted in the field of pure SALR fluids,
and currently three different heuristic structural criteria have
been proposed: in short, the first one is based on the height of
the low-k peak in the static structure factor, as the fluid
progresses within the clustered state;56,57 the second criterion
is based on the definition of a cluster-cluster correlation length,
to be deduced by a Lorentzian fit of the same low-k peak;66,67

the third criterion, involving real-space properties, is based on
the development of a long-distance shell of neighbors in the
radial distribution function of the fluid.58,68,69 It would be
highly desirable to verify the possibility to apply these criteria
also for mixtures.

Finally, we have introduced a novel method – based on a
microscopic analysis of the high-temperature regime, where attrac-
tion becomes ineffective – to compute the maximum distance
within which two particles can be considered as bonded together.
In forthcoming studies we plan to carefully assess the scope of this
criterion within the realm of cluster-forming fluids. Should the
validity of our approach not be limited to the case under study, this
would be a noteworthy result since, as also observed in the context
of SALR particles, an accurate choice of the bond distance is crucial
to properly identify the self-assembled structures emerging at low
temperature.
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40 W. Kung, P. González-Mozuelos and M. O. de la Cruz, Soft

Matter, 2010, 6, 331.
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