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We analyse the geometry of the solid phase shaped by densely packed hard calottes on a 
sphere. We show that in this phase topological defects are not distributed at random over the 
surface but segregate into clusters that give rise to an upper level of organization in the form 
of a superstructure with icosahedral symmetry. 

1. Introduction 

In a previous paper  [1], henceforth referred to as I, we presented a Monte  
Carlo study of a two-dimensional system of hard particles embedded  on the 
surface of a sphere. The system consisted of N equal calottes with curved 
diameter  tr. As compared  with the phenomenology  of hard disks on a plane,  
the statistical mechanics of this model  is largely influenced by the frustrat ion 
induced on the long-ranged propagat ion of hexagonal  order  by the peculiar 
topology of the host surface. 

In paper  I we per formed a comparat ive  analysis of the translational and 
orientational correlation functions for different sizes (N -- 400, 1000, 2000) over  
a range of densities. 

Angular  order  sets in well before translational order.  The  initial format ion  of 
hexagonal patterns on a local scale is signaled by the appearance  in the sixfold 
orientational correlation function (OCF)  h6(r ) of a twin-peak structure corre- 
sponding to the second and third coordination shells, respectively, for p o 2 ~  
0.65. This "fine structure" shows up in the radial distribution function ( R D F )  
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g(r) at much higher densities only, i.e., for po-: ~> 0.91. We note that molecular- 
dynamics simulations of repulsive soft disks did also account for the onset of 
transient local hexagonal order at about ~0 of the freezing density, i.e., for 
po-2 = 0.62 [2]. 

This type of order is reminiscent of a hexatic phase [3]. However, the OCF 
does not decay at large distances as one would expect for a true hexatic phase. 
Indeed, in a curved geometry this phase is highly disfavoured, if not totally 
ruled out, because of the disrupting effect caused by the curvature-induced 
excess disclinations on long-ranged angular correlations [4]. At  high density, 
such an effect would be even stronger on the hexagonal ordering thus 
excluding, moreover, the possibility of a discontinuous phase transition. This 
notwithstanding, the equation of state of the model indicates that calottes 
undergo a continuous transition f o r  p o  -2 = 0.91. A tentative characterization of 
the high-density "solid" phase attained by the system was also given. After  
noting that hexagonally ordered domains cannot extend along the radial 
direction further than a critical distance RD(N ), we surmised that the system, 
in order to achieve maximal efficiency in the packing, promotes an upper level 
of spatial organization which becomes manifest through the formation of an 
ordered "superstructure" of domains. 

In this paper we plan to extend the analysis carried out in paper I in order to 
get a deeper insight into the role played by topological defects (such as 
disclinations and dislocations) in forging the high-density phase of the system. 
Our theoretical reference will be the KTHNY theory of two-dimensional 
melting [3]. As a byproduct of this analysis, we shall also clarify the nature of 
the superstructure attained by the system through a careful scrutiny of the 
presence of Platonic-tiling modulations in the large-distance behaviour of the 
distribution functions. 

2. Simulation 

The details of the numerical experiment were already given in paper I. Here,  
we just note that one has to be extremely careful on the statistical quality of 
the Monte Carlo (MC) sampling in the densely packed regime. In particular, in 
order to achieve reasonable confidence on the reliability of the simulation data 
in the solid region, we first produced a very long run of about 64000 MC moves 
per particle at a reduced density po -2=0.925. We then reshuffled the final 
configuration through a nonequilibrium "shake"  procedure so as to make the 
system lose any residual "memory"  of the initial state. This operation, 
followed by a standard MC run, was repeated a number of times. Finally, an 
equilibrium run of 56000 MC moves per particle was performed. Thermo- 
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dynamic averages were calculated over  1000 configurations, each of them being 
extracted every 40N moves out of  the terminal segment  of the MC trajectory.  

3. Statistics of point defects 

In order  to describe the local microscopic structure and coordinat ion 
geometry  that characterize the system, it is useful to identify the nearest  
neighbours of each particle in a given configuration. As discussed in paper  I, 
this task can be accomplished by resorting to the Voronoi tessellation [5]. Fig. 1 
shows the distribution of the edge lengths of n-sided Voronoi polygons (with n 
ranging f rom 4 to 8) for two values of the reduced density. It  clearly emerges  
that heptagons and octagons are highly distorted as a substantial fraction of 
these polygons has sides with lengths widely dispersed between zero and the 
maximum.  Fur thermore ,  it is interesting to note that,  for increasing densities, 
the peak  of the edge distribution function for heptagons moves  f rom the 
position of the maximum attained by hexagons towards that of pentagons.  This 
behaviour  does indeed suggest the existence of some sort of geometrical  
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Fig. 1. Statistics of the side lengths of the Voronoi polygons at two densities, (a) p o  "2 = 0.75 and (b) 
per 2= 0.91, for N= 2000. Crosses, solid circles, open circles, squares and triangles refer to 
4-, 5-, 6-, 7-, and 8-sided polygons, respectively. The normalization is such that the plotted quantity 
yields the average frequency of occurrence of a given length (to within ±0.0250-) relative to the 
total number of instances in a class of polygons. 
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association between heptagons and pentagons at high density. Corresponding- 
ly, the distribution function for hexagons becomes fairly symmetrical. 

Once the particles have been classified according to their coordination 
number, "point defects" can be unambiguously identified: more specifically, 
we shall refer to a particle surrounded by n nearest-neighbours (with n # 6) as 
an n-fold disclination. We recall that the binding of disclinations to form 5-7 
"dipoles" (dislocations) is the mechanism that is called for in order to explain 
the formation of the hexatic phase within the KTHNY theory of melting in 2D 
[3]. However, more complex defective structures may indeed play a role in the 
process of ordering such as "rings" (bound pairs of oppositely oriented 
dislocations) and "grain boundaries",  i.e., chains of alternating 5's and 7's. 

By joining all the pairs of nearest-neighbour atoms one obtains a network 
called the "Delaunay net" [5]. In this network, a set of three calottes that are 
contiguous to one another forms a spherical triangle. Each "edge"  (in fact, a 
geodesic arc) of the triangle will be referred to as a "bond"  on merely 
geometrical grounds. Such close-packed triangles cover the whole surface 
giving rise to the "Delaunay tessellation". The Voronoi and Delaunay tessella- 
tions are dual to each other. 

The numbers of disclinations with different "valency" occurring on the 
sphere for a given configuration can be related to each other through the Euler 
formula as applies to any simply-connected surface [6]: 

V - E + F = 2 ,  (i) 

where V is the number of vertices in the Delaunay net (equal to the total 
number of calottes N), E is the number of edges, and F is the number of 
triangular tiles. Since each edge is shared by two triangles, it follows 2E = 3F. 
We can also make use of an extra closure relation after noting that, since n 
triangles meet at an n-fold coordinated vertex and each triangle belongs to 
three vertices, the total number of tiles is 

i ~ nV~, (2) F=3 ~ 

where V n is the number of n-fold coordinated vertices. One thus obtains for the 
average coordination number, 

1 12 
2=-- -~  n nV~=6--~-, (3) 

a result that had been already derived by Nelson using different arguments [4]. 
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Fig.  2. A v e r a g e  m o l a r  f r a c t i o n  o f  p a r t i c l e s  w i th  n n e i g h b o u r s  as a f u n c t i o n  o f  t h e  d e n s i t y ,  f o r  
N = 2000;  so l id  c i rc les ,  n = 5; o p e n  c i rc les ,  n = 6 ( r igh t  axis) ;  s q u a r e s ,  n = 7;  t r i a n g l e s ,  n = 8. 

If we let the radius of the sphere increase indefinitely (and, correspondingly, 
N---> ~), we recover the limit of an infinite plane. 

In fig. 2 we show the average molar fractions of n-fold coordinated calottes, 

(v . )  
x , ,=  N ' (4) 

as a function of the reduced density pO "2 for  N = 2000. We first note  that the 
number  of particles with six neighbours rises almost linearly up to po -2 = 0.83: 
beyond this threshold x 6 starts to increase much more rapidly, thus indicating 
the outburst of hexagonal order  in the system. Correspondingly, beyond 

2 po- -----0.86 we observe a drastic drop in the number  of fivefold and sevenfold 
disclinations. On the sphere, at intermediate densities, most of these defects 
are grouped together,  the number  of isolated 5's and 7's never exceeding 2% of 
the total number  of point defects. The excess of fivefold over sevenfold 
disclinations also decreases for increasing densities, eventually tending to the 
value of 12 as demanded by Euler 's  formula. 

Fourfold and eightfold disclinations are a minor fraction and, at high density, 
appear only in a few peculiar patterns. In particular, we observe that a fourfold 
disclination usually links to a sevenfold coordinated particle. The fourfold head 
of the resulting dipole takes the place of a fivefold disclination inside a chain of 
alternating 5's and 7's. Instead, eightfold disclinations appear to play the role 
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of "counter-defects"  with respect to the 5's in that they bind a triplet of 5's in a 
sort of starlike arrangement,  which, moreover ,  induces a depression of the 
local density. On account of the above evidence, the "effect ive" numbers 95 
and 97 of fivefold and sevenfold disclinations that are not bound to the 8's and 
4's, respectively, may be estimated as 

95 = v5 - 3vs + v4 ,  (5) 

97 = V 7 - V 4 . (6) 

Using eq. (3), we find 

95 - 97 = 1 2 - V  8 . (7) 

For increasingly dense packings disclinations other than 5's and 7's pro- 
gressively disappear since a greater and greater efficiency is requested in the 
way particles are distributed over the surface. In this regime, which settles 
down for p~r 2 ~> 0.91, eq. (7) yields asymptotically V 5 - V 7 -- 12, in contrast to 
what would occur in a 2D fiat space where eq. (3) leads to equal numbers of 
fivefold and sevenfold disclinations. The excess of 5's over 7's on the sphere is 
clearly induced by the curvature of the surface and is superimposed over a sea 
of thermally activated defects. Upon decreasing the density, a larger and larger 
number  of excess fivefold disclinations are "neutral ized" by the 8's whose 
number  gradually increases. At the same time, fourfold and eightfold disclina- 
tions give rise to more complex aggregates than those discussed above. 
Correspondingly, the estimates of 95 and V 7 given in eqs. (5) and (6) become 
less and less realistic. We verified that for 2000 particles eq. (7) keeps valid for 
densities down to ptr 2 --~ 0.83, where the average number  of eightfold disclina- 
tions becomes equal to 12. As a result, the excess of residual fivefold 
disclinations vanishes and the statistics of defects becomes largely similar to 
that on a plane. In fact, it is roughly at such a density that the EOS of calottes 
merges into that of hard disks [1]. For  lower densities, counting how many 5's 
and 7's are effectively bound by eightfold and fourfold disclinations becomes 
far from trivial. However ,  we expect that the condition 95 = 97 keeps true on 
the average. 

Aside from isolated disclinations and dislocations, we systematically moni- 
tored linear defective structures such as grain boundaries and dislocation pairs 
with or without an attached tail of alternating 5's and 7's. The  rest of point 
defects appear in the form of clusters with a far more complex shape. The 
fraction of defects belonging to these clusters is bigger than 90% for po -2 = 0.75 
and drops below 50% for po -2= 0.91. We observe that, within the restricted 
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ensemble of linear defects only (thereby including also bound dislocation 
pairs), the percentage of defects forming dipoles and grain boundaries gradual- 
ly increases with the density up to a value of about 80% for per 2 =0.83, 
hereafter keeping roughly constant. This density marks indeed the beginning of 
a deeper structural transformation undergone by the system as can be better 
appreciated by looking at some other indicators that are rather sensitive to the 
establishment of extended translational order. In particular, we refer to the 
pairing of dislocations, a process that in the KTHNY theory is invoked as the 
mechanism leading to the formation of the solid phase. 

From a topological point of view, a spatially coherent hexagonal tessellation 
of the surface is not disrupted by the presence of a bound dislocation pair: in 
fact, this composite defect does not interfere heavily with the surrounding 
structure. This should be contrasted with the effect induced by an isolated 5-7 
dipole (a dislocation) which, in a triangular lattice, is associated with the 
appearance of two additional half-rows of atoms meeting at the fivefold vertex 
and forming an angle of 60 ° . Actually, this lattice deformation may be 
compensated by an opposite dipole lying farther away. Isolated dislocations 
lead to a substantial breaking up of the translational order in the system. On 
the other hand, their effect is less dramatic on the propagation of orientational 
order. Fig. 3 shows the number of disclinations belonging to rings relative to 
the population of point defects forming linear defects. We note that the fraction 
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Fig. 3. Average  number  of  disclinations forming "r ings"  (see text) plotted as a funct ion of the  
density for N = 2000. This number  is referred to the  total n u m b e r  of  linear defects at a given 
density,  rings included. The  solid and open circles refer to rings with or without a tail of  al ternat ing 
5's and 7's. The  crosses give the sum of the two contributions.  
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of rings sharply increases for p0.2 = 0.83 at the expense of the residual isolated 
disclinations. This growth is mainly ascribable to rings without a tail and 
saturates for po-2= 0.91, i.e., in correspondence with the claimed transition of 
the system to a fully ordered state. Had we also included the fraction of distant 
oppositely oriented dipoles, this effect would have been even stronger. 

It clearly emerges that the overall nature of the topological defects found in 
this model is considerably more complex than in the KTHNY picture as, 
moreover, already observed by a number of authors for other 2D systems (see, 
for example, [7]). Nevertheless, on the basis of the above evidence on the 
behaviour of paired dislocations, we surmise that the system undergoes a 
diffuse freezing transition over a range of densities (0.83 ~po  "2 ~<0.91), a 
transition which culminates with the formation of an orientationally and 
translationally ordered structure. 

4. Defect radial distribution functions 

As emphasized in the introduction, the spatial organization of point defects 
is crucial for understanding the geometry of the phase attained by the model at 
high densities. In order to solve this problem, we resort to the calculation of 
pair distribution functions between particles with given coordination: 

(d~pairs /  \ \  ~ (r) ~ 
p~pag~(r)  = (1 + 8,~) M6e(r) , (8) 

pairs where N ~  (r) is the number of distinct pairs of particles with coordination 
numbers a and fl lying at a distance between r and r + Ar (with Ar ~ o-), 
6a(r) = 2~rR s in (r /R)  Ar is the area of a spherical ring with curved radius r and 
thickness Ar, M = 4"rrR 2, p~ = (N~)/M is the average partial density of particles 
of species a, and 8~ is Kronecker's symbol. The average in eq. (8) is carried 
out over the configurations sampled for a fixed total number density p. 

Eq. (8) leads to the "spectral decomposition" of the full pair distribution 
function g(r) in the form 

g(r) : ~ x~x~g~a(r),  (9) 
a,13 

where x~ = p~/p. 
Fig. 4 shows the comparison between the RDF of 2000 calottes for /90 .2= 

0.925 and the RDF of sixfold coordinated particles only. As expected, the 
presence of defects in the hexagonal texture of the surface leads to a systematic 
softening of the spatial profile of the full g(r) as compared with that of g66(r). 
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Fig. 4. Radial distribution of 2000 calottes (thicker line) compared with g66(r) for tgr 2 = 0.925. 

The distribution functions associated with fivefold and sevenfold disclinations 
are shown in fig. 5. We start noting the presence of an "interstit ial" peak in 
both g55(r) and g77(r )  in a range of distances corresponding to the first dip in 
g(r). We verified that these structures are associated with interparticle separa- 
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Fig. 5. Radial distribution functions of fivefold and sevenfold disclinations for po "2= 0.925 and 
N = 2000: open circles, g55(r); crosses, g77(r); triangles, gs7(r). The function g66(r) is also shown as 
a dotted line for comparison. 
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Fig. 6. Cross radial distribution functions g6o(r) for ptr 2 = 0.925 and N = 2000: circles, g65(r); dots, 
g66(r); triangles, g67(r); crosses, g68(r). 

tions in a ring. The next maxima at r / tr  -~ 2.1 arise from next-nearest-neighbour 
separations within a chain 5 - 7 - 5 - . . .  and fall on top of the third-neighbour 
peak in g(r) .  However ,  a more impressive match with the prevailing hexagonal 
distribution is found in g57(r). The rather close correspondence of peaks and 
dips in this function with those in g66(r) shows that the linear structures formed 
at high density by alternating 5's and 7's fit rather well the triangular 
periodicity over the surface. We also note that the contact value of g57(r) 
rapidly increases with the density and eventually blows up thus indicating the 
ever increasing stability of the dipolar 5 -7  bond on approaching the solid 
phase. Fig. 6 finally shows the cross correlations between sixfold particles and 
disclinations. Whereas the 6-5  profile merely anticipates the spatial modulation 
of g66(r), the appearance of interstitial structures becomes more and more 
evident in g67(r) and g68(r). 

5. The structure of the solid phase 

In paper I we had already observed that the long-range decay of the R D F  is 
distinctly modulated at high density by a superimposed periodicity with a 
wavelength much larger than the hard-core diameter  o-. This behaviour was 
related with the formation of a superstructure with a high degree of symmetry 
embodying extended hexagonal patches. As a result, we argued that defects 
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would likely segregate inside the interstices between such ordered domains 
thus giving rise to a dual frame. It is precisely the pinning down of this 
superstructure that completes the ordering process of the system with a 
continuous transition at ptr 2= 0.91. 

In order to characterize the large-scale geometry of the solid phase we 
analyse the long-range behavior of the cumulative RDF of point defects grief(r), 
which bears the most distinct signature of the hidden frame: 

~ct,fl #'6 X~X~g~(r )  
gdef ( r )  --= ~ct,/~#6 Xc~X~ ( 1 0 )  

This function, evaluated for N = 2000, is presented in fig. 7 for three densities 
across the transition point. The long-wavelength modulation observed in goef(r) 
acquires a definitive shape beyond po'2=0.91. This modulation, which is 
absent for po -2 <0.895, is a clear imprint of the nonuniform distribution of 
defects on the sphere. In order to identify the geometry of the frame 
underpinning clusters of defects at high density, we shall consider some model 
distributions of "continuous matter" over the surface so as to mimic the space 
partitioning between sixfold coordinated particles and defects. We shall 
investigate some highly symmetrical arrangements only, corresponding to the 
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Fig. 7. Cumulative radial distribution function of defects plotted as a function of  the angular 
distance 0 = r/R at three densities (p 2 = 0.895, 0.91, 0.925) for N = 2000. The density increases 
from bot tom to top, each successive curve being displaced upwards by 0.2 for clarity. 
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Platonic polyhedra inscribed within the sphere. Hexagonally ordered  domains 
are represented by equal, extended calottes (not to be confused with the 
"const i tuent"  particles of the system) centred at the vertices of a regular 
polyhedron ~.  The space left over between these circular domains, which may 
also overlap, is made up by small islands with a curved polygonal shape and 
has the symmetry of the polyhedron ~ dual to ~ #1. This space is associated 
with a uniform distribution of defects whose RD F  is computed as 

(a i (P;  r ) ) ec i  
gI(r) - 6#(r) ~i (11) 

In eq. (11) P is a point in the interstitial region I, 5e(r) is the area of a spherical 
ring centred at P with curved radius r and thickness Ar,-qi is the ratio of the 
total area covered by the interstices to the area of the spherical surface, and 
the quantity a~(P; r) is the area of the ring portion that is contained within the 
interstitial region. The average is carried out by sampling a statistically 
significant set of points over this region. Within such a simplified scheme, one 
might also consider the interdomain distribution function gD(r). Its definition is 
entirely analogous to that of gi(r) in eq. (11), the only difference being that the 
point P lies inside a circular domain. However ,  it is not difficult to verify that 
the two functions are trivially related: 

1 - 2r/i ( rh ~ 2 
gD(r) - (1 -"r~i) 2 "1- \ 1 ~ - i ' ~ I ]  gI(r) " (12) 

Therefore ,  the shape of the two functions is absolutely the same. 
Fig. 8 shows the interstice RDF's  computed for defect distributions, each 

endowed with a symmetry corresponding to one of the five Platonic polyhedra.  
In this calculation domains were assumed to be tangent to each other.  A 
comparison of these model RDF's  with the defect RDF's  that are repor ted in 
fig. 7 does provide a clue for understanding the nature of the superstructure 
attained by the system at high densities. In fact, we can envisage the initial 
sprouting of a te trahedral  clustering of defects which, across the transition, 
appears to evolve into an i cosahedra l  structure (see footnote 1). The presence, 
on the average, of twelve clusters of defects is consistent with the asymptotic 
expectation of twelve unpaired disclinations on the sphere. Fur thermore ,  the 
segregation at the vertices of an icosahedron ensures the maximum relative 
distance between neighbouring clusters, a condition that allows an optimal 

01 We recall that the tetrahedron is dual to itself, the cube and the octahedron are dual to each 
other, while the dodecahedron is dual to the icosahedron (and vice versa). 
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Fig. 8. Interstice radial distribution function g~(r) plotted as a function of O = r /R  for Platonic 
distributions of "matter" on the sphere. Matter is uniformly distributed inside equal circular 
domains which are centred at the vertices of a regular polyhedron inscribed within the sphere. 
Domains are tangent to each other. Each successive curve is displaced upwards by 2 for clarity. 
From bottom to top: tetrahedron, octahedron, cube, icosahedron, and dodecahedron. 

spreading of connected hexagonal patches through the surface [8]. We have 
also verified that the correspondence between the model  calculation for an 
icosahedral f rame of defects and the true gaef (r )  at high density is independent  
on the details of the geometrical  construction. In fact, if we increase the size of  
the circular domains (which, in this case, are centred at the vertices of a 
dodecahedron) ,  the interstitial region breaks into disjoint islands with a 
decreasing area. Such a geometry  is somewhat  more  representat ive of the real 
distribution of defects which appear  to be rather  confined and immersed  into a 
pervading sea of sixfold coordinated particles (see fig. 10 of paper  I).  Fig. 9 
shows how the profile of g~(r)  changes upon shrinking the spatial extension of 
the interstices. We note that the ampli tude only of the oscillations is affected by 
the different geometrical  setup while the modulat ion is absolutely preserved.  

Obviously,  an alternative choice to the model  distribution discussed above 
might as well be that of  associating the surface occupied by defects with the 
circular domains centred at the vertices of the inscribed polyhedron,  ra ther  
than with the interstices. In this case, one should exploit the potential  
correspondence of the d o m a i n  RDF,  g D ( r ) ,  with gdee(r) .  In fig. 10 we present  
the result of such a calculation in the case of an icosahedral frame.  A 
comparison with fig. 9 shows that,  if the domains are tangent to each other ,  
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Fig. 9. Interstice radial distribution function gi(r) for matter distributed inside equal circular 
domains centred at the vertices of a dodecahedron inscribed within the sphere. The function is 
plotted as a function of 0 = r / R  for different values of the interstice fractional coverage r h .  
Continuous line, ~ = 0 . 3 4 2  ( i . e . ,  domains tangent to each other); dashed line, ~1 = 0 . 3 0 0 ;  dash- 
dotted line, "0~ = 0 . 2 4 5 ;  dotted line, "% = 0 . 1 7 4 .  I n  the last three cases circular domains do overlap. 

their RDF reproduces (apart from a trivial rescaling) the complementary 
interstice RDF associated with the icosahedron as indeed follows from eq. (12). 
However, this situation is far from realistic since the fraction of defects at high 
density is very low. Therefore, we should consistently reduce the size of the 
domains. As a result, the profile of gD(r) promptly changes merging into that 
of defects confined in the interstices of a dodecahedron. In fact, a 20% 
contraction of the domain size is already sufficient to wash out the two specular 
maxima lying at "rr/4 and 3-rr/4, respectively. 

This last comparison, together with the invariance property exploited in fig. 
9, shows that the icosahedral signature is largely independent on the fine 
geometrical details of the model called for to explain the long-wavelength 
modulation of the defect distribution function. 

6. Concluding remarks 

A Monte Carlo study of the statistical mechanics of a model system of hard 
particles under spherical boundary conditions [1] has been extended by 
carrying out a rather detailed analysis of defects. At high densities this system 
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Fig. 10. Radial distribution function, plotted as a function of 0 = r/R, for a model distribution of 
defects uniformly dispersed inside equal circular domains centred at the vertices of an icosahedron 
inscribed within the sphere. The four curves refer to decreasing values of the domain fractional 
coverage r/o. Continuous line, ~/D = 0.896 (i.e., domains tangent to each other); dash-dotted line, 
7/D = 0.735; dotted line, "OD = 0.600; dashed line, "OD = 0.300 (right axis). 

u n d e r g o e s  a diffuse f reez ing  t r ans i t i on  in t he  r ange  0 . 8 3 ~ < p c r 2 ~ 0 . 9 1  which  
cu lmina tes  wi th  the  f o r m a t i o n  o f  a l a rge - sca le  supe r s t ruc tu r e .  In  fact ,  fo r  
dens i t ies  l a rge r  than  0.91, mos t  of  the  c o o r d i n a t i o n  defec t s  a p p e a r  to  s eg rega t e  
in to  c lus ters  which pin at  the  ver t ices  o f  an  i c o s a h e d r o n  insc r ibed  wi th in  the  
sphere .  

A s  far  as we know,  it was N e l s o n  who  first sugges t ed  tha t  a t  ve ry  low 
t e m p e r a t u r e s  (or  ve ry  high dens i t ies )  excess  d i sc l ina t ions  on  a sur face  wi th  
cons t an t  cu rva tu r e  wou ld  fo rm a "c rys ta l l ine  s u p e r l a t t i c e "  [4] #2. This  i dea ,  
which  in the  r e f e r r e d  p a p e r s  r e s t ed  on  p laus ib i l i ty  a r g u m e n t s  on ly ,  has  b e e n  
v a l i d a t e d  in this  w o r k  t h r o u g h  a numer i ca l  e x p e r i m e n t .  T h e  c r u d e n e s s  o f  t he  
ha rd -co re  m o d e l  shows how the  e m e r g e n c e  o f  a r a t h e r  c o m p l e x  p a t t e r n  at  h igh 
dens i t ies  is the  m e r e  o u t c o m e  o f  the  p r inc ip le  o f  m a x i m u m  e n t r o p y  c o n j u g a t e d  
with  the  unusua l  t o p o l o g y  of  the  sphe re .  In  this  case ,  such a p r inc ip le  is 
t a n t a m o u n t  to  a r eques t  o f  m a x i m a l  eff iciency in the  way  the  f ree  v o l u m e  is 
d i s t r i bu t ed  ove r  the  sys tem.  

#2 This idea is also shared by Straley [9]; a simplified geometrical argument leading to the same 
conclusion may be found in ref. [8]. 
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Fig. 11. Cumulat ive  radial distribution function of defects plotted as a function of the angular  
distance 0 = r/R for 1000 calottes at 0o .2 = 0.95 (lower curve) and for 200(I calottes at Oo .2 = 0.925 
(upper curve). The second curve has been shifted upwards by 0.4 for clarity. 

The solution exploited by the model for N = 2000 is the same observed in a 
system of 1000 calottes, as can be appreciated from fig. 11. However ,  one may 
actually wonder  if this scenario changes on increasing the number  of particles, 
i.e.,  on approaching the fiat geometry limit. In fact, we recall that the size of 
the hexagonal domains enclosed within the icosahedral frame grows at the 
most as N 1/3, then much more slowly than the radius of the sphere [1]. 
Therefore ,  it is quite reasonable to expect the appearance of linear defects 
(dislocations or grain boundaries) inside each ordered domain whose role is 
that of soldering differently oriented patches. However ,  notwithstanding the 
internal "cracking" of the domains (which will reasonably lead to a finer 
modulation of the superstructure), we still believe that the icosahedral 
symmetry will persist in the large-scale aggregation of such composite domains. 
The icosahedral frame is somehow bound to bear the excess of 5 disclinations 
induced by the finite curvature of the surface (see section 3). In addition to 
this, one should expect a growth with N of dislocation pairs. In the long run, 
these defects, which have no disrupting effect on the ordered texture,  will 
prevail over others, as also predicted by the K T H N Y  theory for the solid phase 
in Euclidean geometry. 

in the light of the considerations developed above and in ref. [1], we surmise 
that the bounds of the "critical" density range identified in the system of 2000 
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calottes will eventually evolve into the two-phase boundary observed in a 
system of hard disks with periodic boundary conditions. At  any rate, the 
discontinuous character credited by numerical simulation experiments to the 
freezing transition on a plane may be hardly harmonized with the present 
scheme. Indeed, a more conclusive statement on the nature of the transition 
undergone by the system in the thermodynamic limit cannot but come from a 
more extensive finite-size-scaling analysis of the model carried out for increas- 
ing values of the number of particles. 
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