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h i g h l i g h t s

• We look at the statistical behavior of a Ruelle-unstable model fluid.
• We find two regimes separated by a curve C in the temperature–density plane.
• In the weakly-unstable regime the system behaves as a metastable extensive fluid.
• In the strongly-unstable regime the fluid collapses very quickly to a cluster.
• The separatrix C is the remnant of the liquid–liquid spinodal of a stable fluid.
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a b s t r a c t

The effective repulsion between macromolecules such as polymer chains or dendrimers
is everywhere finite, implying that interaction centers can even coincide. If, in addition,
the large-distance attraction is sufficiently strong, then the system is driven unstable. An
unstable system lacks a conventional thermodynamics since, in the infinite-size limit, it
eventually collapses to a finite-size cluster (for instance, a polymer dispersion undergoes
irreversible coagulation when increasing the amount of dissolved salt beyond a certain
limit). Using a double-Gaussian (DG) potential for demonstration, we study the phase
behavior of a system of ultrasoft particles as a function of the attraction strength η. Above a
critical threshold ηc, the DG system is unstable but its collective behavior is far from trivial
since two separate regions of the thermodynamic plane can be identified, based on the
value taken by the average waiting time for collapse: this is finite and small on one side
of the boundary, while presumably infinite in the other region. In order to make sense of
this evidence, we consider a stable system of particles interacting through a DG potential
augmented with a hard core (stabilized DG, or SDG potential). We provide arguments
supporting the view that the boundary line of the unstable DG model is the remnant of
the spinodal line of a fluid–fluid phase transition occurring in the SDG model when the
hard-core diameter is sent to zero.
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1. Introduction

At variance with atomic fluids, where the interparticle forces are harshly repulsive at short distances due to quantum
exclusion, in a number of complex macromolecular fluids the process of integrating out the internal degrees of freedom of
each molecule may result in a bounded effective repulsion between the centers of mass, thus allowing for full overlap of the
interaction centers. For example, dendrimers in a good solvent form highly penetrable coils and the repulsion between the
coils, when averaged over molecular conformations, is finite for all distances and decays fast beyond the polymer radius [1].
This effective repulsion may reasonably be represented by a Gaussian function whose width is of the order of the polymer
radius and its maximum is a few kBT [2,3]. In practice, this short-range repulsion is accompanied by an attractive interaction
at larger distances, arising from dispersion forces or depletion mechanisms.

The strength of the interpolymer attraction can be tuned by acting on, e.g., the salinity of the dispersion. A sufficiently
strong attraction will destabilize the system, causing the polymers to form a dense aggregate, for the finite repulsion would
no longer be able to discourage the gathering of the particles all together. This possibility is reflected, even though in more
abstract terms, in the known characteristics of pair potentials which are finite at the origin and attractive at large distances.
Depending on the attraction strength, a potential of this sort may fall into the category of catastrophic potentials [4],
which define systems devoid of a thermodynamic limit. For a stable interaction, the grand-canonical partition function
cannot grow faster than exp(V/Λ3), where V is the system volume and Λ the thermal wavelength. On the contrary, when
stability is violated the grand partition function is infinite even for finite V and the system will eventually collapse to a
finite cluster. Ruelle [4], and Fisher and Ruelle [5] derived analytic criteria for deciding whether or not a bounded pair
repulsion supplemented with a longer-ranged attraction leads to collapse of the system to a non-extensive blob (see next
section). However, Ruelle’s approach is based on abstract analytic arguments and gives no specific information on the
modifications undergone by the phase behavior of the particles as the threshold of thermodynamic stability is approached
or even surpassed. Investigating such changes in depth is the aim of the present study. We remark that a process bearing
some resemblance to collapse, namely denaturation of dissolved proteins, with the subsequent exposure of hydrophobic
groups leading in turn to the formation of insoluble fibrils or other aggregates, is at the heart of important human diseases
such as a number of neurodegenerative disorders [6].

To be specific, we inquire into the behavior of particles interacting via a Gaussian pair repulsion at short distances
augmented with a weaker shifted-Gaussian attraction at larger distances. Two versions of this so-called double-Gaussian
(DG) model, relative to values of the attraction strength far away from the stability threshold, were recently investigated
(see Refs. [7,8]). A preliminary account of the behavior of the DG system as a function of the attraction strength, all the way
to the stability threshold and also beyond, was given in Ref. [9]. In that paper we reported numerical-simulation evidence
that in the unstable regime of the DGmodel the characteristic time of collapse is enormously different on the two sides of a
boundary line. While the decay of an initially homogeneous fluid is very fast in one region (that is, on the high density/low
temperature side of the boundary), collapse typically takes a long time to occur in the other region, indeed so long that in
a simulation of ordinary length the system is seemingly stable. In the present paper, we concentrate on the nature of the
crossover between the two regimes. To this aim, we introduce an interaction potential, now fully stable, obtained from the
DG potential through the addition of a hard core of diameter δ. By considering smaller and smaller δ values, we link the
behavior of the stabilized DG system to that of the original system, thus finally uncovering the origin and significance of the
DG boundary line.

The outline of the paper is as follows. After introducing the DGmodel in Section 2, we describe our methods in Section 3.
Section 4 is devoted to a discussion of the system properties in the unstable regime. In Section 5 we provide a rationale
for the existence of a weakly- and a strongly-unstable regime in the DG model, after which we draw our conclusions in
Section 6.

2. Model

We study a model of classical point particles interacting through a pair potential taken to be the sum of two Gaussians:

u(r) = ϵ exp

−

 r
σ

2


− η exp

−

 r
σ

− 3
2


, (2.1)

where ϵ > 0 and σ are arbitrary energy and length scales (in the following, all energies and lengths are reported in units of
ϵ and σ , respectively; see Fig. 1). In Eq. (2.1), the first term is repulsive and is centered at r = 0 whereas the second term
is attractive (η > 0) and centered at r = 3. Below, we refer to this model as the double-Gaussian (DG) model (the η = 0
case is the Gaussian-core model (GCM), a prototype of bounded repulsive interaction [10–13]). Our goal is to study the phase
behavior of the DG model as a function of the attraction strength η.

As mentioned in the Introduction, a problem of thermodynamic stability may arise for a system of particles interacting
through a repulsive potential which is finite at the origin and attractive at large distances. If the attraction is too strong, a
thermodynamic catastrophe occurs in that all particles eventually gather in a finite region of space and the system ceases to
be extensive [4,5]. In order to establish whether or not this is the case for the given potential, we resort to a pair of criteria
originally put forward by Ruelle (Propositions 3.2.4 and 3.2.7 of Ref. [4]), and recently revived by Heyes and Rickayzen
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Fig. 1. DG potential for η = 0.05. In the inset, a comparison is made with the potentials for η = 0.02 (red) and η = 0.03 (blue). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

(Theorems 1 and 2 of Ref. [14]). Denotingu(k) the Fourier transform of the potential, a sufficient condition for instability isu(0) < 0. Conversely, if we are able to show thatu(k) ≥ 0 for all k, then the system is stable.
For the potential in Eq. (2.1), we findu(0) < 0 for η > ηc ≡ 0.0263157908 . . .; below ηc,u(k) turns out to be positive

definite. Hence the DG potential is stable for η < ηc and unstable for η > ηc (i.e., an attraction strength of 3% of the
repulsion is sufficient to destabilize the system). This apparently implies that it is only meaningful to study the DG system
for veryminute attractions, while the unstable regime is devoid of any interest. In fact, we shall see that the thermodynamic
space of an unstable DG fluid is made of two distinct regions separated by a sharp boundary: (a) a region of fully developed
instability, where a system prepared in a fluid configuration is going to collapse in very short times; (b) and a ‘‘metastable’’
region, where the waiting time for collapse may be so long that the system is, to all practical effects, stable and extensive.
Fantoni and coworkers have observed a similar difference of time scales in the collapse of the unstable penetrable-square-
well model [15,16], but no systematic analysis was conducted in that case.

3. Method

3.1. Simulation techniques

In order to reconstruct the statistical behavior of the system, we employed a number of numerical techniques, including
molecular dynamics (MD) and a few Monte Carlo (MC) methods. While there is no specific prohibition against using MD to
simulate particles interacting through a catastrophic potential, aword is in order forMC simulation. The lattermethod allows
to sample the (Boltzmann’s) stationary distribution, which is clearly meaningful only provided that a proper equilibrium
is established. Therefore, for a formally unstable system it will have to be carefully checked whether a ‘‘temporal’’ window
exists inwhich theMC averages ofmacroscopic variables arewell defined and take the same values as theMD time averages.

The coexistence between liquid and vapor was mainly probed through Gibbs-ensemble Monte Carlo (GEMC)
simulations [17,18]. Even for η > ηc, this method turned out to be a valid tool to study phase coexistence, see Section 4.2. In
a GEMC simulation, N particles are initially distributed between two cubic simulation boxes, and arranged in, e.g., a lattice
configuration with the same number density for both. Periodic boundary conditions are applied for each box separately. A
single GEMC cycle consisted of trial moves of three types: (an average of) N particle shifts within a box, one exchange of
volume between the boxes, and a few number (20) of particle swaps (the acceptance rule as well as the schedule of the
moves was designed in such a way that detailed balance is satisfied). Particular care was paid in treating the case where one
of the box happened to be empty. At very low temperature, in order to achieve a faster equilibration, we found useful to start
with largely different numbers of particles in the two boxes (in this case, wewriteN1+N2 to indicate that we initially putN1
particles in one box and N2 particles in the other). Typically, 4 × 105 GEMC cycles were enough for equilibrium quantities,
with averages computed over the second half of the trajectory only.

Far from coexistence, the nature of the system equilibrium for η > ηc was investigated by standard NVT (i.e., canonical-
ensemble)Metropolis MCwith periodic boundary conditions. The important quantity to look at is the total system energy E:
an average energy proportional toN is the hallmark of (meta)stable equilibrium,whereas an energy value scaling faster than
N , typically as N2, is the imprint of system collapse. Anticipating the main result from the next section, a NVT simulation
of an unstable fluid either leads to the quick collapse of the system to a small blob, or proceeds for long time as if the fluid
were fully stable (in this case, we found no appreciable size dependence of the thermal averages).



S. Prestipino, G. Malescio / Physica A 457 (2016) 492–505 495

We employed MD simulations both to check that the outcome of the MC runs is consistent with the natural system
dynamics even in the unstable region, and to evaluate the characteristic time for collapse as a function of the system density
for a fixed temperature. Temperature controlwas implemented through a velocity-Verlet algorithmcombinedwith rescaling
of particle velocities at the previous time step (in the long run, the time-averaged kinetic energy becomes consistent with
the temperature set in the program input).

3.2. Integral equations

Despite its many advantages, numerical simulation faces two limitations. First, simulation is impractical for extensive
investigations of the behavior of several thousandparticles due to relevant cpu-time requirements. Second, since the number
of simulated particles is necessarily finite, the importance of finite-size effects must be checked with care.

Distribution-function theories [19] (viz., integral equations of liquids) represent an alternative approach which does
not suffer from these shortcomings. Since an integral equation describes the system as homogeneous, in the region of
thermodynamic plane where the equation admits no solution the system does not exist as a homogeneous fluid, at least
within the accuracy of the equation considered. Hence, integral equations can be employed to draw the boundary line
(BL) separating the region of thermodynamic parameters where the equation can be solved (‘‘stable’’ region) from the
(‘‘unstable’’) region where no homogeneous-fluid solution exists. Upon approaching the BL from the stable region, the
computed isothermal compressibility usually attains increasingly large positive values (though it does not generally diverge
on the BL).

For simple-fluid potentials, featuring an unbounded short-range repulsion and an attractive tail, the BL can be put in
correspondence with the liquid–vapor spinodal line. In general, the spinodal line marks the threshold of homogeneous-
system stability against phase separation. Within this curve, even infinitesimally small density fluctuations immediately
lead to phase separation via a process called spinodal decomposition. Outside the spinodal line, the homogeneous fluid is
stable, or at leastmetastablewith respect to density fluctuations. The spinodal line lies inside the binodal (coexistence) curve,
which is defined by the requirement that the temperature, pressure, and chemical potential be the same for both liquid and
vapor phases. The region enclosed between the binodal and the spinodal curve is a region of metastable equilibrium where
the system can exist as a single phase only for a finite period of time.

A well-known deficiency of integral equations is the lack of thermodynamic consistency (i.e., different thermodynamic
routes yield different equations of state for the fluid). Many recipes have been proposed in order to produce
thermodynamically-consistent integral equations, which usually lead to more accurate estimates of structural and
thermodynamic properties at the expenses of more cumbersome solution procedures. The accuracy of a number of integral
equations, including the simple hypernetted-chain (HNC) equation [19] and two thermodynamically-consistent approaches,
namely the Rogers–Young closure [20] and the zero-separation closure [21], was investigated for the GCM [22] (the
Percus–Yevick closure [19], which is quite accurate for the steeply-repulsive potentials, is not suited for the GCM). When
compared to simulation results, the HNC theory underestimates the system structure for small to moderate packings;
however, it is extremely accurate for high densities where the GCM fluid only weakly departs from the structure of an ideal
gas. Moreover, the HNC equation is not affected by a recurrent problem of self-consistent closures, that is the existence of
spurious solutions.

Recently, an investigation of the stable and unstable regions of the HNC equation was performed for the penetrable-
square-well model, consisting of penetrable spheres subjected to a square-well attraction outside the core [23]. Compared
to numerical simulations [15,16], the HNC equation yielded reasonable indications on the phase behavior with much less
computational effort. For the purpose of the present investigation, theHNC equation is then preferable tomore sophisticated
(but harder tomanage) closures. The accuracy of theHNC equation for ultrasoft particleswas investigated at lengths by Likos
et al. in Refs. [24,25], where it was shown that mean-field density functional theory becomes exact at high temperatures
and/or densities. We hereafter present an argument, based on the assumption of ideal-gas structure of the DG system at
high density, which aims to determine the behavior of the BL in the unstable regime.

On general grounds, the isothermal compressibility KT is related to the integral of the total correlation function h(r) all
over space, through the formula:

ρkBTKT = 1 + ρh(0) =
1

1 − ρc(0) , (3.1)

where ρ is the number density and c(r) is the direct correlation function. In light of the conclusions of Refs. [22,24,25], for
all bounded potentials having a Gaussian core we admit that

h(r) ≈ 0 for ρ > ρ0(T ), (3.2)

ρ0(T ) being a characteristic system density expected to be higher the lower T is. Within the above assumption, for ρ > ρ0
the HNC expression of c(r) reads:

c(r) = h(r) − ln[1 + h(r)] − βu(r) ≈ −βu(r), (3.3)
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saying that, for high enough densities, the HNC theory reduces to the random-phase approximation (RPA), and therefore
K (HNC)
T ≈ K (RPA)

T or

ρkBTK
(HNC)
T ≈

1
1 + ρβu(0) . (3.4)

Ifu(0) > 0 (which for the DG potential is synonymous of stability) then K (HNC)
T is small and positive for sufficiently high

ρ, implying that the BL cannot extend to infinite ρ. Conversely, ifu(0) < 0 (i.e., the DG potential is Ruelle-unstable) then
1/K (HNC)

T changes sign continuously at a certain T -dependent density, meaning that (at least, within the approximate (3.4)
formula) K (HNC)

T diverges at the BL, which in turn is located at

ρβu(0) = −1 H⇒ kBT = |u(0)|ρ. (3.5)

For kBT > |u(0)|ρ, the HNC value of KT is strictly positive and the homogeneous fluid is thoroughly stable. Eq. (3.5) is a well-
definite prediction of assumption (3.2), whichwe shall check below for the DGmodel against the numerically-computed BL.

4. Results

4.1. The stable regime

We briefly report on the phase behavior of the DG model for attraction strengths smaller than the thermodynamic-
stability threshold ηc [9].

Far below ηc, the DGmodel exhibits a conventional liquid–vapor transition at lowρ and T , with a bell-shaped coexistence
line [7,8]. As the attraction gets stronger, the coexistence region increases in extent until, close to the stability threshold,
the binodal line undergoes a remarkable modification at low T , where it substantially widens. For the same temperatures,
the density ρl of the saturated liquid acquires a strong dependence on the system size (see Fig. 1 in Ref. [9]). An analogous
trend as a function of η is observed in the BL of the HNC theory, which at low temperature also widens, apparently without
bounds in the combined η → ηc and T → 0 limits (inset of Fig. 1 in Ref. [9]).

As far as the solid phase is concerned, for very high densities it would only be stable for exceptionally low temperatures.
Indeed, according to the melting criterion formulated in Ref. [26], the DG melting temperature would reach a maximum of
TM ≈ 0.01 for a density ρM ≈ 0.22 (the height and abscissa of the maximum are nearly insensitive to η), beyond which it
rapidly decays with increasing density.

4.2. The unstable regime

In the unstable regime no thermodynamic limit exists. Keeping this in mind, we investigated the behavior of the DG
system with care, by first employing the HNC equation. The results of this analysis are later used as a broad guide to a more
accurate study of the model in terms of numerical simulation.

For attraction strengths larger than ηc, the BL of the HNC theory again divides the ρ–T plane in two regions (see Fig. 2).
Above the BL, the iterative procedure to solve the HNC equation leads to convergence and the system can be described
as a homogeneous fluid. However, since the HNC theory is thermodynamically inconsistent, and thus blind to the system
instability, this fluid can at best bemetastable. In the region below the BL, which for η > ηc is of infinite extent, no solution
to the HNC equation is found and the homogeneous fluid is then unstable. Hence, according to the HNC theory, above the
stability threshold the DG system would be mechanically unstable for each temperature T but only beyond a T -dependent
density.

In the narrow interval ηc < η < η̄ ≃ 0.0270, the BL exhibits a local maximum for ρ ≈ 0.2, followed by a minimum at
a higher density, beyond which the BL asymptotically becomes a straight line. For η = η̄, the maximum and the minimum
coalesce and, from there onward, the BL becomes a monotonically increasing function of ρ. As η progressively grows, the
BL increasingly resembles a straight line, even for low densities.

These findings are consistent with the following scenario. For ηc < η < η̄, the low-density system undergoes a transition
from a metastable vapor to a metastable liquid which, as the density is further increased, eventually disappears. As η
overcomes η̄, the distinction between liquid and vapor vanishes and the mechanically-unstable region grows in extension
with increasing η.

For every η > ηc, the BL becomes a straight line for very large densities, whose slope increases linearly with η,
irrespectively of the BL shape at small density (see Fig. 2 inset). To a very high precision, the asymptotic BL slope coincides
with |u(0)|, thus giving credit to the conjecture made in the previous section on the h(r) function (cf. Eqs. (3.2) and (3.5)).
Upon extrapolating the linear behavior of the slope down to zero, we can estimate the value η0 of the attraction strength
above which the slope is strictly positive, which is also the value of η separating the stable from the unstable regime. By
including in the fit also values of η quite far away from the stability threshold (and up to 0.05) we obtained η0 = 0.026320,
a number very close to ηc. An even better ηc estimate is obtained if the fit is restricted to a range of values closer to ηc. For
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Fig. 2. DG system, BL of the HNC theory for a number of η values above the thermodynamic-stability threshold: 0.02632 (red), 0.0265 (magenta), 0.027
(cyan), 0.03 (blue), and 0.05 (black). Notice that the BL for η = 0.02632 reaches a local minimum for ρ ≈ 3.8. Inset: asymptotic BL slope, plotted as a
function of η. The black dotted line is the straight line providing the best (least-square) fit of the data in the interval 0.0264–0.05. The green line is |u(0)|
vs. η. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. DG system, liquid–vapor coexistence densities for a number of η values above the thermodynamic-stability threshold: 0.02632 (red), 0.02635
(magenta), 0.0265 (green), 0.0267 (cyan), 0.027 (blue), and 0.028 (black). The various symbols correspond to different N1 and N2 values: 864 + 864
(triangles), 4000 + 108 (squares), 8192 + 128 (open dots), and 16 000 + 128 (small full dots). Inset: system density in the two simulation boxes, plotted
as a function of simulation time, for η = 0.0267,N = 4000 + 108, and T = 0.112—i.e., slightly below T ∗(0.0267). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

example, only considering the slopes for η = 0.0264, 0.0265, and 0.027, we got η0 = 0.026317. We conclude that the HNC
equation allows to extract the stability threshold with great precision from both sides of ηc.

Turning to simulation, we first checked by GEMC the existence of a (metastable) coexistence between liquid and vapor
in the range ηc < η < η̄. Specifically, we simulated various samples for a number of η values (see Fig. 3). Two distinct cases
occurred: either coexistence is quickly established and coexistence densities are roughly insensitive to the sample size, or,
when the temperature is low enough, coexistence is still established but the density of the saturated liquid grows almost
linearly with N , signaling that the denser phase is actually a non-extensive blob (in this case, the coexistence density of the
vapor is nearly zero). For each η the transition between the two cases is very sharp, occurring at a temperature T ∗ which is
higher the larger η is. At the lowest η considered (0.02632, just above the stability threshold), T ∗ is as low as 0.01 but we
needed our largest size (that is, 16 000 + 128) to observe the mentioned crossover.

The above evidence confirms what suggested by the HNC equation. For ηc < η < 0.027 ≃ η̄, the liquid–vapor transition
only exists above a certain temperature T ∗(η) (the HNC estimate of T ∗ is nothing but the relative minimum of the BL). For
η = 0.028, liquid and vapor no longer survive as distinct phases. Near below the crossover temperature T ∗(η), and provided
thatN is sufficiently large, we systematically observed a sudden switch from standard liquid–vapor separation (which is the
early choice made by the system) to formation of a condensate with a N-dependent density (see Fig. 3 inset).
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Fig. 4. Unstable DG fluid, average potential energy per particle as a function of density and temperature. (a) η = 0.06, two sample sizes (N = 1372,
magenta; and N = 4000, blue), and various temperatures (T = 0.7, triangles; 1, squares; 1.3, open dots; and 1.5, small full dots). The red full dots mark
the outcome of MD simulations carried out in sequence, starting from ρ = 0.2, for N = 1372 and T = 1.3 (each run consisted of 4 × 106 time steps, with
the averages computed over the second half of the trajectory only). Inset: snapshot of a typical collapsed configuration of the N = 4000 system, taken for
ρ = 0.25 and T = 1.5 (here the box length is 25.20). In preparing this figure, we gave each particle a diameter of σ . (b) η = 0.03, three sample sizes
(N = 1372, magenta; N = 4000, blue; and N = 8192, black), and a few densities (ρ = 0.05, triangles; 0.1, squares; 0.15, open dots; and 0.3, full dots). For
such a small η, only very large sizes bear traces of collapse in the behavior of the energy. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

To better elucidate the nature of the metastable-to-unstable transition and also unveil the structure of the collapsed
state, we carried out a series of NVT simulations for many different combinations of η,N , and T (in particular, we analyzed
the cases η = 0.03, 0.06, 0.09, and 0.2). A typical set of results is reported in Fig. 4(a), referring to η = 0.06. We here show
potential-energy data for two sizes, N = 1372 and N = 4000, and four temperatures, T = 0.7, 1, 1.3, and 1.5. These data
were obtained by performing simulation runs sequentially, starting for a given density from the last system configuration
generated at the previous (slightly smaller) density. Each run was 2 × 106 cycles long, with averages computed over the
last million cycles only. We see that the average potential energy per particle, which is independent of N at low density,
for a certain T -dependent density ρ∗ drops abruptly to a large negative value which, in absolute terms, scales as N . Hence,
the total energy becomes of the order of N2, which is the distinctive feature of the formation of a dense, non-extensive
blob comprising all particles in the system. As can be appreciated from the inset of Fig. 4(a), which shows an image of the
4000-particle system for ρ = 0.25 and T = 1.5, the visual appearance of the collapsed system is that of a compact spherical
cluster which fills only a part of the simulation box. Clearly, the spherical shape responds to the necessity of minimizing the
surface-energy cost. We found that, while still depending on T , the cluster radius is roughly independent of N , meaning that
the cluster density increases linearly with N .

Already after collapse, the system energy attains its lowest possible value (i.e., a further compression of the system does
not make the energy smaller). Upon increasing N , ρ∗ slightly decreases. Moreover, when the sample is small the collapse
transition gets rounded (i.e., smeared in density) for high temperatures and/or densities. This is particularly evident for
η = 0.03, see Fig. 4(b), where we observed a distinct energy jump on cooling only for the lowest density considered,
ρ = 0.05, and for the biggest size employed, N = 8192.

In Fig. 5 we collected the (ρ, T ) points where system collapse first occurred, under either isothermal compression
(η = 0.06, 0.09, 0.2) or isochoric cooling (η = 0.03). Each group of lines refers to a specific η value, and there is one
line for each value of N (we also plotted the BL of the HNC equation for comparison). We see that the simulation loci assume
a definite limiting position as N grows; moreover, there is a striking correspondence between the BL and the simulation
data for the highest N . These facts together suggest that, for η > ηc, the extensive-to-nonextensive crossover occurs for
a distinguished non-zero density even in the infinite-size limit, that is, there is a sharp line separating two distinct dynamic
regimes: a ‘‘long-lastingmetastability’’ regime, where the timewe should typically wait for collapse tomanifest enormously
exceeds our simulation times (say, a fewmillion MC cycles). In the other regime of ‘‘full-fledged instability’’, collapse occurs
fast, well within the length of our runs.

A suggestive interpretation of the above findings is the following. The locus of points ρ∗(T ) where a large-sized DG fluid
first collapses is a sort of spinodal line (well approximated by the HNC BL), separating a metastable vapor region (on the
low-density side) from a two-phase region (on the high-density side) where a vanishing-density vapor coexists with a huge-
density liquid. For ρ < ρ∗(T ), the vapor is metastable and the system appears homogeneous and extensive. As ρ overcomes
ρ∗, the metastable vapor instantly decays to a heterogeneous system consisting of a spherical huge-density liquid cluster in
a vanishing-density vapor background. Below ρ∗(T ), the liquid cluster should also form, but it will take a rather long time
to nucleate, so long that it far exceeds our simulation times.
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Fig. 5. DG system above the thermodynamic-stability threshold (η = 0.03, 0.06, 0.09, 0.2). The loci are shown where the crossover from the extensive
to the nonextensive behavior first occurred: N = 500 (red triangles), 1372 (magenta squares), 4000 (blue dots), and 8788 (8192 for η = 0.03, black dots).
In these MC simulations, ρ was increased in steps of 0.01 at constant T (for η = 0.03, it is T that was reduced in steps of 0.01 at constant ρ). The density
point where a sharp energy drop was observed has been marked by a full symbol, whereas an open symbol represents the approximate location of a more
diffuse (in density or in temperature) energy drop. The green lines are the boundary lines of the HNC theory. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

To learn more about the position and width of the crossover region between the two regimes, as well as to clarify the
stochastic character of the collapse event, we carried out a large number of MD simulations of the DG model (at various
densities and sizes, for fixed η = 0.2 and T = 6) where N particles, originally distributed at random in the box, are followed
during their evolution (usually for many million MD time steps near the threshold of dynamic crossover) until collapse
occurs, i.e., until a sharp drop of the total energy is detected. In these simulations, the time step used was 1t = 10−3 (in
reduced, σ

√
m/ϵ units, m being the particle mass). As a preliminary task, for a number of η values above ηc we verified

that, in the metastable region, canonical-ensemble MC averages (that is, energy and virial pressure) indeed coincide with
MD averages. Moreover, with both techniques the dynamic crossover is located at about the same place. Hence, also for MD,
the phase-space basin pertaining to the fluid is separated/protected from the absorbing (cluster) states by a large activation
barrier; within this basin, the system is fully thermalized. For example, Fig. 4(a) shows some MD energy data for the case
η = 0.06 and T = 1.3. Here collapse occurred for a density which is slightly larger than the crossover density signaled by
MC (0.24, rather than 0.22), but this would just be a consequence of the activated nature of the collapse event, which makes
the time scales of MD and MC non-comparable (see more below).

For a number of densities in the crossover region, we followed the time evolution of the system energy for 106 time steps
after the initial preparation in a homogeneous-fluid state. As documented in Ref. [9], the energy of N = 1372 particles
eventually undergoes a sudden drop, rather well resolved in time, corresponding to the onset of collapse. As N grows,
however, the nature of collapse gradually changes, since an increasingnumber of plateaus appear in the energy chart. Such an
event is already observed for N = 2048 (see Fig. 4 of the Supplemental Material for Ref. [9]), where the only plateau present
corresponds to the simultaneous formation of two clusters, both surviving for a small period of time before coalescing in
a single cluster. A more spectacular energy evolution is seen in Fig. 6(a), which refers to a 4000-particle system, for fixed
η = 0.2 and T = 6 and a few densities in the range 0.145–0.150.We see that the energy evolves through a series of plateaus
alternated with sudden drops, each corresponding to a reorganization of particles in space, as illustrated in Fig. 6(b). Here,
the initial number of clusters is 5 (a number expected to grow with N), but they subsequently merge upon collision until
one cluster only is left at the end. This coarsening phenomenon resembles Ostwald ripening (see e.g. Ref. [27]). Every time
two clusters come close to each other, one of them quickly absorbs the particles of the other but, rather than increasing in
size at the expenses of the other, the surviving cluster has approximately the same size of its parents (hence the density of
the unique cluster left at the end is about 5 times larger than the density of the original clusters).

Nowmoving to a more systematic analysis, we performed from 31 to 51 independent runs for each investigated density
in the extensive-to-nonextensive crossover region. For every run, we took note of the instant when the energy dropped for
the first time, which was then averaged over the totality of the runs. In Fig. 7 we plot the mean waiting time for collapse,
t̄ , as a function of density, for three sizes (N = 864, 1372, 2048). A distinct t̄ increase is seen to occur near the location
of the collapse transition signaled by MC. Especially for the lowest densities, the distribution P(t) of waiting times is very
dispersed around themean and also increasingly skewed to the right the smaller the density (as can also be argued from the
non coincidence of median and mean). At such low densities, collapse sometimes occurred after such a long span of time
that the effort of pushing the analysis to still smaller densities would be too costly. From looking at the data of Fig. 7, it would
be hard to say whether, in the infinite-size limit, the average waiting time for collapse would blow up to infinity below a
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Fig. 6. DG system for η = 0.2 and T = 6. (a) Energy evolution of a N = 4000 system during a run of 106 MD steps, for six different densities: ρ = 0.145
(black), 0.146 (blue), 0.147 (cyan), 0.148 (green), 0.149 (magenta), and 0.150 (red). Successive energy drops correspond to sudden modifications of the
overall system conformation. (b) The picture shows five successive configurations of a N = 4000 system in the ρ = 0.145 run (recall that periodic
conditions are applied at the boundary of the box). The homogeneous fluid initially collapses at t ≃ 90, through the simultaneous formation of 5 clusters.
These became 4 already at t ≃ 110. As dynamical evolution goes on, the clusters first reduced to 3 (t ≃ 215), then to 2 (t ≃ 355), and finally to 1 (t ≃ 470).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. DG system above the thermodynamic-stability threshold (η = 0.2 and T = 6): collapse times (red crosses) for each of 31 MD runs (51, for the
lowest five densities in each group) carried out for a few densities in the ranges 0.147–0.165 (N = 2048), 0.157–0.175 (N = 1372), and 0.180–0.200
(N = 864). Notice that some of the red crosses are not shown since they fall outside the t range considered. The black dots are arithmetic averages over
each set of 31 or 51 instances (the error-bar length is twice the standard error of the mean, i.e., twice the unbiased sample standard deviation divided by√
31 or

√
51). Also shown are the median times (blue open dots).

non-zero density, or rather it will keep on increasing upon reducing ρ further. The former possibility is actually more likely,
considering the trend of the data in Fig. 5 with system size and the correspondence existing between the location of the t̄
rise for largeN and the HNC BL. As a further experiment, we carried out 20 independentMD runs of very long length (4×107

time steps), for N = 864 and ρ = 0.150 (i.e., well inside the metastable region), starting from an always different gaseous
configuration: as a matter of fact, for none of these runs collapse occurred within the prescribed time limit.

A possible mechanism for the divergence of t̄ at a non-zero crossover density is a probability distribution P(t) of waiting
times developing, below a certain density, a fat tail of the kind t−α , with 1 < α < 2 (in this case, tP(t) is not integrable
but P(t) is still normalizable). Should this be the truth, collapse will eventually occur at any point of the metastable region,
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Fig. 8. BL of the HNC theory for the SDG model. (a) Low-density behavior of the BL for η = 0.0265, for two values of the diameter δ: δ = 0 (DG model,
crosses) and δ = 0.1 (full squares). Inset: high-density behavior. (b) High-density behavior of the BL for η = 0.03 (blue) and η = 0.05 (red): δ = 0 (crosses)
and δ = 0.1 (full squares). The black dot marks the freezing density of hard spheres with diameter δ. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

but the time it typically takes for the system to collapse is not bounded from above. In other words, if one waits enough,
it will always happen to observe a yet larger value of the variable t . This means that, upon repeating the simulation again
and again (starting each time from a different initial configuration), we will always find collapse times larger than any value
observed before.

To sum up, in the unstable regime a DG system prepared in a cluster configuration will remain a cluster forever. Indeed,
such cluster configurations are absorbing states for the system dynamics (be it fictitious or real). However, if the system is
prepared in a homogeneous (fluid) state, then the time it takes for the system to collapse in a cluster crucially depends on
the values of ρ and T (for fixed values of N and η). For sufficiently large N , a well-definite line separates a region of very fast
decay to a droplet from another region where relaxation is extremely slow.We conjectured that the probability distribution
of collapse times develops a fat tail when the initial fluid density is below the threshold value on the separatrix. This does
not exclude that the thermodynamically-unstable system eventually collapses for every density and temperature.

5. The collapse phenomenon as a limiting case of spinodal instability

In order to delvemore deeply into the nature of the collapsed state, we consider a system of particles interacting through
the (stabilized-DG, i.e., SDG) potential

uSDG(r) =


+∞, r < δ
uDG(r), r ≥ δ

(5.1)

(δ is the particle diameter). For δ smaller enough than σ , the system is expected to behave similarly as the DG model, at
least up to intermediate densities, deviating from it only for larger densities (i.e., as the inner core becomes effective). The
addition of a hard core to the DG potential prevents the collapse of the system, making it fully thermodynamically stable (by
Corollary B in Ref. [5]).

5.1. HNC theory

We first discuss the evolution of the BL of the HNC theory with δ and η, postponing the analysis of simulation results
until below in this Section. In Fig. 8(a), we show the BL for δ = 0.1 and η = 0.0265. For small densities, the SDG BL is indeed
indistinguishable from the BL of the DG model. The stabilizing effect of the core causes the SDG BL to substantially deviate
from the DG BL only for higher densities, see Fig. 8(b), where the former line develops a broadmaximum (for ρ ≈ 200when
δ = 0.1, moving down to ρ ≃ 2 when δ = 0.5). Upon compression, at some point the BL will cross the melting line since,
for sufficiently large densities, the stable phase of the SDGmodel is a face-centered cubic crystal. The onset of crystallization
is expected to occur near the freezing point of hard spheres with diameter δ (i.e., for ρδ3

≈ 0.943). Note that the abscissa of
the BL maximum also approximately scales as δ−3, indicating that the δ length is already effective for moderate densities.

The above findings can be rationalized as follows. The SDG potential is an example of soft-core potential, where an
infinitely-repulsive core is ‘‘softened’’ through the addition of a finite repulsion (in our case, the Gaussian repulsion). Such
potentials are characterized by two repulsive length scales (see, e.g., Ref. [28]): a smaller ‘‘hard’’ length and a larger ‘‘soft’’
length. These length scales give origin to a more compact and a looser particle arrangement, respectively. The effectiveness
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Fig. 9. SDGmodel, HNC BL plotted as a function of ρ. (a) δ evolution of the BL for η = 0.03: δ = 0 (DG model, crosses and dotted line), 0.08 (red squares),
0.1 (blue squares), and 0.15 (black squares). (b) η evolution of the BL for δ = 0.5: η = 0.0265 (black squares), 0.027 (blue squares), and 0.03 (red squares).
The dotted lines are for the DG model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

of the two length scales depends on the values of pressure and temperature. The ‘‘soft’’ length is only effective for low
pressures and temperatures, whereas the ‘‘hard’’ length becomes important for higher pressures and temperatures. For
those pressures and temperatures where the two scales are both effective, we see the competition between a denser and a
looser local particle arrangements, and the fluid behaves as if it were a mixture of two particle species with different radii.

When the attractive component of the potential is not too strong, a soft-core potential gives rise to two distinct liquid
phases: a low-density liquid (LDL, associated with the soft length) and a high-density liquid (HDL, associated with the hard
length). This behavior is mirrored in the shape of the SDG BL, which has two maxima for ηc < η < η̄, one related to a
LDL–vapor critical point and the other to a HDL–LDL critical point [29].While the critical density of the LDL–vapor transition
is related to the soft length, the critical density of the HDL–LDL transition is related to the hard length. The ratio between
the two critical densities is of the order of (σ/δ)3.

We explored the high-density behavior of the BL of the SDGmodel as a function of the hard-core diameter δ (see Fig. 9(a)),
choosing a value of the attraction strength (η = 0.03) for which the BL has only one maximum (therefore, only a vapor and
a HDL phase exist). As δ gets smaller, the BL maximum occurs for higher and higher densities and temperatures; likewise,
the range of densities over which the boundary lines of the SDG and DGmodels are practically indistinguishable extends to
higher densities. For δ = 0, the SDG potential becomes identical to the DG potential, and the BL of the latter is recovered.
In Fig. 9(b), we follow the evolution of the BL as a function of η for fixed δ = 0.5. We see that, as η diminishes, the broad
maximum centered at ρ ≃ 2 becomes gradually depressed, until it disappears altogether slightly above ηc. This behavior
highlights the gradual vanishing of the liquid–liquid transition as η falls below the critical attraction strength.

Summarizing, the repulsive length of the SDG potential which sets the scale of the HDL structure, bringing to a stop
the aggregation cascade driven by the attractive forces, is the hard-sphere diameter δ. As δ gets smaller, the saturated HDL
density grows more and more, until it goes to infinity in the δ → 0 limit. In the same limit, the ascending branch of the
HDL–vapor spinodal line will match the locus which, in the unstable DG model, separates the extensive from the non-
extensive region. Therefore, the cluster forming in an unstable DG fluid of N ≫ 1 particles can be viewed as the finite-size
manifestation of a fluid phase of infinite density. In other words, the onset of collapse is the mark of a ‘‘condensation’’
transition where there is no repulsive core that could prevent particles from crowding all together. Also in common
condensation the first occurrence of liquid–vapor separation in a NVT setting is the formation of a spherical cluster [30–32].
The main difference with the DG cluster is that the radius of an ordinary liquid cluster in vapor scales as N1/3 rather than
staying finite.

5.2. Simulation results

We simulated the SDG model for η = 0.03 so as to validate our expectation that the coexisting fluid phases for not
too large temperatures are, for δ sufficiently smaller than σ , a very diluted vapor and an extremely dense liquid. This
would reinforce our argument that the extensive-to-nonextensive crossover line of the DG model can be interpreted as
the ascending branch of the spinodal line of a transition between two fluids of highly different densities.

To reach this goal we employed a ‘‘deformed’’ SDG potential, where the power-law repulsion ϵ(δ/r)24, rather than a hard
core, is added to the DG potential (we call SDG also this version of the potential). Replacing the hard core with an inverse-
power law will accelerate the attainment of equilibrium in Gibbs-ensemble simulations, without substantially altering the
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Fig. 10. SDG model for η = 0.03. Liquid–vapor coexistence lines derived from GEMC simulations carried out for three different δ values: from top to
bottom, δ = 0.45 (red), 0.5 (blue), 0.55 (black). Results for various sample sizes are shown: 864 + 864 (triangles), 2048 + 2048 (squares), 4000 + 108
(crosses), 4000 + 4000 (hexagons), 8192 + 128 (asterisks), and 16 000 + 128 (dots). Data points are joined by straight-line segments to guide the eye. For
each δ, the BL of the HNC theory is also reported as a dotted line. Inset: Liquid–vapor coexistence for η = 0.0265 and δ = 0.5. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

location of the coexistence line with respect to the hard-core case. In order to reduce the computational effort we cut off
the SDG potential at a distance of 6σ and also shifted it vertically so as not to have to bother with long-range corrections to
the energy and pressure. However, a long cutoff distance may affect the estimate of coexistence, which happens when the
box length becomes smaller than twice the cutoff (i.e., when the sample size is too small or the liquid density too high). To
cope with this problem we collected data for a few increasing sample sizes until convergence is reached. In practice, with
a maximum size of about 16000, the lowest δ value which we could manage was 0.45, which is small enough to serve our
purpose.

We show our results in Fig. 10. Here the data refer to three values of δ, namely 0.45, 0.5, and 0.55. As δ is reduced,
the binodal line extends to higher densities and temperatures, as it was expected from the HNC theory. Moreover, at low
temperature the vapor density is vanishingly small, whereas the liquid is very crowded, meaning that the coexistence
pressure is nearly zero. Hence, a simpler method to draw the liquid branch of the binodal line would be to run simulations of
the liquid at zero pressure. While 8000 particles were sufficient to reach size convergence of the data for δ = 0.55, 16000
particles were just enough for δ = 0.45, and even more particles would be needed for still smaller δ. In the inset of Fig. 10
we reported data for η = 0.0265 and δ = 0.5. Here finite-size effects are less important (2000 particles were sufficient to
get convergence, except possibly for the lowest temperatures). In spite of the fact that the SDG potential is unbounded, the
HNC theory turns out to be overall very accurate, especially at low temperature where the BL falls inside the binodal line as
expected.

As far as the solid phase is concerned, we expect it to become thermodynamically stable only for densities higher than
about δ−3. To check this prediction we considered the δ = 0.5 case. Giving up any pretension to compute the exact melting
line, a goal which would unavoidably require a huge sample size, we just limited to a rough (rounded-down) estimate of the
melting density obtained by isothermally expanding a face-centered-cubic (fcc) solid until the point where it spontaneously
melts. Fig. 11 reports the outcome of this calculation for two system sizes, 864 and 4000 (the simulation was always started
from a fcc crystal of density ρ = 10). As is clear from the picture, the purported melting line is weakly dependent on the
system size and well separated from the descending branch of the liquid–vapor binodal line, meaning that the liquid phase
is stable down to at least T = 0.3.

An independent estimate of the liquid stability boundary came from the so-called zero-RMPE criterion [34] (where RMPE
stands for residual multi-particle entropy). This is a one-phase freezing criterion based on an expansion of the system excess
entropy per particle sexc in spatial correlations between groups of more than two particles [35–37]. In short, when the RMPE
(which is defined as sexc − s2, where s2 is the pair entropy per particle) vanishes, the multi-particle contribution to entropy
is bound to explode, signaling that solidification is near. As a matter of fact, the zero-RMPE density (ρRMPE) is an excellent
estimate of the freezing density for the Lennard-Jones system [38], as confirmed by a further calculation made for T = 1.40
and N = 1372 with the data of Ref. [31] (we found ρRMPE = 1.026, to be compared with a freezing density of 0.987 and a
melting density of 1.060). We computed ρRMPE for various temperatures, for δ = 0.5 and N = 4000 (see Fig. 11), finding
values that pretty well compare with the threshold of (mechanical) stability of the crystal. The agreement is good even at
low temperature, where the behavior of the SDG model would depart more from hard-sphere like.

Summing up, for η = 0.03 numerical simulation confirms the picture already emerged from the HNC theory. When δ is
progressively reduced to zero, the liquid–vapor region widens unboundedly while the melting line is pushed to infinity.
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Fig. 11. SDGmodel for η = 0.03 and δ = 0.5. The GEMCdata for liquid–vapor coexistence are the same as shown in Fig. 10. The small green squares are the
coexistence densities for T = 0.4 obtained for a system of 4000 particles by thermodynamic integration in the NVT ensemble: ρv = 0.157 and ρl = 3.584.
On the high-density side of the picture, blue pointsmark the spontaneousmelting of a fcc solid under isothermal expansion (N = 864, triangles;N = 4000,
squares). For the same temperatures, the zero-RMPE melting threshold is marked by a red dot. The black dashed line is the melting line as predicted for
the fcc crystal by the criterion introduced in Ref. [33] (in this case, a zero melting temperature denotes a mechanically unstable crystal). Inset: details of
the crossing of vapor (red squares) and liquid (black dots) chemical potentials for T = 0.4 and N = 4000, occurring for P = 0.0426 and µ = −0.4788.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

6. Conclusions

A colloid can be destabilized by suitably tuning its composition (e.g., by adding salt or other depletant to the dispersion).
Of a similar kind would be the phenomenon of protein aggregation underlying many forms of age-related brain diseases
in man. While in colloids the tendency to aggregation eventually finds a stop in the existence of the particle core, which
prevents particles from piling up one over the other, in some polymers (for instance, dendrimers) the centers of mass of two
coils may even coincide. For such dispersions, aggregation would virtually proceed until all polymers occupy a small region
of space. Indeed, a bounded potential which is sufficiently attractive at large distances belongs to the category, originally
identified by Ruelle, of catastrophic potentials, i.e., interactions that do not have a standard thermodynamics since the thermal
averages are dominated by relatively few particle configurations (absorbing states) of exceedingly large density. As a result,
these fluids decay to a non-extensive blob or cluster, which is also the attractor of the systemdynamics. In practice, when the
density of the aggregate overcomes a certain threshold, a description of inter-polymer forces in terms of a strictly pairwise
potential ceases to be valid.

In the attempt to describe the onset of aggregation in purely schematic terms, we considered a specificmodel of bounded
interaction, the DG potential. When the strength η of the interparticle attraction exceeds a threshold value ηc, the system
becomes catastrophic. Approaching ηc from the stable side, we observed an anomalous widening of the liquid–vapor
coexistence region, and the density of the saturated liquid grows without bounds near T = 0. In the unstable regime, we
identified a line in the ρ–T plane separating a strongly-unstable region, where the system collapses to a spherical cluster
very quickly, from a weakly-unstable (or metastable) region, where collapse is much delayed in time and the system is, to
all practical purposes, stable.

To better clarify the nature of the metastable-to-unstable crossover we computed the characteristic time for collapse,
finding that the range of densities where it grows substantially is indeed rather narrow. As the system size increases,
the separatrix between the two regimes approaches a limiting position which well agrees with the boundary line (BL)
(also dubbed pseudospinodal line) of the HNC theory. Even though these conclusions were obtained for a specific model
of ultrasoft particles, we anticipate that they are more generally valid and applicable to other bounded potentials whose
stability threshold is independently known [39].

The existence of two different behaviors in the unstable DG model finds a rationale in the shape of the HNC BL in the
SDG model, obtained by augmenting the DG potential with a hard core of diameter δ. While the boundary lines of the two
models are indiscernible up to a certain density, they increasingly depart from each other for higher densities, where a
distinguished fluid–fluid transition appears in the SDG model. As δ is reduced, the overlap between the boundary lines of
the two models extends to higher and higher densities. Hence, the collapse phenomenon observed in the DG model would
not be much dissimilar from the spinodal decomposition, occurring in the SDG model for small δ, between two fluids of
vastly different densities. A visible sign of spinodal behavior is the simultaneous development, when collapse first occurs,
of many clusters which will merge together only at a later time. The phase behavior of the SDG model provides a clue to
understand the coagulation of a colloid.When the strength of the large-distance (effective) attraction between themolecules
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is progressively increased (e.g., by dissolving more salt in the dispersion), the system state will eventually be swallowed
inside the expanding liquid–vapor region and a high-density condensate is formed, right as occurs for a SDG fluid.
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