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INVITED ARTICLE

Thermodynamic and structural anomalies of the Gaussian-core model in one dimension

Cristina Speranza, Santi Prestipino and Paolo V. Giaquinta*

Dipartimento di Fisica, Università degli Studi di Messina, Contrada Papardo, Messina, Italy

(Received 6 August 2011; final version received 24 September 2011)

We investigated the equilibrium properties of a one-dimensional system of classical particles which interact in
pairs through a bounded repulsive potential with a Gaussian shape. Notwithstanding the absence of a proper
fluid–solid phase transition, we found that the system exhibits a complex behaviour, with ‘anomalies’ in the
density and in the thermodynamic response functions which closely recall those observed in bulk and confined
liquid water. We also discuss the emergence in the cold fluid under compression of an unusual structural regime,
characterized by density correlations reminiscent of the ordered arrangements found in clustered crystals.

Keywords: one-dimensional models; Gaussian-core model; clustered crystals; water-like anomalies

1. Introduction

Renewed interest has recently emerged in the thermo-
dynamic and transport properties of one-dimensional
(1D) systems, also in view of their potential relevance
to the modelling of interacting colloidal particles
diffusing within narrow channels [1]. The spontaneous
emergence in such systems of (even intense) local
ordering phenomena, not necessarily accompanied by
proper phase transitions, is a topical issue that
continues to be investigated also in relation to its
effects on the dynamics of the particles [2]. In this
regard, a landmark result still is the celebrated van
Hove’s theorem [3] according to which a system of
identical particles with a hard core and pairwise
interactions extending over a finite range has no
phase transition in 1D, in the absence of external
fields. The general issue of the existence
(or non-existence) of phase transitions in 1D systems
with short-ranged interactions has been critically
reviewed in more recent years, among others, by
Cuesta and Sánchez [4]. A way to potentially escape
the negative verdict of van Hove’s theorem is to allow
for bounded repulsive interactions between particles.
The simplest of such models is a system of penetrable
spheres (PS), whose interaction potential takes a finite
positive value whenever two particles overlap, while
vanishing otherwise [5,6]. In the absence of an infinite
repulsive barrier, interactions are no longer restricted
to nearest neighbours. As a result, at variance with the
Tonks gas [7], no analytical solution of the PS model is
currently known. Fantoni [8] has recently provided
robust arguments against the existence of a phase

transition in a 1D system of penetrable particles with a
negative short-ranged square well outside the repulsive
core [9].

A largely studied variant of bounded repulsive
interactions is the Gaussian potential [10]. Its continu-
ing interest also stems from its frequent applications as
a model interaction in soft-matter systems, such as the
dilute solutions of highly ramified polymers in a good
solvent (star polymers), where the ‘effective’ repulsion
between the centres of mass of two polymer chains can
be typically described through a Gaussian law [11]. The
corresponding Gaussian-core model (GCM) can at
most exhibit fluid–solid and, possibly, solid–solid
phase transitions since a liquid–vapour transition is
clearly excluded by the absence of an attractive
component in the potential. In fact, at low enough
temperature three-dimensional (3D) Gaussian particles
crystallize, upon compression, in a cubic solid struc-
ture, with either a face-centred or a body-centred
symmetry [12]. However, a further increase of the
density does eventually lead to a re-entrant melting of
the solid. This phenomenon has been observed also in
two dimensions (2D) where, at variance with the 3D
case, a narrow hexatic region appears between the
isotropic fluid phase and the triangular solid phase all
along the melting line [13].

As for the phase stability of the GCM in 1D, no
rigorous proof of the absence of a phase transition has
been presented so far. However, Fantoni conjectured
that his arguments against the existence of a phase
transition in a 1D system of attractive penetrable
spheres apply equally well, under appropriate
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conditions, to a larger class of model fluids with a
decaying long-ranged repulsive tail, including the
GCM [8].

Whether or not the GCM fluid crystallizes in 1D,
one can safely expect a far from trivial phase behaviour
because of the ever-increasing occurrence, under com-
pression, of soft particle-core overlaps. A natural
candidate for the macrostate of minimum Gibbs free
energy is a diffusely ordered arrangement formed by
more or less equally spaced particles, as is the case of
1D hard rods at high density [14]. However, the
thermodynamic competition between energy and
entropy may also lead, in a fluid with a soft bounded
potential, to even more complex arrangements such as
those found in ‘clustered’ or ‘tower’ crystals, where two
or more (superimposed) particles are confined within
the same cell [11].

2. Model and method

We consider a system of point particles repelling each
other, at a relative distance r, through a Gaussian pair
potential

uðrÞ ¼ ! exp $ðr="Þ2
! "

, ð1Þ

where ! and " fix the energy and length scales,
respectively. The GCM potential has an inflection
point at r0¼ "/21/2, where its curvature changes from
concave to convex. Correspondingly, for r% r0 the
strength of the force between two particles,
f(r)¼$du(r)/dr, decreases as the particles approach
each other. However, it is over a larger range
(0% r% ") that the local virial function, rf(r), and
thus the contribution of a pair of interacting molecules
to the pressure of the system, decreases when the
separation also decreases. This condition is typically
taken as the signature of ‘core softening’ [15]. As is well
known, a core-softened – in the just specified sense –
potential can generate a density anomaly, associated
with a negative thermal expansion coefficient. This
circumstance was originally verified for the GCM fluid
in 3D by Stillinger and Weber [16]. Indeed, a number
of thermodynamic, structural and dynamical proper-
ties of the GCM fluid have been already found to
exhibit, both in 2D and 3D, ‘water-like’ anomalies
which render the behaviour of this model qualitatively
different from that of a ‘simple’ (i.e.
Lennard-Jones-like) fluid.

To our knowledge, no systematic numerical study
of the 1D GCM fluid has been undertaken so far. In
this paper we present the results of an investigation
carried out with the Monte Carlo (MC) method in the
isothermal–isobaric ensemble. The data we present

were obtained with samples of N¼ 200 particles, unless
otherwise specified; however, we also tested the stabil-
ity and convergence of the results with larger samples
of 500 and 1000 particles. No qualitatively significant
changes emerged upon increasing the ‘size’ of the
calculation. We collected data over trajectories of,
typically, five million sweeps, every sweep consisting of
Nþ 1 elementary MC moves, including one attempt,
on average, to change the volume V of the system.
During the equilibration runs, we adjusted the maxi-
mum particle displacement and the volume change so
as to maintain the acceptance rates of both types of
moves close to 50% in the production runs. We carried
out our simulations along a number of isothermal and
isobaric paths, from low to high density and from high
to low temperatures, continuing at each state point
from the last system configuration produced in the
previous run. We computed, for given values of T
and P, the following properties: the average number
density, n¼N/hV i; the average energy,
E¼NkBT/2þhUi, where kB is Boltzmann’s constant
and U is the total potential energy; the specific heat at
constant pressure, CP¼T(@s/@T )P, where s is the
entropy per particle; the isothermal compressibility,
KT¼$v$1(@v/@P)T, where v¼ n$1 is the average
volume per particle; the thermal expansion coefficient,
#P¼ v$1(@v/@T )P. The three thermodynamic response
functions were obtained as thermal averages of covari-
ances of the fluctuating variables (energy and volume):
CP/kB¼h[D(EþPV)]2i/(kBT )2, #T/kB¼hD(Eþ
PV)DVi/[hVi(kBT )2], and KT¼h(DV)2i/[hVi(kBT )],
where DX¼X$hXi.

We also calculated the radial distribution
function (RDF), g(jrj)¼ vh

P
k 6¼1 $(xk$ x1$ r)i, and

the associated structure factor, SðjqjÞ ¼ 1þ n
R1
$1 dx'

expð$iqxÞ gðjxjÞ $ 1½ ).
The Monte Carlo study was complemented with

the results obtained with the hypernetted-chain (HNC)
approximation and with exact total-energy calculations
carried out at T¼ 0 with increasing pressure for several
candidates for the solid phase, in order to gain insight
into the preferred forms of particle aggregation at low
temperatures.

In the following, we shall also make use of reduced
units for density, temperature, and pressure: %¼ n",
&¼ kBT/", and !¼P"/!.

3. Results

In the GCM fluid the growth of density correlations
upon compression is eventually frustrated by the finite
strength of the repulsion between particles and by the
decreasing strength of their mutual force as they
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approach each other. We anticipate that for densities
larger than the value corresponding to a nearest-
neighbour (NN) distance roughly equal to 1.5"
(!. 0.35), a further increase of the pressure causes a
suppression, rather than a sharpening, of the local
structure of the fluid since in a sufficiently dense
environment the overlapping of two particles entails an
entropy gain that is larger than the associated energy
penalty. Lang et al. [17] coined the term ‘infinite-
density ideal gas’ to represent the uncorrelated
(g(r)¼ 1) behaviour of Gaussian particles at very
high densities.

Such a trend is already manifest in the RDF
calculated through the HNC approximation at the
reduced temperature &¼ 0.1 (see Figure 1) which,
though quantitatively accurate only for %0 2, yields
the correct qualitative trend of the local fluid structure
with increasing pressure. We see from the picture that
the NN distance, corresponding to the position of the
first maximum in the RDF, steadily decreases upon
compression but its statistical definition as a micro-
scopic length scale is highest at an intermediate
pressure corresponding to a reduced density %. 0.5.

3.1. Phase stability at T¼ 0

Before examining the MC findings, it is worth consid-
ering the thermodynamic behaviour of the fluid at zero
temperature. Stillinger proved that in the limit of low T
and n the thermodynamics of the GCM fluid reduces,
for any space dimensionality, to that of hard
spheres with a temperature-dependent diameter
d(')¼ "[ln('!)]1/2, where '¼ (kBT )$1 [10]. In one
dimension, the hard-rod behaviour sets in

for %HS¼ "/d; below this threshold the equilibrium
properties of the 1D GCM fluid can be mapped onto
those of the Tonks gas. However, %HS is too small a
density (about 0.40 for &¼ 0.002, corresponding to a
pressure slightly smaller than 0.05) for the hard-sphere
connection to be of any relevance to the present
inquiry into the existence of phase transitions in the 1D
GCM fluid at high pressure.

The competition for thermodynamic stability
between single-occupancy and clustered solids is
ruled by the chemical potential which, at zero temper-
ature, is equal to the enthalpy per particle: (¼ eþPv;
moreover, any crystalline phase consists of just one
microstate (modulo a translation). We first consider an
arrangement of equally spaced particles:

(1 ¼ min
n

X1

m¼1

exp $m2

n2

# $
þ P

n

( )

: ð2Þ

We then compare (1 with the chemical potentials of
clustered phases with equidistant lumps of k¼ 2, 3, . . .
particles, all lying at the same positions:

(k ¼
k$ 1

2
þmin

n
k
X1

m¼1

exp $ k2m2

n2

# $
þ P

n

( )

: ð3Þ

A further possibility that we have considered is a state
in which isolated particles regularly alternate with
pairs:

(ð1,2Þ ¼
1

3
þmin

n

4

3

X

m¼1,3,...

exp $ 9m2

4n2

# $(

þ 5

3

X

m¼2,4,...

exp $ 9m2

4n2

# $
þ P

n

)

: ð4Þ

In Figure 2 we plot all such chemical potentials as a
function of the pressure. The comparison shows that
the crystal formed by equidistant particles is the most
stable phase at zero temperature, whatever the pres-
sure. No better solution was obtained upon allowing
for a small fixed separation between the particles
forming a pair in either the 2$ 2$ 2$ 2$ . . . or the
1$ 2$ 1$ 2$ . . . arrangement. This result is a strong
indication of the absence of any kind of phase
transition in the 1D GCM fluid. However, the free-
energy penalties associated with the nucleation of
clustered solids progressively decrease with the pres-
sure, the faster the smaller the number of particles in a
given cell. Hence, one cannot exclude a priori the
possibility that, at non-zero temperature and high
enough pressure, such phases may enter the thermo-
dynamic game for entropic reasons. In passing,

Figure 1. Radial distribution function in the HNC approx-
imation plotted as a function of the distance for a reduced
temperature &¼ 0.1 and for reduced densities %¼ 0.1, 0.2, . . . ,
1.9, 2 (the density increases along the direction indicated by
the arrow).
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we note that for !0 3 the two-clustered crystal is
almost degenerate with the single-occupancy crystal.

3.2. Thermodynamic properties

Following the computational procedure described in
Section 2, we investigated the phase behaviour of the
1D GCM fluid at reduced temperatures 0.002% &% 1
and for reduced pressures 0.05%!% 3.5. We verified
that neither the number density nor the energy exhibit
any (even rounded-off) jump discontinuity over the
explored domain. We also performed a chain of
isothermal simulations at high pressure starting from
an ordered two-clustered configuration but did not
find any sign of hysteresis in either the density or the
energy. Hence, on a strictly thermodynamic basis, the
equilibrium state of the investigated model is always
that of a fluid. However, we found out that at low
enough temperatures this fluid undergoes remarkable
structural changes, with an anomalous (i.e. nonstan-
dard) thermodynamic behaviour which, in many
respects, closely resembles that observed in liquid
water, when gradually cooled from above the freezing
temperature into the deeply metastable region (possi-
bly in a confined environment).

The signature of such a ‘complex-fluid’ behaviour
is the emergence of a volumetric anomaly in the dense
fluid: as shown in Figure 3, at low pressure the density
decreases monotonically with the temperature; how-
ever, for !0 1.2 the trend turns from decreasing to
increasing over a limited temperature range
Tmin(P)%T%Tmax(P). Correspondingly, a maximum

shows up in n(T, P) at T¼Tmax(P) which, for !9 1.5,
is preceded by a minimum at a non-zero temperature,
Tmin(P). For !0 1.5, the density increases with T
from T¼ 0, until it inverts its trend at the temperature
of maximum density (TMD).

A maximum in the density of the GCM fluid had
already been observed in higher space dimensions
[13,16]: in this respect, it is altogether remarkable to
verify the persistence of this feature in one dimension.
But even more remarkable is the emergence of a
shallow minimum in n(T ) over a range of pressures:
the fluid behaves in an anomalous way for
Tmin(P)%T%Tmax(P) but turns ‘normal’ again below
the temperature of minimum density (TmD). In real
liquids a density minimum has been detected in even
fewer cases than those, already rare, where a maximum
is observed. Two noteworthy examples are bulk
tellurium [18], also mixed with sulphur [19], and
(supercooled) confined water [20–22], where the emer-
gence of a minimum has been associated with the
formation of a defect-free ‘random tetrahedral net-
work’ [23]. However, the profound difference between
tellurium and water (as noted by Angell, tellurium is
not known as a network liquid [24]) makes it clear that
even the TmD is caused by some more basic feature of
the effective interaction potential.

The relevant thermodynamic loci corresponding to
the location of the extrema of the density and of the

Figure 3. Reduced number density plotted as a function of
the reduced temperature with increasing pressure: triangles
(black), !¼ 1; stars (blue), !¼ 1.2; squares (cyanide),
!¼ 1.35; crosses (green), !¼ 1.5; circles (magenta), !¼ 2;
tripods (red), !¼ 2.5. To improve readability, the curves
were shifted vertically by changing amounts; the separation
between two major tick marks along the left vertical axis is
equal to 0.01, while the absolute scale can be fixed through
the value of each curve at &¼ 0.08, that is reported along the
right vertical axis.

Figure 2. Excess chemical potential, relative to the value ((1)
in an ordered state of equally spaced particles, plotted as a
function of pressure at T¼ 0, for clustered crystalline phases:
continuous blue line, two-clustered crystal; dashed cyanide
line, three-clustered crystal; long-dashed green line, four-
clustered crystal. The dotted red line yields the excess
chemical potential of the state formed by regularly alternat-
ing singles and pairs.
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response functions are plotted in Figure 4. The
volumetric anomaly region, corresponding to a nega-
tive value of the coefficient of thermal expansion, is the
region bounded by a maximum and (possibly) a
minimum of the density; all along this boundary the
expansivity vanishes. The TMD and TmD lines are
seen to originate from point C (with coordinates
!C’ 1.169 and &C’ 0.029), where the first and second
isobaric temperature derivatives of the density both
vanish #P ¼ ð@#P=@TÞP¼PC

¼ 0
! "

. This point marks the
onset of the volumetric anomaly in the fluid and is
apparently reached with infinite slope along the TMD
and TmD lines. The TMD line is seen to pass through
a maximum (M), with coordinates !M’ 1.267 and
&M’ 0.037; correspondingly, the TMD locus has a
positive slope for PC%P<PM, while decreasing
asymptotically to zero with increasing pressure for
P>PM. Instead, the TmD shows a rapidly decreasing
monotonic trend on compression and appears to
vanish at a finite reduced pressure just larger than 1.5.

The temperature TM is the highest temperature at
which the fluid manifests the volumetric anomaly,
associated with the emergence of a single or double
extremum in the density. This anomaly obviously
reverberates in the thermodynamic response functions.

Rolle’s theorem applied to an isothermal or isobaric
‘cut’ of the anomalous region, producing two distinct
intersections with the density extrema lines where
#P¼ 0, implies that the expansivity must have a
minimum at some point in between. The isobaric
minimum of #P as a function of T (see Figure 5) goes
along (though not exactly coinciding) with an inflec-
tion point of the density; both such features were found
to survive well outside the anomalous region, down to
!’ 0.6 (see also Figure 3). The minimum-expansivity
locus radiates out of this region at the point C of
confluence of the TMD and TmD lines (see Figure 4).

Sastry et al. [25] have showed that the isothermal
compressibility increases on cooling at any point along
the TMD line wherever its slope is negative and the
second temperature derivative of the volume, evaluated
at the same point, is positive [(@2v/@T2)P, at TMD¼
v(@#P/@T )P, at TMD> 0]. The above conditions apply
for P>PM. A similar thermodynamic constraint
implies that the isothermal compressibility increases
on heating at any point along the TmD line where the
slope is negative and such also is the second temper-
ature derivative of the volume, which is the case of the
1D GCM fluid. The necessary consequence of this
twofold constraint is the emergence of a maximum in
the isothermal compressibility at some temperature
in the interval Tmin(P)<T<Tmax(P). As shown in
Figures 4 and 6, the maximum persists even for
!> 1.5, when the minimum of the density has disap-
peared. We can see that, as originally predicted by

Figure 4. Location of the density and response functions
extrema in the (P, T) plane. Density: open red circles,
temperature maxima (TMD); solid red circles, temperature
minima (TmD). Coefficient of thermal expansion: magenta
tripods, temperature minima; open magenta squares, pres-
sure maxima; solid magenta squares, pressure minima.
Isobaric specific heat: open blue triangles, temperature
maxima; open blue squares, pressure maxima; solid blue
triangles (inset), temperature minima. Isothermal compress-
ibility: open black squares, temperature maxima; solid black
squares, temperature minima. The locations of the symbols
correspond to numerical estimates of the thermodynamic
coordinates of the extrema obtained via Monte Carlo
simulations along either isothermal or isobaric paths. The
lines through the data are guides to the eye.

Figure 5. Thermal expansion coefficient plotted as a func-
tion of the reduced temperature for different pressures (left
panel) and of the pressure for different temperatures (right
panel); left panel: same legends as in Figure 3; right panel:
triangles (black), &¼ 0.002; stars (blue), &¼ 0.005; squares
(cyanide), &¼ 0.03; crosses (green), &¼ 0.05; circles
(magenta), &¼ 0.1; tripods (red), &¼ 1.
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Sastry et al. [25], the locus of the compressibility
maxima intersects the TMD line exactly at its maxi-
mum M, where ðdTmaxðPÞ=dPÞPM

¼ 0.
Thermodynamic consistency implies [25] that the

anomalous temperature dependence of KT should also
reflect in the behaviour of CP as a function of T at
fixed P (see the left panel of Figure 7). As the
temperature drops to zero, the isochoric specific heat
approaches unity (i.e. the value of an interacting 1D
fluid at T¼ 0), as also does the isobaric specific heat
since CP ¼ CV þ Tv#2

P=KT (see Figure 8); CP shows
then a maximum, whose (P, T ) locus runs very close to
the isobaric minimum-expansivity line (see Figure 4).
We also note that the height of the CP maximum
changes very little with either the pressure or the
temperature, an aspect that we shall return to soon.

Upon heating the system, the thermodynamic
properties of the fluid should asymptotically approach
their ideal-gas values. As a result, in order for their
low-temperature behaviour to match the high-tem-
perature regime, a second extremum must develop in
all of the three response functions, besides the one at
low temperature that we have already commented on:
this second extremum is a maximum in #P which, as
T!1, must tend to zero as 1/T; instead, a minimum
is found in both KT and CP which should approach 1/P
and 3/2, respectively. Hence, the second extremum
exhibited by the response functions is the necessary

outcome of the existence of two different limiting
behaviours and, as such, does not arise from any
additional independent anomaly of the fluid at high
temperature.

The line of the isobaric temperature minima of KT

has also been traced in Figure 4, where it is apparent
that this locus and the locus of the isobaric tempera-
ture maxima of KT stem out of the same point, located
at PKT ’ 0:84 and &KT ’ 0:11. These two lines get
closer again at high pressure.

Figure 6. Isothermal compressibility plotted as a function of
the reduced temperature for different pressures (left panel)
and of the pressure for different temperatures (right panel);
same legends as in Figure 5. To improve readability, the
curves in the left panel were shifted vertically by changing
amounts; the separation between two major tick marks is
0.05, while the absolute scale can be fixed through the value
of each curve at &¼ 0.1, that is reported along the right
vertical axis.

Figure 7. Isobaric specific heat plotted as a function of the
reduced temperature for different pressures (left panel) and
of the pressure for different temperatures (right panel); same
legends as in Figure 5.

Figure 8. Isochoric specific heat plotted as a function of the
reduced temperature for different pressures (left panel) and
of the pressure for different temperatures (right panel); same
legends as in Figure 5.
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The right panels of Figures 5, 6, 7 and 8 show how
the fluid reacts to an isothermal compression. Both the
density and the energy were found to steadily increase
with increasing pressure. Moreover, the isothermal
compressibility is seen to decrease monotonically with
P, its value being not significantly affected by the
temperature over the explored range. Instead, #P and
CP exhibit a more complex behaviour. As for the
expansivity, the thermodynamic relation
(@#P/@P)T¼$(@KT/@T )P implies that isobaric temper-
ature extrema of the compressibility should map onto
isothermal pressure extrema of the expansivity [26].
In fact, Figure 4 shows that the isothermal pressure
minima (maxima) of #P do actually fall, to within the
numerical uncertainty of the calculations, along the
locus of the isobaric temperature maxima (minima)
of KT.

A maximum is also present, at low temperature, in
the isobaric specific heat as a function of P at constant
T (see the right panel of Figure 7); as expected, this
quantity is 3/2 at P¼ 0 and, correspondingly, CV¼ 1/2.
We found that the locus of the pressure extrema of CP

runs on top of the temperature minima locus of the
expansivity (see Figure 4). The thermodynamic
relation [27]

@CP

@P

# $

T

¼ $vT #2
P þ @#P

@T

# $

P

% &
ð5Þ

states that, if #P¼ 0, an isobaric temperature extre-
mum of #P should coincide with an isothermal pressure
extremum of CP. This is precisely what happens at the
confluence point of the TMD and TmD lines.
Elsewhere, the balance between #2

P and a negative tem-
perature derivative of #P locates the zero of (@CP/@P)T
at lower temperatures with respect to the locus of
vanishing (@#P/@T )P. However, upon moving inside the
anomaly region, the first term on the r.h.s. of Equation
(5) turns out to be very small (of the order of 10$4) for
pressures just greater than !C, and becomes even
smaller with increasing pressure because of the gradual
drop of both the volume and temperature. As a result,
the pressure maxima locus of CP runs very close to the
temperature extrema loci of #P and of CP itself (see
Figure 4). This latter circumstance, i.e. the nearby
coincidence (to within the uncertainty of the present
calculations) of the pressure and temperature maxima
loci of CP, can be explained by the implicit function
theorem:

@X

@P

# $

T

¼ $ @X

@T

# $

P

* @T

@P

# $

X

, ð6Þ

where X(P,T ) is a generic property of the system and
the second partial derivative on the r.h.s. of

Equation (6) is evaluated along a constant-X thermo-
dynamic path. In general, whenever X has an extre-
mum as a function of P at given T (i.e. (@X/@P)T¼ 0),
the derivative (@T/@P)X, evaluated along a constant-X
path, vanishes as well (a similar argument naturally
holds upon inverting P with T ). This obviously implies
that a pressure (temperature) extremum of X is not
necessarily associated with a temperature (pressure)
extremum of the same quantity. However, it can be
shown that, when X(T,P) displays a ‘ridge’ of equal-
height extrema, both the pressure and the temperature
derivatives of X vanish there (and vice versa), which
means that the extremum is such along both thermo-
dynamic axes. To a very good approximation, this is
actually what happens for the isobaric specific heat of
the 1D GCM fluid.

At very low temperature the peak of the isobaric
specific heat is preceded by a broad minimum, actually
almost a plateau at one. This latter circumstance is
explained by the very small values attained by the
quantity vT#2

P=KT, which yields the difference between
CP and CV; moreover, #P vanishes at a point located
within the implicated pressure interval. In passing, we
note that CP¼CV along the TMD and TmD lines.

One more aspect of this thermodynamic scenario
still needs to be outlined. The volumetric anomaly is
accompanied by an anomaly of the entropy in that,
whenever #P< 0, the entropy increases with P at
constant temperature since (@S/@P)T¼$(@V/@T )P.
In order to illustrate this aspect, we calculated the
total entropy per particle of the fluid through the Euler
relation, s¼'(uþPv$(). As for the chemical poten-
tial, given its value at some reference state, one can
calculate its value at any other state upon integrating a
suitable thermodynamic property along either an
isothermal or isobaric path, under the condition that
no coexistence locus is being crossed along the path:

(ðT,P2Þ ¼ (ðT,P1Þ $
Z P2

P1

dP vðT,PÞ, ð7Þ

(ðT2,PÞ
T2

¼ (ðT1,PÞ
T1

$
Z T2

T1

dT
uðT,PÞ þ PvðT,PÞ

T2

% &
:

ð8Þ

Equations (7) and (8) readily follow from the Euler and
Gibbs–Duhem relations. The chemical potential at the
reference thermodynamic state (a dilute-fluid state) can
be estimated using Widom’s particle-insertion method
[28]. Upon performing a NVT simulation for %¼ 0.2
and &¼ 0.1, we obtained the value '(¼$0.7341 at a
reduced pressure of 0.0296. Using this value as a
parameter in a NPT simulation, carried out at the same
temperature as in the constant-volume simulation,
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we obtained the value '(¼$0.7348, which coincides
with the corresponding NVT estimate to within the
statistical error of the calculation.

The left panel of Figure 9 shows the results for the
total entropy per particle of the 1D GCM fluid. As
expected, at high temperature this quantity decreases
with P, because of the increasing strength of the
positional correlations, a process which typically leads
to a reduction of the number of microstates available
to the system in a given macrostate. However, as soon
as the fluid enters the anomalous region, namely, when
the temperature drops below TM, the total entropy
develops a minimum that is followed by a maximum at
larger pressure, a state beyond which the entropy starts
decreasing again. This counterintuitive behaviour is a
direct consequence of the volumetric anomaly; corre-
spondingly, the locations of the two pressure extrema
change with the temperature, following the TMD and
TmD lines.

The right panel of Figure 9 shows that a minimum
is also present, at lower pressure, in the excess entropy
of the fluid, Sex¼S$Sid, where Sid is the entropy of an
ideal gas having the same density and temperature of
the GCM fluid. However, three notable differences
show up in the thermodynamic behaviours of the
excess and total entropy, respectively: (i) the minimum
of the excess entropy is located at PðsexÞ

min ’ 0:35 and its

position does not appreciably shift with T over the
explored range; (ii) for P4PðsexÞ

min the excess entropy
rises to zero and does not exhibit any other extremum;
(iii) the minimum persists in sex even for T>TM. All
such circumstances suggest that the pressure threshold
at PðsexÞ

min may be a significant indication of the existence
of two markedly different structural regimes in the
fluid. We shall come back to this point in the following
section. However, before concluding this outline of the
thermodynamic properties of the model, we note that
the excess entropy of the GCM fluid displays a
minimum also in upper dimensions (2D, 3D). For
temperatures slightly above the maximum melting
temperature, this minimum occurs at a reduced density
corresponding to an average interparticle distance of
approximately 1.53", a value that is fairly congruent
with the values in 1D, which range between 1.46" and
1.56" as the reduced temperature rises from 0.002 to
0.1. In 2D and 3D the excess-entropy minimum falls
just beyond the density corresponding to the maximum
melting temperature, which unambiguously marks the
border between two different thermodynamic condi-
tions: a low-density regime in which the system behaves
as a normal fluid and, upon compression, eventually
freezes; a high-pressure regime in which, instead, the
crystal re-melts, with increasing pressure, into a fluid
whose properties are very different from the
ordinary ones.

3.3. Structural properties

In this section we shall focus on the structural
properties of the 1D GCM at low temperature
(&¼ 0.002). Upon isothermally compressing the ini-
tially dilute fluid, the local order is more and more
enhanced, and also extends to larger and larger
distances. As seen in Figure 10, the RDF already
looks highly structured at a relatively low pressure
(!¼ 0.05, %¼ 0.47), showing a quasi-crystalline profile
characterized by a series of sharply defined coordina-
tion shells (each subtending an integrated conditional
number density of one particle), with period equal to
the average interparticle distance and no appreciable
overlap between adjacent shells up to fairly large
distances. Such a regularly equispaced arrangement is
analogous to that exhibited by a 1D gas of hard
particles for packing fractions approximately larger
than 83% [14], a value corresponding to a reduced
density of the present model equal to 0.33 at a reduced
temperature of 0.002. In this respect, the core-softened
GCM fluid matches and extends to higher densities the
quasi-crystalline phase behaviour observed in the

Figure 9. Total entropy (left panel) and excess entropy (right
panel) per particle plotted as a function of the pressure for
different reduced temperatures: triangles (black), &¼ 0.002;
stars (blue), &¼ 0.005; squares (cyanide), &¼ 0.03; crosses
(green), &¼ 0.05; circles (magenta), &¼ 0.1. The total entropy
reported on the left panel does not include the additive
constant ln[2)m/(!h2)]1/2; the arrows indicate the positions of
the extrema; a dotted line has been traced for !¼ 0.35 in the
right panel.
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‘isomorphic’ hard-core Tonks gas approaching close
packing.

As expected for an ordinary simple fluid, the peaks
of the RDF get, with increasing pressure, sharper and
taller; contextually, the size (R0) of the domain over
which the minima between adjacent peaks have, to
practical effects, dropped to zero also expands with P.
Such a trend comes to a stop and is eventually reversed
when the pressure increases to values close to the
minimum threshold discussed above for the excess
entropy (see Figures 11 and 12). In fact, for !’ 0.30,

both the height of the first RDF peak as well as R0

attain a maximum (of about 11 and 20v, respectively)
and start decreasing thereon with P. Figure 13 shows
that a similar inversion of the low-density trend is also
observed in the other maxima of the RDF at reduced
pressures close to 0.35. Hence, this threshold corre-
sponds to the maximum growth and expansion of the
local (hard-core-like) crystalline order in the fluid: in
fact, for larger pressures, we observe a global attenu-
ation of the density correlations which reduces the
entropic distance of the fluid from its ideal-gas
counterpart.

Figure 10. Radial distribution function at &¼ 0.002 plotted
as a function of the distance between particles, relative to
their average separation at the corresponding number
density, for !¼ 0.05 (blue) and !¼ 0.35 (red); the lower
panel shows the decay of the total correlation function at
larger distances on a semi-logarithmic scale.

Figure 11. Radial distribution function at &¼ 0.002 plotted
as a function of the distance between particles, relative to
their average separation at the corresponding number
density, for !¼ 1.5 (blue) and !¼ 2 (red); the lower panel
shows the decay of the total correlation function at larger
distances on a semi-logarithmic scale.

Figure 12. Radial distribution function at &¼ 0.002 plotted
as a function of the distance between particles, relative to
their average separation at the corresponding number
density, for !¼ 2.7 (blue) and !¼ 3.5 (red); the lower
panel shows the decay of the total correlation function at
larger distances on a semi-logarithmic scale.

Figure 13. Heights of the first five maxima of the RDF,
identified with Roman numerals, plotted as a function of the
reduced pressure at &¼ 0.002.
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The modifications of the local density profile
outlined above prelude the emergence, promoted by
the pressure, of a different spatial organization of the
fluid. Figure 13 shows that the larger the distance of a
given coordination shell from the particle sitting at the
origin, the slower the decay of the corresponding peak
height with increasing pressure. As a result, the second
maximum in g(r) eventually overcomes the first peak
for reduced pressures approximately larger than 1.4,
i.e. as soon as the fluid enters the volumetric anomaly
region. An analogous crossover between the fourth
and third peak takes place for !’ 1.75. A novel type
of local order gradually builds up in the fluid, which,
for !0 2.5, shows up in the RDF as the superposition
of two distinct modulations, sustained by the odd- and
even-numbered peaks, with spatial periods both equal
to 2v but with different envelopes. Overall, the struc-
ture of the fluid is dampened by the pressure, but not
everywhere in the same way: odd-numbered peaks get
progressively lower and broader than even peaks;
moreover, the heights of the even peaks are seen to
decay monotonically with the distance, at variance
with those of the odd-numbered peaks which display a
maximum at some intermediate distance Rc; this
distance grows with the pressure and appears to
saturate, for !0 3, to a size corresponding to the
first 12 coordination shells. For r>Rc, the two trains
of oscillations do eventually merge into one single
oscillation with period v.

An indication on the nature of the new spatial
organization spawned by the fluid upon compression
emerges from a typical snapshot taken at the reduced
pressure !¼ 3: the presence of patches of particle pairs
(‘dimers’), regularly spaced with period 2v and width of
the order of Rc, is rather evident in Figure 14. The fact
that the even-numbered peaks of the RDF are taller
and sharper indicates that the average distance
between successive dimers is rather well defined as is
the next-nearest-neighbour distance between ‘isolated’
particles. On the other hand, the nearest-neighbour
coordination shell looks less resolved because, if the
particle located at the origin belongs to a dimer, one of
its two first neighbours will be closer on average than
the other one, belonging to an adjacent dimer. The
onset of the pairing phenomenon at high pressure is
further witnessed by the value of the RDF at r¼ 0,
which gives a measure of the fraction of microstates
with superimposed particles: this quantity vanishes
(to more than six significant figures) for reduced
pressures lower than 2.3 but starts increasing mono-
tonically thereon, being approximately 0.1 for !¼ 3.
The crossover from a single-occupancy fluid to a
dimer-rich fluid is continuous rather than sharp, i.e.
it does not entail any thermodynamic transition.

We obviously expect that ‘trimers’ also form at still
higher densities.

We conclude our discussion of the changes
observed in the RDF upon compression with a note
on the decay of this function at large distances, which
provides an indication on the spatial extent of coherent
density fluctuations in the fluid. To this end, we
successfully fitted the envelope of more distant maxima
to an exponentially decaying function. This very
circumstance further confirms the fluid nature of the
system even at low temperature and high pressure. The
fit allowed us to extract the positional correlation
length *, whose behaviour is shown as a function of P
in Figure 15. When plotted in units of the average
separation between particles at a given density, this
quantity exhibits a rapid growth for P9 0.35, the
structural threshold where the tendency towards a
single-occupancy solid-like arrangement produces its
strongest effects. For larger pressures, after a slight
decrease, the correlation length starts growing again,
more slowly than at low pressures, with an approxi-
mately linear growth rate for the larger size investi-
gated. We also verified that * never exceeds half of the
size of the simulated sample, up to the highest
pressures investigated.

The structure factor provides a complementary view
of the density correlations in the fluid (see Figure 16). At
low pressure, the main peaks of S(q) are found at values
of the scaled wavenumber qv’+2), corresponding to a
large-distance oscillation of the RDF with period v.
However, with increasing pressure new satellite peaks –
centred at odd multiples of ) – sequentially emerge on
the high-wavenumber side, the symmetric peaks at +)

Figure 14. A snapshot of part of the system at &¼ 0.002 and
!¼ 3 (%¼ 1.8421); particles are represented as black dots
and distances are relative to the average separation at the
given density: we can clearly observe the prevailing presence
of regularly spaced patches of ‘dimers’ interspersed with
ordered sequences of single particles.
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being the last to appear (for !0 1.4, again approxi-
mately when the fluid enters the anomaly region). Such
additional maxima initially concur to modify the profile
of the first coordination shell in the RDF, the more so
the larger the pressure. However, the increasing rele-
vance of the peaks at+), which eventually overcome in
height the peaks at+3) for reduced pressures close to 3,
also signals the emergence of an additional spa-
tial modulation in the local density profile, with
period 2v.

4. Concluding remarks

In this paper we have illustrated the equilibrium
properties of a model system of particles interacting,

in one dimension, through a bounded repulsive poten-
tial with a Gaussian shape. The study of the model was
largely carried out using numerical sampling tech-
niques based on the Monte Carlo method.

As far as the thermodynamic phase stability of the
model is concerned, no indication emerged from our
analysis of any singular behaviour possibly associated
with a fluid–solid or solid–solid transition. However,
this very circumstance allowed us to carry out a
thorough study of the unexpectedly complex behaviour
of the Gaussian-core model fluid in one dimension, all
the way from high to low temperatures, without
incurring any ‘break’ caused by phase changes. As a
result, we could highlight the full thermal unfolding of
a volumetric anomaly – i.e. the increase of the density
upon isobarically heating the system – as a function of
pressure, with the emergence of both a maximum and a
minimum of the density with decreasing temperature.
While the existence of a maximum in the density of the
model had already been observed both in three and
two dimensions, evidence of the existence of a mini-
mum, at lower temperature and under appropriate
pressure conditions, has never been reported and is
being provided here, for the first time, for the one-
dimensional fluid. This feature is more unusual than
the maximum itself and has been recently observed in
metastable states of real substances, most notably in
confined supercooled water.

In the light of such findings, we can safely conclude
that a soft bounded repulsion like that modelled with a
bare Gaussian potential, devoid of any additional
repulsive or attractive component, possesses the ‘min-
imal’ requisites that make it possible for the fluid to
exhibit waterlike anomalies even in a one-dimensional
hosting space. Sadr-Lahijany et al. [29] had already
described the nonstandard thermodynamic properties
that emerge from a core-softened potential, explicitly
designed to mimic the effect of hydrogen bonding: a
repulsion with two length scales set by a hard core and
by a finite negative shoulder, followed at larger
distances by an attractive well. In this respect, the
main result of this paper is that definitely much less is
needed to ‘turn on’ a volumetric anomaly, even in a
one-dimensional fluid: in fact, a finite softened repul-
sion, modelled as a one-scale potential with a down-
ward concavity at short distances and an upward one
at larger distances, is sufficient to generate the density
anomaly, also bounded by two temperature extrema,
as well as a cascade of related peculiarities in all of the
three thermodynamic response functions.

Crucial for the thermodynamic onset of the volu-
metric anomaly in the currently investigated model is
the average separation between particles at a given
pressure: in fact, we may conjecture that, if such

Figure 16. Structure factor plotted as a function of the
reduced wavevector at &¼ 0.002 for !¼ 1 (black), 1.5 (blue),
2 (cyanide), 2.5 (green), 3 (magenta), 3.5 (red); a specular
spectrum is found for negative values of the wavevector. The
dotted vertical lines lie in correspondence to the first four
multiples of ).

Figure 15. Correlation length, relative to the average sepa-
ration between particles, plotted as a function of the reduced
pressure at &¼ 0.002: dotted blue curve, 200 particles;
continuous red curve, 500 particles.
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a distance is smaller than the distance r0¼ "/21/2 where
the concavity of the Gaussian potential changes from
upward to downward, the density will grow upon
isobarically heating the fluid even at zero temperature,
because the particles will find it (thermodynamically)
more advantageous to reduce their average mutual
distance, since this will ultimately entail a significant
gain in the entropy of the fluid which overcomes the
corresponding increase of internal energy. Such a
‘marginal’ condition corresponds to a threshold den-
sity %0¼ 21/2 which, in the ordered ground state formed
by equally spaced particles, is attained with a reduced
pressure !0’ 1.77. Indeed, a similar mechanism is at
work in liquid water, in which the breaking of
hydrogen bonds, with their hybrid attractive and
repulsive nature [30], produces a gradual ‘collapse’ of
nearest-neighbour molecules inside the inner region of
close-contact distances, with a corresponding increase
of the density upon heating.

On the other hand, we can also presume that, if the
average separation between particles is larger than r0,
the density of the fluid will initially decrease upon
heating the system from a state at T¼ 0 (because the
energy decreases as well) until the particles acquire
enough kinetic energy to sample the inner region of the
potential and thus discover that they may exploit there
a more favourable condition, leading to an inversion of
the density trend as a function of T. On this basis, we
may then expect that for !<!0, and for not too low
pressures, the anomalous region is bounded from
below by a non-zero temperature at which the density
shows a minimum.

The investigation of the structural properties of the
model also revealed an interesting and unusual sce-
nario. Two structural regimes were distinguished in the
equilibrium behaviour of the 1D GCM: for reduced
pressures lower than 0.35, the system behaves as a
‘normal’ fluid in that the local order is progressively
enhanced by an isothermal compression. Instead, upon
trespassing the above threshold, a further increase of
the pressure induces an overall attenuation of density
correlations, an effect associated with the bounded
nature of the repulsion. However, the ensuing
approach of the system to the thermodynamic condi-
tion of an ‘infinite-density ideal gas’ is accompanied by
the emergence of a new type of local order, with pairs
of almost superimposed particles giving rise to
extended quasi-crystalline clusters of ‘dimers’. This
phenomenon is clearly resolved in the radial distribu-
tion function as an extra modulation, which is also
signalled by the appearance of satellite peaks in the
structure factor at relative wavenumbers equal to odd
multiples of ).

One may wonder whether differently shaped
bounded potentials may actually trigger a genuine
thermodynamic transition to a clustered-crystal phase
in one dimension. In this respect, Likos et al. [31]
showed that a bounded repulsion with a negative
Fourier transform over some range of wavenumbers
gives rise – in a mean-field type of setting – to stable
crystalline phases with multiply-occupied lattice sites at
all temperatures, provided the pressure is sufficiently
high. This criterion thus supplies a practical recipe to
construct a potential supporting a stable solid phase,
even though of a clustered type. Indeed, it is sufficient
to look at the profile of the potential-energy landscape
associated with a regular 1D array of particles to
realize that a finite repulsion with a core region flatter
than that exhibited by the Gaussian potential and with
a shorter-ranged tail provides minimum-energy posi-
tions for a test particle just on top of the (already
occupied) lattice sites [32]. Such a repulsion is then a
natural candidate for a 1D system with stable clustered
crystals. Calculations are in progress in order to
substantiate this conjecture.
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