
Physica A 340 (2004) 373–379
www.elsevier.com/locate/physa

A probabilistic model for the equilibration
of an ideal gas
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Abstract

I present a generalization of the Ehrenfest urn model that is aimed at simulating the approach
to equilibrium in a dilute gas. The present model di)ers from the original one in two respects:
(1) the two boxes have di)erent volumes and are divided into identical cells with either multiple
or single occupancy; (2) particles, which carry also a velocity vector, are subjected to random,
but elastic, collisions, both mutual and against the container walls. I show, both analytically
and numerically, that the number and energy of particles in a given urn evolve eventually
to an equilibrium probability density W which, depending on cell occupancy, is binomial or
hypergeometric in the particle number and beta-like in the energy. Moreover, the Boltzmann
entropy lnW takes precisely the same form as the thermodynamic entropy of an ideal gas. This
exercise can be useful for pedagogical purposes in that it provides, although in an extremely
simpli4ed case, a probabilistic justi4cation for the maximum-entropy principle.
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1. Introduction

The modern intuition of the emergence of the second law of thermodynamics from
mechanics is mainly grounded upon the behaviour of stochastic urn models, where
“particles” are subjected to a probabilistic dynamics that eventually generates a sort
of thermodynamic equilibrium [1]. Obviously, this stochastic (Markovian) dynamics
is only a caricature of the “real” (Newtonian) dynamics; it is much like an e)ec-
tive dynamics which emerges after averaging over many instances of the complicated
short-time motion.
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In the classical Ehrenfest model, N numbered balls are distributed into two urns; at
each step of the process, a ball is extracted at random and moved from the urn where it
resides to the other. Eventually, the number of balls in each urn Ductuates around N=2,
with relative deviations from the mean becoming negligible in the large-N limit. This
stochastic process is taken to represent the attainment of particle-number equilibrium
in a dilute gas di)using between two communicating vessels of equal volume.
In order to improve the Ehrenfest model so as to make it more realistic, I consider

a generalization where the balls/particles are endowed with both a discrete position
and a continuous velocity. To be more speci4c, we are given two boxes, 1 and 2,
and N particles in the boxes. Box 1 (2) is divided into V1 (V2) identical cells, with
V = V1 + V2 the total cell number. The occupancy c� of the �th cell can be either
multiple (c� =0; 1; 2; : : :) or single (c� =0; 1), with both possibilities being considered.
The velocity of the ath particle is va, a three-dimensional vector with components
vak (k = 1; 2; 3).
To make things simple, positions and velocities are updated independently and by

turns, in such a way that the two dynamics of free motion and collisions will proceed
in parallel though staying separate. Hence, the stationary state of each set of variables
can be analysed on its own. Along this route, one arrives at a probabilistic foundation
of the expression of the ideal-gas entropy in thermodynamics and, concurrently, at a
justi4cation (in this case only) of the maximum-entropy principle.

2. Position updates

Let us 4rst suppose that each cell can host whatever number of particles. A posi-
tion update consists of (i) choosing at random one particle, ar , and one cell, �r; and
(ii) moving ar from its original cell into �r . In terms of the variable n, which counts
how many particles are hosted in box 1, this de4nes a stochastic process of the Markov
type, with transition probabilities

T (n+ 1← n) =
(N − n)V1

NV
; T (n− 1← n) =

nV2
NV

: (1)

The ensuing master equation admits the binomial distribution

W (n) =

(
N

n

)(
V1
V

)n(V2
V

)N−n
(2)

as unique stationary distribution [2]. Since the Markov chain is ergodic (i.e., there is a
path connecting every (macro) state n to every other n′), any initial distribution P(n; 0)
will converge, in the long run, to W (n). In particular, the average n goes eventually
into NV1=V , with relative deviations from the mean of O(N−1=2) [2]. The multiplicity of
macrostate n, i.e., the number of complexions (microstates) of N numbered particles
in the boxes, such that box 1 contains n particles, is just W (n) × VN . Assuming
n; N − n = O(N )�1, the equilibrium entropy S(n), de4ned as the logarithm of the
multiplicity, is additive over the boxes and extensive with N

S(n) ∼ −n ln n
V1
− (N − n) ln N − n

V2
; (3)
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being maximum for n = NV1=V . In Eq. (3), we recognize the volume contribution to
the ideal-gas entropy.
While all of the above is rather standard, a novel result is obtained when each cell

in the boxes can contain at most one particle. Now, at each step in the process, the
selected particle ar is moved into a cell �r that is chosen at random among the vacant
sites. The transition probabilities read (with V1; V2¿N ):

T (n+ 1← n) =
(N − n)(V1 − n)
N (V − N )

; T (n− 1← n) =
n(V2 − N + n)
N (V − N )

; (4)

yielding a hypergeometric stationary distribution for n [2]

W (n) =

(
V

N

)−1(
V1

n

)(
V2

N − n

)
: (5)

As in the previous case, the average n converges eventually to NV1=V , with relative
deviations of O(N−1=2). The multiplicity of state n, i.e., the number of ways N indis-
tinguishable particles can be arranged in the boxes, in such a way that n particles are
placed in box 1, is equal to W (n) × ( VN ). Assuming n; N − n; V1 − n; V2 − (N − n) =
O(N )�1, the equilibrium entropy becomes

S(n)∼−n ln n
V1
− (V1 − n) ln

(
1− n

V1

)

− (N − n) ln N − n
V2

− (V2 − N + n) ln
(
1− N − n

V2

)
; (6)

being maximum for n= NV1=V . Eq. (6) is nothing but the thermodynamic entropy of
two ideal lattice gases that can mutually exchange energy and particles.

3. Velocity updates

The collision dynamics of equal-mass particles can be roughly schematized as a
succession of random binary events which, however, are still required to obey energy
and momentum conservation [3]. On the macroscopic side, such collision rules go
along with the conservation of total kinetic energy and total momentum, thus being
appropriate only to a very dilute (gaseous) system of particles. If, moreover, we are
willing to drop the momentum constraint, provision should be made also for elastic
collisions against the walls of the (cubic) container.
As far as the mutual collisions are concerned, I assume their outcome to be as

maximally random as possible. This amounts to update the velocities of the colliding
particles as

va → v′a = va + �r̂; vb → v′b = vb − �r̂ ; (7)

where �=(vb−va)· r̂, and r̂ is picked up at random out of the hemisphere of unit-length
vectors forming an acute angle with vb − va. If mutual collisions occur at a rate of p,
the master equation for the velocities 4nally reads

�({v′}; t + 1) =
∫

d3N v �({v′} ← {v})�({v}; t) ; (8)
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with �= (1− p)�1 + p�2 and

�1({v′} ← {v}) = 1
3N

N∑
a=1

3∑
k=1


�(v′ak + vak)

∏
(b;l)�=(a;k)

�(v′bl − vbl)

 ;

�2({v′} ← {v}) = 2
N (N − 1)

∑
a¡b

[
1

2�|va − vb|�
3(v′a + v′b − va − vb)

× �(v′2a + v′2b − v2a − v2b)
∏
c �=a;b

�3(v′c − vc)

 : (9)

The following properties can be proved [2]:

• A stationary solution to Eq. (8) is w({v}) = F(v21 + · · · + v2N ), for any properly
normalized function F .
• Upon denoting the one- and two-body velocity distributions at time t as f1(v1; t)

and f2(v1; v2; t), the following exact equation of evolution holds:

f1(v1; t + 1) = (1− p)
{(

1− 1
N

)
f1(v1; t) +

1
3N

[f1(−v1x; v1y; v1z; t)

+ f1(v1x;−v1y; v1z; t) + f1(v1x; v1y;−v1z; t)]
}

+p
{(

1− 2
N

)
f1(v1; t) +

2
N
× 1

2�

∫
d3v2

×
∫

d3 
1
| |�

[
 2 −

(
v1 − v2

2

)2]

× f2
(
v1 + v2

2
+  ;

v1 + v2
2

−  ; t
)}

: (10)

For any function !, the ansatz f(eq)
2 (v1; v2) = !(v21 + v22) gives a stationary solution

to Eq. (10). However, in case of an isolated system with total energy U , the only
admissible solution to Eq. (8) is the microcanonical density w({v})˙ �(v21 + · · ·+
v2N − U ), 1 and the ! function becomes

f(eq)
2 (v1; v2) =

#(3N=2)
#(3(N − 2)=2)

(�U )−3
(
1− v21 + v22

U

)3(N−2)=2−1

; (11)

leading in turn to

f(eq)
1 (v1) =

#(3N=2)
#(3(N − 1)=2)

(�U )−3=2
(
1− v21

U

)3(N−1)=2−1

: (12)

The latter is the 4nite-N Maxwell–Boltzmann (MB) distribution [4]. In the N;
U → ∞ limit (with U=N = O(1)), one recovers from Eq. (12) the more familiar

1 U is meant to express the value of the total kinetic energy in units of m=2, m being the particle mass.
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Fig. 1. Numerical simulation of Eq. (8). Hystogram of velocity values for particle 1 (�, , and © corre-
spond to the x; y, and z component, respectively). Two distinct values of N are compared, i.e., 3 (left) and
1000 (right), while U=N =0:02 in both cases. After rejecting a total of 104 collisions per particle (CPP), as
many as Neq CPP are produced (Neq = 107 for N = 3 and Neq = 106 for N = 1000). The p value was
0.5, held 4xed during the simulation. Data (in form of frequencies of occurrence) are grouped in bins of
width �v = 2

√
U=N=31 (after equilibration, the hystogram is updated every 10 CPP). The full curve is the

theoretical, 4nite-N MB distribution per velocity component, which, for N =3, is appreciably di)erent from
the in4nite-N limit (i.e., the Gaussian

√
%=� exp(−%v2), with %=3N=(2U )—broken curve in the left panel,

full curve in the right panel).

Gaussian form, f(eq)
1 (v) = (%=�)3=2 exp(−%v2), with % = 3N=(2U ) (corresponding to

an average v2a of U=N for all a).
• I have carried out a computer simulation of the evolution encoded in Eq. (8) in order
to check whether the stationary distribution (12) is also an asymptotic solution, as
expected (at least when p¿ 0) from the ergodicity of kernel (9). First, I set N =3
and U = 0:06, with p = 0:5. Starting at any particular microstate with energy U , I
collect in a hystogram the values, at regular time intervals, of the three components
of particle-1 velocity (see Fig. 1 left). Indeed, this hystogram has, in the long run, the
4nite-N MB form. This is indirect evidence that the simulation trajectory samples
uniformly, at least e)ectively if not literally, the 3N -dimensional hypersurface of
energy U .
Afterwards, I take N = 1000 and U = 20, and follow the evolution of the same
hystogram as above, now starting from velocity values extracted at random from e.g.
a uniform one-particle distribution of variance U=(3N ). The long-run distribution of
velocity no. 1 compares well with a Gaussian (Fig. 1 right), that is with the large-N
form of the MB distribution. In fact, also the instantaneous velocities of all particles
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Fig. 2. Numerical simulation of Eq. (8). Top: particle velocities at the end of the simulation run for N=1000
and U = 20 (same symbols and notation as in Fig. 1). The distribution of all-particle velocities at a given
time strongly resembles the same Gaussian as in Fig. 1 (full curve). Bottom: di)erence between the above
hystogram and this Gaussian law.

are asymptotically distributed, for large N , according to the same Gaussian (see
Fig. 2). This indicates that: (1) the vast majority of points in the energy hypersurface
is made of “typical” states, i.e., microstates that look more or less similar as far as
low-order distributions like f1 are concerned; and (2) the microstate at which the
evolution was started is, indeed, untypical [5].
• For a given number n of particles in box 1, the equilibrium probability density Wn(u)
of their total energy u can be calculated exactly for w({v})˙ �(v21 + · · ·+ v2N −U ):

Wn(u) =
#(3N=2)

#(3n=2)#(3(N − n)=2) U
−(3N=2−1)u3n=2−1(U − u)3(N−n)=2−1 ; (13)

that is, variable u=U is beta-distributed with an average of n=N . Of all n-velocity
microstates, the fraction of those states whose energy lies between u and u+  u is
Wn(u) u ( u�u). In particular, the Boltzmann entropy associated with Eq. (13) is,
for n; N − n= O(N )�1:

lnWn(u) ∼ −3n
2

ln
n
u
− 3(N − n)

2
ln
N − n
U − u ; (14)

which, when including also the con4gurational term (3) or (6), gives back the ex-
pression of the entropy of the (monoatomic) ideal gas.
In conclusion, I have introduced a stochastic process of the Ehrenfest type which
allows one to base the expression of the thermodynamic entropy of an ideal gas
on a well-de4nite microscopic model, without relying on the hypothesis of equal
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a priori probability of all microstates. Rather, the validity of the latter, at least in
an e)ective sense, follows as an outcome from the stochastic dynamics itself. In
thermodynamics, the second law requires the maximization of the total entropy S
under the given constraints (here, the total number of particles N and the total energy
U of two ideal gases in grand-canonical contact) in order to 4nd the equilibrium
state of an overall isolated system. In the present model, this very same prescription
emerges naturally, when de4ning entropy Oa la Boltzmann, as the condition upon
which the partition of N and U between the gases be, in the long-time regime, the
most probable.
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