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Anomalous melting and solid polymorphism of a modified inverse-power potential
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98166 Messina, Italy; bCNR-IPCF, Viale F. Stagno d’Alcontres 37, 98158 Messina, Italy

(Received 29 June 2011; final version received 25 July 2011)

We numerically investigate a system of particles interacting through a repulsive pair potential of inverse-power
form, modified in such a way that the strength of the repulsion is softened in a range of distances. The solid
phases of the system for various levels of softness are identified by computing the zero-temperature phase
diagram; then, for each solid phase, the melting line is determined by Monte Carlo simulation. Upon increasing
the softness of the potential core, a region appears where melting occurs upon compression at constant
temperature (‘anomalous’ melting) and a number of low-coordinated crystals become stable at moderate
pressures. Next, the structural properties of the system for varying core softness are surveyed in the hypernetted-
chain approximation, whose accuracy has been positively tested against numerical simulation. For sufficiently
high degrees of softness, the radial distribution function shows the typical interplay between two distinct length-
scales. In a narrow range of moderate softness, reentrant melting occurs instead with just one length-scale, which
shows that the existence of two well-definite length-scales is not the only mechanism for anomalous melting.

Keywords: anomalous melting; solid polymorphism; hypernetted-chain approximation

1. Introduction

The generic features of interatomic interactions are a
harsh repulsion at short range, caused by the overlap
of the outer electronic shells, and a mild attraction at
large interparticle separation arising from multipolar
dispersion forces, whose leading term (the dipole–
dipole interaction) decays as an inverse power of the
distance with exponent n¼ 6 [1]. Mainly for reasons of
mathematical convenience also the short-range repul-
sion is often represented through an inverse-power law
with an exponent n¼ 12. A popular interaction model
which incorporates the two behaviours is the Lennard-
Jones (LJ) potential [2], which provides a remarkably
adequate description of the interparticle interaction in
rare gases. The LJ potential yields a phase diagram
that reproduces the behaviour of typical monatomic
substances, with a vapour–liquid critical point, a
vapour–liquid–solid triple point, and a melting line
with positive dT=dP slope [3].

Radially symmetric interactions, however, do not
always give rise to simple phase behaviour like in the
LJ case. In the last decade or so, intense investigation
has shown that unusual behaviours may arise in
systems of spherical particles where the diverging
repulsive core is ‘softened’ through the addition of a
finite repulsion at intermediate distances, so as to
generate two distinct length-scales: a ‘hard’ radius,

related to the inner core, and a ‘soft’ radius, associated
with the more penetrable component of the repulsion
[4–26]. Due to this feature, these so-called core-
softened (CS) fluids are characterized by two
competing, expanded and compact, local particle
arrangements. This property, though arising from
simple isotropic interactions, mimics the behaviour of
the more complex network-forming fluids (such as,
e.g., water) where the loose and compact local struc-
tures arise from the continuous formation and disrup-
tion of the dynamic network generated by directional
bonds [27]. Similarly to network-forming fluids, CS
systems may show anomalous (reentrant) melting, i.e.,
melting upon compression at constant temperature,
which implies a negative dT=dP slope of the melting
line, polymorphism in the liquid and solid phases, as
well as a number of anomalous behaviours in the fluid,
like a density anomaly (a decrease in the number
density upon isobaric cooling), a diffusion anomaly (an
increase of diffusivity upon isothermal compression),
and a structural anomaly (a decrease of structural
order, as measured, e.g., by the pair entropy, for
increasing pressure at fixed temperature). Recently, it
has been shown that a very weak softening of the
repulsive interparticle interaction, though unable to
yield two distinct length-scales, can nevertheless give
rise to anomalous behaviours [28]. This evidence
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challenges the idea that the existence of two length-
scales is essential for the occurrence of anomalous
behaviours and suggests that the class of isotropic
interactions that may generate such behaviours is
wider than commonly assumed.

In this paper, we investigate the effects of gradually
softening an inverse-power repulsive interaction. By
making use of numerical simulation and of the
hypernetted-chain integral equation, we study how
the behaviour of the system varies as the repulsion
softening becomes more and more strong. This makes
it possible to follow the onset of water-like anomalies
until their full development and, in particular, it
enables us to see the crossover from the one-scale
behaviour typical of standard LJ-like fluids to the two-
scale behaviour characterizing the CS systems.

2. Model

Since we plan to focus on anomalous melting and solid
polymorphism as the main features of anomalous
phase behaviour [29], our analysis will be limited to
systems with purely repulsive interactions. We consider
a family of modified inverse-power (MIP) potentials
where the exponent n depends on the interparticle
distance r in such a way as to make the repulsion
milder in a range of distances:

uMIPðrÞ ¼ !ð"=rÞnðrÞ , ð1Þ

where ! and " are energy and length units and

nðrÞ ¼ n0f1$ a exp½$bð1$ r="Þ2&g: ð2Þ

Here, a is a number between 0 and 1, and b is positive.
The parameter a controls the repulsion softening: the
greater the value of a, the more substantial the
softening effect is, i.e., the higher the local reduction
of n(r). The exponent n(r) attains its minimum nmin ¼
n0ð1$ aÞ at r ¼ ". The parameter b governs the width
of the interval where n(r) is significantly smaller than
n0: the larger b is, the smaller this interval is. In the
following, we choose n0¼ 12 and b¼ 5. For a¼ 0 the
potential in Equation (1) has a purely inverse-power
form, i.e., uðrÞ ¼ !ð"=rÞn0 and there is only one solid
phase with FCC symmetry. As a increases, uMIPðrÞ
becomes less and less steep in a range of distances
centred around r ¼ " until, for a¼ 1, uMIPðrÞ shows an
inflection point with zero slope in r ¼ " (see Figure 1).
As a approaches 1, uMIPðrÞ develops a downward
concavity in a range of r, a feature that is typical of CS
potentials.

In the region where a repulsive potential u(r) shows
a downward or zero concavity, the strength of the two-
body force f ðrÞ ¼ $u0ðrÞ decreases or at most remains

constant as the two particles approach each other.
Assuming that u(r) is diverging at small distances, it is
possible to identify two different regions where the
force increases as r gets smaller. Thus, two distinct
repulsive length-scales emerge: a smaller hard-core
radius, which is dominant at high pressures, and a
larger soft-core radius, which is effective at low
pressure. In the range of pressures where the two
length-scales compete with each other, the system
behaves as a ‘two-state’ fluid. In mathematical terms
core softening was expressed by Debenedetti et al. [30]
through the condition D½rf ðrÞ&5 0 for Dr5 0 in some
interval r1 5 r5 r2, with u00ðrÞ4 0 for r5 r1 and
r4 r2. This implies that, in the interval between r1
and r2, the product rf(r) (rather than just f(r)) gets
smaller with decreasing interparticle separation. This
requirement is less restrictive than the condition
u00ðrÞ ' 0 and can be met also by a strictly convex
potential, provided that in a range of distances the
force increases more slowly than in the adjacent
regions [23]. The MIP potential shows a downward
concavity for a ( 0:72 while the Debenedetti condition
is satisfied for a ( 0:68. Recently, a criterion stating a
necessary condition for the occurrence of reentrant
melting has been presented [31]. According to this
criterion, anomalous melting is possible for the MIP
potential when a ( 0:47.

3. Method

To estimate the melting line, we performed Monte
Carlo (MC) simulations in the isothermal-isobaric
NPT ensemble, i.e., at constant temperature T, pres-
sure P, and number N of particles, using the standard

Figure 1. The potential uMIPðrÞ for several values of a: a¼ 0.2
(black solid line), 0.4 (blue dashed line), 0.6 (red dotted line),
0.8 (green dashed-dotted line), and 1 (orange long-
dashed line).
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Metropolis algorithm with periodic boundary condi-
tions. The simulations were carried out for a number of
particles ranging from N¼ 686 for a body-centred
cubic (BCC) crystal to N¼ 864 for a face-centred cubic
(FCC) crystal (we checked that finite-size effects are
negligible). At a given pressure, we typically generate a
sequence of simulation runs starting at low tempera-
ture from a perfect crystal. This series of runs is
continued until a sudden density/energy change is
observed. Since the density of a solid ordinarily varies
very little with increasing temperature along an isobar,
a sudden density change indicates a mechanical insta-
bility of the solid in favour of the fluid, and thus marks
approximately the location of melting, as is also
confirmed by the concurrent rounding off of the
peaks of the radial distribution function (RDF). In
fact, by this so-called ‘heat-until-it-melts’ (HUIM)
method one just determines the upper stability thresh-
old of the solid when heated isobarically. The reliabil-
ity of the HUIM approach as a means to locate the
coexistence of fluid and solid has been recently tested
against ‘exact’ free-energy calculations for a couple of
softened-core fluids and found to be good (see Ref.
[21,23,28] for details). In any event, our use of the
HUIM method is especially directed to obtain the
topology of the melting line and to locate the threshold
in a between the regimes of standard and anomalous
melting. In this respect, the HUIM method represents
a satisfactory approach.

In order to study how the structural properties of
the MIP fluid change as the interaction is gradually
softened, it is convenient to have a fast method to
calculate the RDF. Such a method may be provided by
integral-equation theories. In particular, we consider
the hypernetted-chain (HNC) approximation, consist-
ing of solving the Ornstein–Zernike relation by using
the HNC closure [1]:

gðrÞ ¼ exp½$#uðrÞ þ hðrÞ $ cðrÞ& , ð3Þ

where g(r) is the RDF, hðrÞ ¼ gðrÞ $ 1, c(r) is the direct
correlation function, and # ¼ 1=ðkBT Þ. We will show
in the following that the HNC theory is surprisingly
good for the MIP fluid.

A distinctive feature of systems with softened
interparticle repulsion is a rich solid polymorphism,
i.e., the existence of many different stable crystal
phases at low temperature. In systems with unbounded
interparticle repulsion, this multiplicity of phases
occurs because of the frustration of highly-coordinated
packings at intermediate pressures, which opens the
way to observing ‘unusual’ particle arrangements of
moderately high density and low coordination number.
Eventually, upon further compression, the harsh inner

core of the potential comes into play and the FCC
order takes over. When investigating the melting
behaviour, solid polymorphism represents a complica-
tion since the number of crystals that are potentially
relevant for the system at hand is enormous. A
common simplification consists in restricting the cal-
culation of the chemical potential to just those phases
that are found stable or nearly stable at zero temper-
ature, where obtaining the chemical potential as a
function of pressure is a rather straightforward task.
Hence, we performed an analysis of the zero-
temperature phase diagram of the system as a function
of the softness parameter by examining a large number
of crystal structures. The outcome of this calculation is
used as a guide for computing, through the HUIM
method, the melting temperature of the system as a
function of the pressure P.

4. Results

At T¼ 0 and fixed pressure, a crystal phase is
thermodynamically stable if its enthalpy is smaller
than that of any other phase. However, the problem of
minimizing the enthalpy among all crystals is a
formidable task, since the number of possible struc-
tures is virtually infinite. Hence, we restrict the search
for stable structures to a limited – albeit large – number
of candidates, including, aside from Bravais crystals,
also a number of Bravais lattices with a basis (non-
Bravais crystals). Enthalpy minimization is achieved by
adjusting the crystal density and, for some of the
analysed crystal lattices, also a structure parameter.

In Table 1, the zero-temperature phases of the MIP
fluid are reported for a number of a values. Overall, we
see that the softer the potential, the richer the solid
polymorphism. Upon increasing a up to 0.8, a non-
Bravais crystal (#-Sn, with fourfold coordination)
becomes eventually stabilized at moderate pressures.
In fact, the preference for low-coordinated crystals at
intermediate pressures seems to be a general feature
among CS potentials, while the close-packed FCC
structure is stable only for the low and the very high
pressures [32]. Obviously, we cannot exclude the
existence of other phases that are more stable than
those found in our calculation; yet, the conclusion that
the coordination number shows a dip for intermediate
pressures remains valid even if some of the phases that
we call stable are actually metastable (note that the
high-coordinated crystals are all among the reviewed
phases). In Figure 2, the chemical potential of the
relevant phases for a¼ 0.8 is plotted as a function of
the pressure P, assuming the FCC solid as reference.
We see that, in its own range of stability, the #-Sn solid
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is almost degenerate with a BC8 phase, signalling that
the latter phase may become stable at T4 0 just for
entropic reasons. In a similar way, the #-Sn crystal is
nearly as stable as the simple cubic (SC) crystal at still
higher pressures, leaving the possibility of a phase
transition from SC to #-Sn at some non-zero temper-
ature. On account of this, we included also the BC8
crystal in the list of phases to be analysed later, for
a¼ 0.8, by the HUIM method.

Computer-simulation results show (see Figure 3)
that, as a increases, the melting line gradually turns
from a monotonically increasing behaviour (a¼ 0.5) to
a non-monotonic one where a local maximum is
followed by a region of reentrant melting (a¼ 0.6).
Correspondingly, the phase portrait becomes rich, with
solid phases other than FCC and BCC. For a
considerably softened repulsion (a¼ 0.8), the melting
line has a complex shape with multiple maxima and
reentrant regions while the system displays water-like
anomalies in the fluid phase [31]. For this a value, the
stable phases for T4 0 are, besides a low-pressure
FCC crystal, also a non-Bravais crystal (#-Sn) fol-
lowed, at higher pressures, by a simple-cubic solid. We
checked that, between P¼ 3 and P¼ 7, the BC8 and

body-centred tetragonal (BCT) solids would melt at a
temperature lower than the melting temperature for
#-Sn, which is consistent with their status of metastable
phases.

For two selected values of a (i.e., a¼ 0.6 and
a¼ 0.8), we calculated the RDF along the T ¼ 0:2 !=kB
path and compared the results with those got from the
HNC approximation. As shown in Figures 4 and 5 the
HNC approximation is reasonably accurate. The main
discrepancies are observed for intermediate pressures,
where the height of the RDF peak corresponding to
the soft radius is slightly underestimated, while the
height of the peak relative to the hard radius is slightly
overestimated at low pressures. However, all differ-
ences turn out to be smaller than 10%. Aside from
these minor deviations, the HNC theory is nonetheless
able to reproduce accurately the qualitative changes
occurring in the local structure of the system when
varying the level of repulsion softening. Moreover, in
spite of the thermodynamic inconsistency of the HNC
theory, the pressure computed using the virial route is
quite close to the simulation value (see Table 2).

Figure 2. MIP potential for a¼ 0.8: zero-temperature chem-
ical potential $, plotted as a function of the pressure P, for a
number of crystal structures (the FCC lattice was taken as
reference; both $ and P are in reduced units; the chemical
potentials of structures that are never stable are not shown,
except for the BC8 and BCT phases). Besides FCC, the stable
phases are #-Sn (long dashed blue line), SC (thick solid black
line), and SH (thin solid red line). The BC8 and BCT
chemical potentials are plotted as black dotted and dashed
lines, respectively; between P¼ 3 and P¼ 6, they are only
slightly larger than the chemical potential of #-Sn. Between
P * 2 and P * 8, the BC8 phase is nearly degenerate with #-
Sn. Similarly, between P * 8 and P¼ 20, the SC and #-Sn
phases have approximately the same chemical potentials.

Table 1. MIP potential, zero-temperature phase diagram up
to P¼ 20 !"$3 for a number of a values. For each phase
(column 2), we report the pressure interval of stability
(column 1, units of ! " $3), the corresponding density interval
(column 3, units of "$3), and the values of the structure
parameter (if any is present; column 4). The scrutinized
lattices were the following: FCC, BCC, HCP, SC, diam, BC8,
cI16-Li, #-Sn, SH, ST, BCT, graphite (see Ref. [32] for the
notation employed).

a¼ 0.5
0–2.91 FCC 0–0.729 –
2.92–11.91 BCC 0.739–1.210 –
11.92–20 FCC 1.229–1.464 –

a¼ 0.55
0–2.83 FCC 0–0.705 –
2.84–11.14 BCC 0.717–1.200 –
11.15–11.72 BCT 1.204–1.233 0.92–0.87
11.73–20 FCC 1.254–1.510 –

a¼ 0.6
0–2.85 FCC 0–0.688 –
2.86–6.32 BCC 0.701–0.948 –
6.33–7.88 BCT 0.958–1.040 1.95–1.93
7.89–13.00 SH 1.096–1.287 0.94–0.97
13.01–20 FCC 1.352–1.563 –

a¼ 0.8
0–3.12 FCC 0–0.631 –
3.13–6.98 #-Sn 0.850–1.019 0.77–0.80
6.99–9.89 SC 1.118–1.218 –
9.90–14.91 SH 1.315–1.454 1.06–1.05
14.92–20 FCC 1.674–1.801 –
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Given the accuracy of the HNC approximation in
the present case, we used this theory to obtain an
overall picture of the softening-induced structural
modifications in the MIP fluid (see Figure 6). For
a¼ 0.6 (Figure 6a) the pressure behaviour of the RDF
is intermediate between that typical of CS fluids and
the one characteristic of standard inverse-power

repulsive interactions. As P increases at constant
temperature, the nearest-neighbour peak of g(r) grad-
ually moves towards small r. Meanwhile its height first
grows, due to the increasing proximity with the solid
lying at lower temperature, and then goes down in the
pressure range where reentrant melting occurs. As P
increases further, the peak grows again while its
position changes less and less sensibly due to the
small-r steep repulsion. This behaviour is consistent
with the existence of just one effective length-scale that
shrinks with pressure (a feature typical of inverse-
power potentials); at the same time, the rise and fall
with pressure of the height of the main g(r) peak is
reminiscent of the order–disorder interplay related to
the occurrence of reentrant melting (a feature charac-
terizing CS fluids).

As a gets larger, the soft length-scale becomes
better and better defined. The first peak of g(r) starts
bifurcating (Figure 6b and c) until, for a¼ 0.8
(Figure 6d), it splits into two well-distinct peaks
corresponding to the hard and the soft radius, respec-
tively. Like for CS interactions, the heights of these
peaks change in opposite directions on increasing
pressure, the first peak becoming higher and higher
while the second peak gradually gets lower. This
behaviour signals the coexistence in the system of
two populations of particles having distinct effective
diameters. As the pressure goes up, the hard-core
radius (associated with the first RDF peak) becomes
more and more populated at the expense of the soft-
core radius (associated with the second peak), whereas
the positions of the two peaks, i.e., the two length-
scales, remain essentially unaltered.

5. Concluding remarks

In recent years, increasing attention has been paid to
soft-matter systems as real examples of anomalous
thermodynamic and structural behaviours. Much
effort has been devoted to the investigation of simple
isotropic model systems which, through the softening
of the repulsive component of the particle interaction,
are able to display such anomalous behaviours. The
study of these systems may help to unveil the statistical
mechanisms that are responsible for these anomalies.
This research is relevant also for the physics of
elemental solids under extreme conditions, where
anomalous melting and solid polymorphism are
observed as a result of pressure-induced rearrange-
ments in the electronic structure [21].

In this paper we studied the phase behaviour of a
family of potentials with tunable core softness,
finding elements of complexity that are simply

Figure 3. Phase diagram of the MIP potential. (a) HUIM
melting line for a number of a values: a¼ 0.5 (red dash dotted
line), 0.55 (blue dotted line), 0.6 (green dashed line), and 0.8
(black solid line). The error bars are of the same size as the
dots. (b) a¼ 0.6, HUIM loci for selected solid phases. The
BCT phase (blue line) is stable at T¼ 0 but, upon heating, it
melts at a temperature lower than the BCC one (black line).
This suggests the existence of a BCT-BCC transition before
melting. (c) Phase diagram for a¼ 0.8. The red and green
curves are the HUIM melting lines for the BCT and BC8
solids, respectively. These solids are metastable at T¼ 0;
accordingly, their melting temperature turns out to be lower
than that of the #-Sn solid.
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unknown to ‘normal’ systems like the Lennard-Jones
and inverse-power fluids. In particular, we found
clear evidence that low-coordinated (even non-
Bravais) lattices do provide the structure of stable
solid phases at intermediate pressures. In the coming
years, as the techniques to functionalize the surface

of colloidal particles gradually improve, it will
become possible to realize soft materials character-
ized by effective interparticle potentials similar to the
one investigated here and thus able to yield a
spontaneous assembly of particles into non-Bravais
structures.

Figure 4. MIP potential, radial distribution function g(r) as computed from the HNC theory (solid lines) and from MC
simulation (dots) for a¼ 0.6 and six pressures (the reduced temperature is T¼ 0.2).

Figure 5. MIP potential, radial distribution function g(r) as computed from the HNC theory (solid lines) and from MC
simulation (dots) for a¼ 0.8 and six pressures (the reduced temperature is T¼ 0.2).
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Another significant point of our investigation
concerns the analysis of the changes in the local
structure of the system as the repulsion is gradually
softened, going from the inverse-power form to that
typical of CS potentials. For weak repulsion softening,
a reentrant-fluid region appears in the melting line
while the radial distribution function g(r) still exhibits a
single pressure-modulated length-scale. Only when the
level of softening becomes significant, does g(r) acquire
the two-scale aspect typical of CS systems. This
outcome confirms that the ‘two-scale’ mechanism is
not strictly necessary for explaining the occurrence of
anomalous behaviours in systems with isotropic inter-
actions [28].

(a) (b)

(d)(c)

Figure 6. MIP potential, radial distribution function g(r) for T¼ 2 in the HNC approximation. Various a values are considered
(a ¼ 0:6, 0:65, 0:7, 0:8). The arrows mark the direction of pressure increase. For each a, g(r) refers to % ¼ 0:2, 0:4, 0:6, 0:8, and 1
(in units of "$3), the respective pressures being reported in Table 3.

Table 2. MIP potential, system pressures (in units of !"$3) computed through the HNC equation and MC
simulation for various densities, at the reduced temperature T¼ 0.2.

a¼ 0.6 a¼ 0.8

%"3 P (HNC) P (MC) %"3 P (HNC) P (MC)

0.2601 0.211 0.2 0.3225 0.425 0.4
0.5348 1.454 1.4 0.4480 1.013 1.0
0.7366 3.452 3.4 0.5871 1.969 2.0
0.7834 4.058 4.0 0.7013 2.978 3.0
0.8539 5.082 5.0 0.7617 3.595 3.6
0.9740 7.151 7.0 0.7991 4.006 4.0

Table 3. MIP potential, system pressures (in units of !"$3)
computed through the HNC equation as a function of the
density for various a values (the reduced temperature is
T¼ 0.2).

%"3 a¼ 0.6 a¼ 0.65 a¼ 0.7 a¼ 0.8

0.2 0.117 0.120 0.123 0.130
0.3 0.301 0.312 0.324 0.351
0.4 0.648 0.675 0.702 0.754
0.5 1.206 1.246 1.282 1.335
0.6 1.993 2.029 2.056 2.073
0.7 3.016 3.025 3.020 2.966
0.8 4.287 4.242 4.180 4.017
0.9 5.825 5.694 5.549 5.234
1.0 7.658 7.403 7.144 6.628
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