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We present a Monte Carlo study of a two-dimensional system of hard particles embedded 
on the surface of a sphere. Thermodynamic and structural evidence of an ordering phase 
transition is found at high densities in spite of the frustration induced on the hexagonal 
covering by the peculiar topology of the host surface. The nature of this transition is analyzed 
and contrasted with the fluid-solid transition occurring in a flat geometry. 

1. Introduct ion  

The classical Landau  argument  about  the first-order character of the melting 
transition is suppor ted  in three dimensions by the evidence that solids show 
lattice order  (of low symmetry)  while liquids visit mostly disordered states (the 
liquid phase is one of high symmetry) .  In two dimensions (2D) only quasi-long- 
range translational order  may survive in the "lat t ice",  as first shown by Peierls 
[1] and Landau [2] within the harmonic approximation,  and by Mermin under  
more  general hypotheses on the shape of the interaction potential  [3]. If  u ( R )  
represents  the deviation from equilibrium of the a tom oscillating about  site R, 
then 

( l u ( R )  - u(R')] 2 > ~ l n l R -  R ' I ,  as ] R - R ' I  --~o~ . (1.1) 

Obviously,  this fact is of little importance for finite systems [4]; however,  it 
may  be crucial if we are interested in the destiny of ideally infinite systems. 
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It is also worth noting that, for the very reason that in a continuous infinite 
system whose Hamiltonian is invariant under rotations and translations the 
density distribution functions also are Euclidean invariant (whatever the 
phase!), the static shear modulus does indeed vanish in the fluid as well as in 
the solid phase [5]. Therefore, only a localized solid may show rigidity, the 
property that distinguishes it from a fluid. In conclusion, since the order of the 
melting transition is sensitive to the extent to which the available region of 
phase space reduces on passing from the fluid to the solid phase, and an 
external field (like, for instance, the periodic boundary conditions in a simula- 
tion box) amplifies the symmetry breaking which should anyhow occur across 
the transition, we should expect a different behavior from finite and infinite 
systems, at least in two dimensions where the Landau argument loses its 
strength. We note here that the effect induced by boundary conditions on the 
shape of the transition in a finite system has been extensively discussed in 
relation to discrete lattice-gas models [6-8]. 

The above considerations suggest the possibility that certain 2D systems 
undergo a continuous freezing/melting transition. The widely accredited Kos- 
terlitz and Thouless theory of the melting in two dimensions [9], later also 
developed by Halperin, Nelson and Young (the so called KTHNY theory) [10], 
confirms this feeling: in fact, the presence in the solid of dilute lattice defects 
such as dislocations and disclinations, may lead to a continuous two-stage 
transition. The distinctive feature of the intermediate phase spanning between 
the solid and the fluid (the so-called hexatic phase) is the absence of transla- 
tional order and the presence of quasi-long-range orientational order which 
eventually spreads out to infinity in the solid phase. 

However,  apart from liquid crystals and some gases adsorbed on surfaces, 
the computer simulation of monatomic systems in 2D has not given conclusive 
evidence of a KTHNY-type behavior: in fact, it seems that in most cases a 
weak discontinuous transition takes place [11]. In particular, simulated hard 
disks show a two-phase coexistence region with an estimated jump in density of 
about 0.04 [12]. One may wonder if and to which extent the indications 
emerging from numerical experiments are influenced by the standard use of 
periodic boundary conditions (PBC) on a finite cell, given that such a setup, 
apart from stabilizing the solid, actually inhibits any loss of coherence at large 
distances as would be implied by eq. (1.1). 

In order to test the importance of these effects, we present in this paper a 
computer  simulation study of a system of hard particles on a sphere, a model 
which does not interfere with the natural tendency of the infinite system to 
isotropy. The spherical surface seems a good choice in that it has no bound- 
aries and, therefore, one does not need to invoke PBC. Furthermore, in the 
limit of infinite radius we recover the infinite plane. The major shortcoming of 
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such a choice is that extended hexagonal order is ruled out because of the finite 
curvature. On the other hand, this system may exhibit whatever order it 
prefers on a local scale. The comparison between samples of a different size 
may hopefully clarify the behavior of the model when the number of particles 
grows to infinity at fixed density, thus yielding independent hints on the 
properties of the infinite flat system at the transition point. 

The first computer simulation of hard-disk packings with spherical boundary 
conditions (SBC) was performed by Schreiner and Kratky [13]. However, this 
calculation was based on a non-equilibrium "successive compression" tech- 
nique with the stated purpose of producing metastable random-close-packing 
(RCP) arrangements of a number of particles ranging from 60 to 1600. Such 
glassy configurations cannot be easily generated within the ordinary flat 
geometry since the system undergoes a phase transition to the ordered 
hexagonal phase at a density well below the estimated RCP threshold. More 
recently, Tobochnik and Chapin carried out a standard Monte Carlo simulation 
of hard particles on both an ordinary sphere and on the surface of a 
four-dimensional hypersphere in order to obtain metastable amorphous states 
at higher densities than previously achieved [14]. The technique adopted by 
these authors was to increase the diameter of the particles, while keeping the 
radius of the sphere fixed, so as to produce a state with given density. Typical 
runs were reported to consist of about 20000 attempted moves per particle. 
However, on comparing their results on the RCP estimate for the 2D system 
with those reported in ref. [13], the above authors apparently refer to one 
single sampled size of 100 particles. At any rate, neither the size dependence of 
the equilibrium calculation is exploited nor any indication is found of the 
ordering transition which must eventually show up on approaching the flat 
geometry. 

The goal of the present study is to clarify the equilibrium thermodynamic 
behavior of this model, exploring at the same time the nature of the local order 
attained by calottes on a sphere at high densities and the way it propagates to 
greater and greater distances upon increasing the size of the system. 

2. Theory 

2.1. The model 

The system consists of N equal calottes with curved diameter or and area 
2-rrR2[1 -cos(o-/R)], R being the radius of the hosting spherical surface. The 
model Hamiltonian can be written as 
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2 ) N 
9~= ( p~' P~' 1 

i=, \ 2 m R  2 + + ~ v(ai, aj) (2.1) 2mR 2 sin2(Oi) 2 icj=l 

where a =- (0, ~b) stands for the set of spherical coordinates, Poi and p~i are the 
canonical momenta  of the ith particle, and v(ai, aj) is the pairwise interaction 
potential: 

~ + ~  for r(o~, ~ ' )  < ~r, 
v(a ,  a ' )  = ~ 0  for r (a ,  a ' )  > or. (2.2) 

The spherical distance r(a ,  a ' )  between two calottes with angular coordinates 
a and o~' is measured along the great circle passing through the particle 
centers. 

2.2. Radial distribution function and equation o f  state 

The radial distribution function (RDF)  g(r) is evaluated as: 

X(r) 
p g ( r )  - oW(r) ' (2.3) 

where p = N / 4 w R  2 is the number density, JV(r) is the average number of 
particles lying within a spherical ring (centered on a reference particle) with 
curved radius r, thickness Ar ~ r, and area 5e(r)= 2wR s in (r /R)Ar .  

The pressure P is obtained as: 

E R t )l p 2 "u~r2 --or sm ~ g(~r) , (2.4) 

where g( t r )~ l imr_~+ g(r),  and /3 is the inverse temperature in units of 
Boltzmann's  constant. Note that, as tr/R--~O, eq. (2.4) yields the equation of 
state (EOS)  of a system of hard disks. 

2.3. Voronoi tessellation 

In order  to describe the local structure in terms of bond-angle correlations 
and point defects we need to identify the nearest neighbors of each particle. 
The Voronoi construction is the most natural way to define a set of neighbors 
for  the points of a disordered array. The Voronoi cell associated with the 
particle at site P is defined as the set of points of the spherical surface which 
are closer to P than to any other particle. On a plane, the cell would be a 
polygon; on the sphere it is still a polygon which however follows the curvature 
of the surface, the number  of sides yielding the particle coordination number.  
In order  to set the boundaries of such a region for a given configuration of the 
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Fig. 1. Geometrical construction carried out on the sphere in order to identify the vertices of the 
Voronoi polygon associated with particle P (see text). 

system, we begin by selecting the twelve sites Qi which are closest to P. We 
then calculate the middle point M of each "segment" Q P  and the points S 
(their number is 12(12 - 1)/2 = 66) at which the "axes" of each distinct pair of 
segments cross each other (see fig. 1). Let the point Su4 ) correspond to the pair 
(Qi,  Q j). Obviously, the axes which we are referring to are great circles 
intersecting at two diametrically opposite points: S is chosen as the intersection 
point which is found closest to P. If a point S(~4) happens to be closer to a point 
Q (different from Qi and Q j) than to P (as points S(1.2 ) and S(2.3 ) in fig. 1), it 
will be removed from the set {S}. Therefore, this set (which initially contains 
66 elements) progressively contracts: the points which are left over at the end 
of this procedure are nothing but the vertices of the Voronoi polygon whose 
number is also the coordination number of the reference particle at P. If this 
number is different from 6, we say that the particle is a disclination. A pair of 
"bound"  (i.e., adjacent) fivefold and sevenfold coordinated disclinations repre- 
sents a dislocation. 

2.4.  Or ien ta t iona l  corre la t ion  f u n c t i o n s  

We define the orientational correlation functions (OCF) as 

hn(r  ) = ( c o s { n [ O ( r ' )  - 0(r")l}) . (2.5) 
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In eq. (2.5), r = R arccos(r' • r") is the spherical distance between the particles 
whose position on the sphere is defined by the unit vectors r' and r"; O(r') is 
the angle, measured on the plane tangent to the sphere at r', between the 
projections of the line joining the particle at r' with a nearest neighbor (chosen 
at random among those identified through the Voronoi construction), and of 
the oriented arc connecting r '  to r" along the geodesic. We evaluate the 
function hn(r ) for n = 5 ,  6, 7. In a flat hexagonal lattice, the difference 
O(r') - O(r") is always a multiple of -rr/3 so that, while the functions hs(r ) and 
h7(r ) vanish everywhere, h6(r ) is one at the lattice distances and zero other- 
wise. The deviations of these functions from such values show how hexagonal- 
type angular correlations build up on the sphere with increasing densities and 
how they decay with distance as a result of the disorder induced in the system 
by both the equilibrium atomic dynamics and the finite curvature of the 
embedding space. 

3. Simulation 

We carried out a Monte Carlo canonical sampling keeping /3, N, and p 
constant. At  the lowest density, the initial configuration was obtained by 
placing the particles along equidistant parallels. Then, in order to increase the 
value of p, the sphere radius R was reduced adiabatically starting from the last 
configuration produced in the run at the immediately lower density. The Monte 
Carlo configurations were generated by moving one particle at a time at 
random and rejecting states with overlapping calottes. The maximum am- 
plitude allowed for a move was chosen so as to make the equilibrium 
acceptance ratio about 0.5. The total number of moves per particle increased 
from 24000 to 64000 with increasing densities. The canonical averages were 
computed over 1000 configurations, each of them being extracted every 2N 
moves out of the final segment of the run. Space-dependent functions were 
calculated with a spatial resolution Ar = 0.05~. 

4. Results 

4.1. Thermodynamic  properties 

The Monte Carlo analysis was performed for three values of,the number of 
particles N, namely 400, 1000, and 2000. In order to evaluate the pressure 
through eq. (2.4), we need to compute the contact value of the RDF. To this 
end, we resorted to an exponential fit of g(r) in the close neighborhood of 
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r = o-, where the RDF was calculated by performing a more refined average 
over a segment of 8000 configurations per particle. The resulting values of the 
compressibility factor Z(p)=-/3P/p are given in table I. In fig. 2 we show the 
comparison between /3P(p) for N = 2000, a fit of the SBC data computed by 
Tobochnik and Chapin which is based on eq. (3.2) of ref. [14] and the EOS of 
the hard-disk ( H D )  fluid referring to a system of 5822 particles [15]. We first 
note that the calculated EOS of calottes on a sphere faithfully reproduces the 
flat-system branch all over the range covered by the data reported by Erpen- 
beck and Luban (0 ~< loo-2 ~ 0.83). It is apparent that for such densities the 
thermodynamic behavior of the particles with SBC does not differ appreciably 
from that observed on a plane. Hence,  it is natural to infer that the local order 

Table I 
Compressibility factor ~P/p as a function of density for N = 400, 
1000 and 2000. 

2 po- N 

400 1000 2000 

0.300 
0.400 
0.500 
0.600 
0.650 
0.700 
0.750 
0.800 
0.810 
0.820 
0.830 
0.840 
0.850 
0.860 
0.865 
0.870 
0.875 
0.880 
0.885 
0.890 
0.895 
0.900 
0.905 
0.910 
0.915 
0.920 
0.925 
0.930 
0.940 
0.950 

1.731 
2.146 
2.792 
3.693 
4.284 
5.141 
6.098 
7.473 

8.460 

9.253 

10.820 

11.004 

11.439 

12.191 

12.565 

11.321 
13.996 
14.941 

6.096 

12.719 
13.437 
14.204 

7.767 
8.121 

8.469 8.488 
8.853 8.832 
9.275 9.242 
9.646 9.643 
9.823 9.831 

10.291 9.932 
10.166 

10.606 10.279 
10.513 

10.758 10.666 
10.785 

11.263 11.065 
11.073 

11.563 11.232 
11.525 

12.240 11.687 
11.966 
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Fig. 2. Equation of state of hard calottes on a sphere. The open circles represent the reduced 
pressure for the system with 2000 particles. The continuous line is a spline interpolation of the 
present data. For comparison, we also report the data obtained by Tobochnik and Chapin as fitted 
through eq. (3.2) of ref. [14] (dashed line), and the data for 5822 hard disks on a plane (solid 
triangles) with the corresponding Levin approximant based on the first six terms of the virial series 
(dotted curve) [15]. The tie line at ~Po -2= 8.08 x 2/x/-3 joining the freezing and melting points 
along the hard disk EOS is also shown [12]. The inset shows the dependence on the size of the 
system: triangles, 400 particles; squares, 1000 particles; circles, 2000 particles. 

built up so far on the sphere does not extend to distances large enough for the 
spherical curvature to become influential. For po'Z> 0.83 and up to the HD 

2 freezing density pv~  = 0.88 [12], the present values for the pressure turn out 
to be slightly lower than those pertaining to the HD model. This conclusion 
follows from the comparison between the hitherto accepted value of the 
transition pressure for disks (9.33 in units of cr 2) and the value (9.05 for 
N = 2000) we find for p = Pv. By contrast, beyond the H D  melting point 
pM Or2~- 0.92 [12], the calotte EOS lies above the HD crystal branch. Before 
at tempting an interpretation of these findings, we add a comment  on the data 
of ref. [14]: the values reported there for the pressure turn out to be 
systematically greater  than both the present values and those pertaining to the 
H D  model.  This discrepancy is presumably due to a size effect as can be 
argued from Fig. 2 (inset) showing the EOS for the three samples we have 
investigated. A neat dependence on the size of the system starts to be observed 
for po -2 >. 0.86: the pressure decreases with increasing N and undergoes a series 
of undulations which appear to damp gradually for po-2~ > 0.91. Such a wavy 
behavior  does not show up in the data reported in ref. [14]. However,  from fig. 
1 of that paper,  it appears that the points are located on a rather loose density 
mesh with an interval of about 0.06 in the region of interest. By contrast, our 
runs were carried out with a step in density of 0.01 for N = 400, 1000 and 0.005 
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Fig. 3. Reduced isothermal compressibility K(p) ~- (OflP/Op)~ ~ for N = 2000, plotted as a function 
of ptr z after the subtraction of an unstructured "background" value extracted from the Levin 
approximant which is shown in fig. 2. 

for N = 2000. Correspondingly,  a series of peaks appears  in the reduced 
isothermal compressibility of the model K ( p )  =- (0[3 P~ Op)~l ,  which is plotted 
in fig. 3 for N =  2000 after subtracting a monotonously  decreasing "back-  
g round"  value which is extrapolated f rom low densities through the Levin 
approximant  shown in fig. 2 [15]. The most  outstanding feature is the pro- 
nounced maximum located at po "2-- 0.905, which is also preceeded by a 
number  of minor satellite peaks. 

On the basis of the above evidence on the thermodynamic  propert ies  of the 
model ,  we can tentatively identify three different packing regimes 

(1) a low-density fluid regime for po -2 < 0.86 characterized by the absence of 
sensitive curvature effects and ordering phenomena;  

(2) an intermediate-densi ty regime for 0,86 < po'2< 0.91 where the system 
manifests some sort of "criticality" which unveils through the dependence of 
the data upon the size of  the system; 

(3) a high-density regime for po -2 > 0.91 which follows what appears  to be a 
continuous transition towards a spatially organized phase. 

4.2.  Rad ia l  dis tr ibut ion f u n c t i o n  

In fig. 4 we present  the R D F  of 2000 calottes at short distances for a number  
of densities in the range of interest. The curves are plotted as a function of r /a ,  
where a =  o-(pcp/p)  1/2 is the hexagonal lattice constant on a plane and 
pcpO -2 = 2/X/3 is the corresponding close-packing density. The structural coun- 
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r / a  
Fig. 4. Radial  distribution function of 2000 calottes plotted for increasing densities (p,72 = 0.86, 
0.895, 0.91 and 0.925) as a function of r /a ,  where a is the hexagonal  lattice constant  on a plane. 
The  vertical lines identify the characteristic distances in the ideal hexagonal  lattice ( r /a  = 1, X/3, 2, 
X/7, 3, 2V"3, X /~ ,  4, X / ~ ,  X / ~ ,  5 . . . .  ). 

terpart  of the major  inflection observed in the EOS for pO -2 =0 .91  is the 
outbreak,  on a local scale, of ordered patches with hexagonal symmetry. In 
fact, it is at such a density that all the characteristic distances of the triangular 
lattice up to the sixth shell of neighbors become manifest in the RD F  profile. 

h I , i , i , i ' l ~ l L l , l , l l l ~ l , l L  
0 1 4  1 8  2 2  2 6  3 0  3 4  

r / a  
Fig. 5. Asymptot ic  behavior  of  the radial distribution function of 2000 calottes plotted as a 
funct ion of r /a  for densities po -2 = 0.81, 0.83, 0.86, 0.895, 0.91 and 0.925. Density increases from 
bo t tom to top, and each successive curve is displaced upwards by 0.05 for clarity. The  vertical line 
drawn for r /a  = ~ (lrN/,ocpOr2) ]/2 marks  the position of the equator  with respect to the pole at r = 0. 
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In particular, we note the splitting of the maximum centered about r/a = 1.8 
into a pair of adjacent peaks corresponding to the second and third coordina- 
tion shell, respectively, and the resolution of the lattice fifth shell which is 
unraveled by the appearance of a shoulder for r/a = 3. The existence of distinct 
packing regimes can also be argued from an inspection of the asymptotic 
behavior  of the RDF.  As is seen from fig. 5, upon increasing the density, the 
expected long-range decay of g(r) acquires an extra modulation with period 
much greater than cr. This feature appears to set in f o r  pO "2 =0 .83  and is 
particularly apparent f o r  po "2 =0.895 where a large-wavelength oscillation 
clearly persists beyond r/a = 16 through the initial exponential decay of the 
R D F  maxima. For densities greater than 0.91, which again plays the role of a 
borderl ine case, the shape of the RDF shows the extensive propagation of 
spatial correlations up to ~rR, which is the maximum distance allowed on the 
sphere. In fact, f o r  p o  -2 = 0.925 it turns out that the asymptotic decay of this 
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5 1 0  4 0  
r / o  

Fig. 6. Maxima of the radial distribution function and of the orientational correlation function 
plotted as a function of r/0. on a log-log scale for ptr 2= 0.925 and N = 2000. The solid lines 
represent best fits to algebraic decay in the range 90. ~< r ~< 400. with exponents 2.02 and 3.02 for 
g(r) and h6(r), respectively. The dashed lines are the results of a best fit to an exponential decay 
over the same range of distances with spatial decay lengths of 10.14o" and 6.80tr, respectively. 
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function is no longer exponential  but more  distinctly algebraic: as can be 
apprecia ted  f rom fig. 6, the locus of maxima in the range 90" ~< r ~< 40o- can be 
fitted to a form A / ( r  - o') n with an inverse power-law exponent  n ~ 2. Further- 
more ,  the superimposed modulat ion in the R D F  profile appears  to be more  
complex than at lower densities. We conclude that for p~r 2 = 0.91 the system 
undergoes  a transition from a fluid to a solid-like phase with quasi-long-range 
translational order.  

4.3.  O r i e n t a t i o n a l  corre la t ion  f u n c t i o n s  

The orientational correlation functions are more sensitive probes of the local 
structure than the radial distribution function since their operat ional  definition 
involves the relative ar rangement  of four particles. In particular, the function 
h6(r ) is a fine indicator of the emergence of hexagonal patterns in the system as 
is seen f rom fig. 7 where this quantity is drawn for increasing densities, 
together  with the positions which particles would attain on a triangular lattice. 
The spatial resolution of the second and third shell of neighbors is already 
present  for po -2= 0.75, well below the claimed transition point. At  variance 
with the RDF,  even the mean nearest-neighbor separation distinctly shows up 
in h6(r ). We also note that, across the ordering transition, the eighth coordina- 
tion shell of the hexagonal lattice emerges out of a dip region. 

The  presence of such a detailed fine structure in the sixfold OCF in the fluid 
region demonstra tes  that the angular correlations pertaining to a hexagonal 
texture appear  well before their positional counterpart .  For p~r2~ > 0 . 8 6  this 

0 , 7  , 

0"6 f" 
0 . 5  - 

0.4 - 
z . .  

0 . 3  -/ 
¢ o  

0 . 2  / 
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0 - 

- 0 . 1  ~ 
0 . 8  

\ / ~ 

I 

' I ' I ' ' I ' I ' I ' ] 1  ' 

S" 
1 . 4  2 2 . 8  3 . 2  3 . 8  4 . 4  5 

r / a  
Fig. 7. Orientational correlation function h6(r ) of 2000 calottes plotted for increasing densities 
(/go .2 = 0.75, 0.81, 0.83, 0.86, 0.895, 0.91 and 0.925) as a function of r/a. The vertical lines identify 
the characteristic distances in the ideal hexagonal lattice (see fig. 4). 
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1 0  1 4  1 8  2 2  2 6  3 0  3 4  

r / a  
Fig. 8. Asymptotic behavior of the function h6(r ) of 2000 calottes plotted as a function of r/a for 
densities p 2= 0.86, 0.895, 0.91 and 0.925. Density increases from bottom to top, and each 
successive curve is displaced upwards by 0.01 for clarity. The vertical line marks the position of the 
equator. 

function stops oscillating about  zero and remains positive definite for a very 
wide range of distances (see fig. 8). The rationale behind this is that, inside 
such an interval, the angle between two bonds may not differ, on the average,  
f rom a multiple of av/3 for more  than rr/12. This means that the system soon 
acquires a sort of orientational rigidity which is not based on a definite fixing of 
the distances of successive neighbor shells from a generic reference particle. 
The  size of the angularly coherent  domains increases with the number  of 
particles N. At the highest densities, it settles down at about  200- for N = 2000. 

This type of order  recalls that of a hexatic fluid. However ,  there apparent ly 
is no well-defined transition in this model  system from the disordered fluid into 
a hexatic phase although, as noted above,  for p0-2 ~> 0.86 orientational correla- 
tions blow up both in ampli tude and in spatial extension. Also the analysis of 
the asymptot ic  behavior  of h6(r ) does not provide a conclusive answer: as for 
the R D F ,  for p0-: ~< 0.91 the decay seems to be consistent with an exponential  
form,  while for p0 - :=  0.925 an inverse-power law with an exponent  n = 3  
reproduces  the upper  envelope of the function better  over  a wider range of 
distances (see fig. 6). 

We finally present  hs(r ) and h7(r ) in fig. 9. Both these functions oscillate 
systematically about  zero and yield comparat ively much smaller values than 
h6(r ). The most  relevant  structures are the negative dips which fall exactly in 
the interstitial regions between successive coordination shells with prevalent  
hexagonal  geometry.  In such regions, the peculiar average value of cos(5A0) 
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Fig. 9. Orientational correlation functions hs(r) (dotted line) and hT(r ) (continuous line) of 2000 
calottes plotted as a function of r/a at reduced density 0.925. 

and cos(7A0) is the outcome of a delicate balance between positive and 
negative contributions arising from pairs of nearest-neighbor bonds in defective 
clusters. 

5. Discussion 

The evidence attained through the thermodynamic and structural data 
presented in this model study of hard calottes on a sphere indicates that, in 
spite of the frustration effect induced by the topology of the host surface, this 
system most clearly undergoes a phase transition at a reduced density close to 
0.91. Below the transition point, the state of the system shows a high level of 
orientational coherence which settles in at  po " 2 =  0 .86,  when the properties of 
the model already show a neat dependence on the total number of particles. 
We surmise that the achievement of this intermediate level of ordering is 
responsible for the lower pressure which is observed on the sphere as com- 
pared to the hard-disk value at a given density. However, notwithstanding the 
fairly extended range of the hexagonal correlations, the nature of the asymp- 
totic behavior of the angular distribution function does not comply with the 
ordinary definition of a hexatic phase on a plane. Actually, the decay of both 
the orientational and radial distribution functions becomes algebraic beyond 
the transition point, suggesting the emergence of extended solid-like order in 
the system. As already noted in the preceding section, the shape of these 
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functions indicates the formation of  large hexagonal  domains which are easily 
seen  in the equilibrium snapshot presented in fig. 10, taken for 0o . 2 =  0.925. 

It is possible to predict the maximum size which such a domain may attain at 
a given density on the basis of  a heuristic argument which fol lows straight from 
the existence of  an instability threshold for the isotropic propagation of  
hexagonal  order on a sphere of  radius R. Suppose we want to dispose as many 
rings of  hexagonally coordinated particles as possible around a reference 
calotte located at, say, the north pole of  the sphere. Let a= (with n = 1, 2 , . . . )  
be the distance of the vertices of  the nth curved hexagon from the fixed 
particle. These  points lie along meridian lines forming angles of  ~ / 3 .  Let 
particles be distributed with pace d,  along the geodetic  arcs ~7, which join pairs 
of  adjacent vertices. The length l,, of  such segments is: 

1 • 2 sin ( a , , / R ) ]  l,, = R arccos[1 - ~ (5.1) 

On a plane,  n particles can be accommodated  within 5¢, with constant spacing 
d,  = a if, as in the case of  the ideal triangular lattice, a n = na .  On a sphere, the 
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Fig. 10. Projection onto a plane of the particle positions extracted from a typical configuration of 
2000 calottes with a reduced density p z= 0.925. The polar coordinates (r', ~b') of the point 
corresponding through the projection to the position of a calotte with spherical coordinates ( R ,  0,  

4~) are obtained as r '  = RO, 4~' = q5. Different symbols are used to distinguish particles with five 
neighbors (solid circle), six neighbors (open circle), seven neighbors (solid triangle), and eight 
neighbors (solid square) in the Voronoi construction. The continuous line marks the position of the 
e q u a t o r .  W e  n o t e  that, upon moving away from the pole, interparticle distances get more and more 
distorted as a result of the planar projection. 
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two constraints a n = n a  and l n = n a  cannot be fulfilled simultaneously. In 
part icular,  if we choose a n = n a ,  it turns out that I n < n a .  Moreover ,  this length 
decreases monotonous ly  with n so that it is possible to determine a value n~ 
such that  l n is eventually less than ( n -  1)a. Therefore ,  upon moving away 
f rom the pole, the particles placed on the nth ring will get closer and closer 
until one particle must be expelled out of the ring if we want to restore the 
p roper  original pace a. This mechanism, which is strictly associated with finite 
curvature  effects, will force the formation of disclinations in excess of those 
which are ordinarily produced by equilibrium thermal excitations. When the 
above condition occurs, the hexagonal tessellation is definitely ruled out. The 
value n ~ a  can then be taken as an upper  bound of the radius R D of the biggest 
ordered  domain which can grow on the sphere. Should In become less than no- 
for a value of n smaller than n~, the est imated upper-bound value of R D would 
be even lower. However ,  this will happen only for values of N ~< 1400. We also 
note that n~ depends only upon the ratio R / a ,  a number  which, for given N, 
does not vary with the density. 

On the other  hand, we can fix the value of l n = n a  and determine a n. In this 
case a ,  > n a ;  fur thermore ,  since the distance between two successive rings 
grows with n, peripheral  hexagonal cells become more  and more  stretched 
along the radial direction. When a n becomes bigger than (n + 1)a as a result of 
the above constraint on dn, the structure becomes unstable since, via a suitable 
collective rear rangement  along the radial direction, another  ring of particles 
might potentially be accommodated.  This condition defines another  upper  
threshold for n, say, n 2. It turns out that the N-dependent  ratio n l / n  2 rapidly 
tends to 1 for increasing values of  N. for N = 2000, just beyond the transition 
point ,  we find n~ = 11 and n 2 = 10. Indeed,  a look at the central domain in fig. 
10 confirms the validity of  the above prediction. This circumstance is also fully 
consistent with the repor ted behavior  of the sixfold OCF which shows a 
characteristic length of about  20o-, the "d iamete r"  of a typical ordered path. 
The  predictions offered by both instability criteria are also fully consistent with 
the data obta ined for lower values of N. 

The  radius of  the ordered domains,  as can be estimated through the above 
criteria, depends on the total number  of particles as: 

R D  ~ N 1 / 3  • (5.2) 

However ,  the algebraic decay of the correlation functions for p ~ 0.91 clearly 
indicates the extensive propagat ion of both translational and orientational 
o rder  through the whole surface. Therefore ,  defects forming along the border-  
line regions between adjacent  domains do not enfold them entirely. Localized 
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clusters of defects arise, allowing hexagonal order to percolate through con- 
tiguous domains until a connected structure is established all over the sphere. 
The necessity of such a large-scale frame does actually respond to a criterion of 
efficiency in the way six-fold coordinated particles pack on a sphere. In fact, 
the equilibrium state of infinitely repulsive particles is the state of maximum 
entropy for a given volume and number of particles, a condition which, at high 
densities, is fulfilled by resorting to a hexagonal tessellation of the space. On a 
sphere this solution cannot be pursued indefinitely because of the upper bound 
on the size of ordered domains. We surmise that, as a result of this constraint, 
the most efficient and regular coverage of the entire surface will likely be 
attained when such ordered patches become centered at the vertices of the 
Platonic polyhedron inscribed within the sphere which better fits the value of 
R D. Disclinations induced by the finite curvature will then mostly segregate in 
the space left over between domains. For N = 2000 and p = 0.925, this criterion 
would suggest the octahedron as the supporting frame of the whole structure. 
In fact, among the five regular polyhedra, it is in the octahedron that the 
curved radius of the circular regions drawn on the sphere (~rR/4 = 10.3o') gives 
a value which is closest to the estimate previously obtained for R D. Indeed, if 
one looks at fig. 10, it is possible to envisage a large fragment of such a 
"superstructure" in the four clusters of defects which delimit the central 
domain from the neighboring ones. 

This scenario will change with the number of particles present in the system: 
in fact, for increasing values of N, the angle subtended by each domain 
decreases a s  N -1/~. We presume that, on account of the isotropy properties of 
the system, the superstructures sequentially generated on the sphere with 
growing N will be endowed with a symmetry group whose order is the highest 
compatible with the number of vertices. We then expect that the system will 
realize new optimal surface coverings by first calling into play Platonic poly- 
hedra other than the octahedron. Among these, we note that the densest 
regular mapping on the sphere is provided by the icosahedron. Its symmetry 
group will likely furnish the asymptotic underlying framework for further more 
complex dense coverings involving a higher and higher number of domains as 
suggested by the study of isogonal tilings on the sphere [16,17[. 

In closing, we should like to note that a conceptually similar situation has 
recently been discussed for a two-dimensional Ising spin system embedded on 
the surface of a M6bius strip [8]. This topology is most clearly a source of 
frustration for the global orientation of the spins. In spite of such an anomalous 
geometrical setup, the authors report the onset of spontaneous magnetization 
which results in the formation of macro-domains with a coherent spin direc- 
tion. Furthermore,  consistently with the present findings, the transition appears 
to be less sharp than in standard Monte Carlo simulations with PBC. 
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6. Concluding remarks 

The nature of the mechanism responsible for the onset of the peculiar 
high-density phase described above furnishes probatory evidence for the 
continuous character of the fluid-solid transition on a sphere. The transition 
signals the outgrowth in the system of an upper level of organization following 
the clearcut definition of hexagonally ordered domains. As such, this process 
would not imply a discontinuous contraction across the transition of the 
phase-space region available to the system. Obviously, the above phenomenol-  
ogy may not be trivially transposed to a flat geometry even in the thermo- 
dynamic limit. However,  in the light of the Peierls-Landau argument on the 
absence of true crystalline long-range order in two dimensions, one might 
envisage an analogy between the two geometries in the compelling existence of 
correlation regions whose size grows more slowly than the size of the system. If 
so, the present results would cast a shadow on the claimed discontinuous 
nature of the transition undergone by hard particles on an infinite plane. 

We reserve to a forthcoming paper a more detailed analysis of the thermo- 
dynamics and structure of point defects in this model. 
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