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Statistical Entropy of a Lattice-Gas Model:
Multiparticle Correlation Expansion
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A formula expressing the statistical entropy of a lattice-gas model as a multi-

particle correlation expansion is derived in the grand-canonical and in the

canonical ensembles. The differences from the analogous expansion in the con-

tinuum case are elucidated. The Ising model in one dimension is discussed as a

case study.
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I. INTRODUCTION

The history of the interplay between entropy and correlations dates back to

1952, when H. S. Green expressed the entropy of a simple fluid as a multi-

particle correlation expansion in the canonical ensemble.(1) Each term in

the series is associated with an integer power of the density and involves

the logarithm of the reduced n-body distribution function (n=2, 3,..., N, for

a system of N particles). In 1955 Richardson, apparently unaware of

Green's result, wrote a cumulant expansion for the free energy, later

recognized as the canonical entropy functional.(2) Then, Nettleton and

M. S. Green obtained a similar expansion for the entropy of an ensemble

of open systems, where new fluctuation integrals appear besides the

logarithmic terms.(3) In particular, the ``two-body entropy'' reads:

S2=&1
2N\ | dr g(r) ln g(r)+ 1

2N\ | dr(g(r)&1) (1.1)
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where N is the average particle number and g(r) is the radial distribution

function.

Later on, Morita and Hiroike established Eq. (1.1) in the framework

of a variational formulation of equilibrium statistical mechanics, (4) while

De Dominicis carried out a generalization of this approach to the quantum

case.(5) A formal analysis of the ``fine structure'' of the entropy in the grand-

canonical ensemble was then performed also by Yvon who, by using the

cumulant method, pushed the explicit calculation of partial entropies up to

terms arising from correlations between quartets of particles.(6) A different

route was subsequently exploited by Raveche� , who resorted to a gener-

ating-function formalism involving activity derivatives of correlation func-

tionals, (7) while Baxter showed how the convolution hypernetted-chain and

the Percus�Yevick approximations can be derived in the entropy-functional

scheme.(8) A similar strategy, exploiting the possibility of generating

approximate integral equations through a truncated entropy functional for

continuum and lattice-gas systems, was outlined also by Percus.(9)

However, it is only very recently that the multiparticle correlation

expansion for the statistical entropy has found renewed interest on the

computational side. First, Wallace corrected some minor errors in the

original formulation of H. S. Green.(10) Then, Baranyai and Evans com-

mented further on this, emphasizing for the first time the ensemble

invariance of the entropy expansion.(11) Moreover, their numerical estimate

of the three-body term at liquid densities indicates that the entropy series

is rapidly convergent. Later Hernando, in 1990, extended Raveche� 's treat-

ment in the grand-canonical ensemble to mixtures of many molecular

species.(12) In the meanwhile, the entropy series appears also in connection

with the application of the cluster variation methodology, originally

proposed by Kikuchi, (13) to the theory of fluids. Schlijper and Harris

carried out the minimisation of a truncated entropy functional to derive

approximate fluid theories.(14)

The pair entropy has been evaluated for a number of systems.(15�19) In

some cases, the three-body term has been calculated as well.(20�23) We note

here that all of these calculations aim at obtaining a semi-quantitative

estimate of the total entropy at moderate densities and�or temperatures

through a truncated expansion which has to neglect a fortiori all terms

beyond the second or, more rarely, the third one. However, as originally

shown in refs. 24 and 25, such a residue, despite its minor quantitative

relevance in the overall entropic balance, is rich of information on the

statistical thermodynamics of the system and, in particular, on the inter-

play between phase transitions and high-order spatial correlations. Indeed,

it turns out that the ``residual multiparticle entropy'' 2S, a quantity defined

as the difference between the excess entropy and the two-body term (1.1),
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whose evaluation requires the knowledge of the pair distribution function

only, can be used as a sort of ``microscope'' that is capable of unravelling

hidden tendencies towards ordering of any kind.(24�36)

As yet, the problem of finding an entropy expansion for a lattice-gas

system in the thermodynamic limit, analogous to that valid for continuous

systems, has not, to our knowledge, been posed. In the present paper, we

solve this problem both in the canonical and in the grand-canonical ensem-

bles, confirming the ensemble invariance of the final expression and further

showing that new features appear in the entropy series of a lattice system.

The paper is organized as follows. After defining grand-canonical dis-

tribution functions on a lattice (Section 2), we derive the novel entropy

expansion in Section 3, closely following Hernando's treatment. In Section 4,

our result is checked against the Ising lattice gas in one dimension. Then,

we move to the canonical ensemble where we first sketch a new derivation

of the entropy formula for a continuous system (Section 5). In particular,

we prove that the entropy expansion retains its grand-canonical form for

any particle number. Conversely, in treating the lattice-gas case (Section 6),

we find an expansion similar to the grand-canonical one only after the ther-

modynamic limit has been taken. Finally, Section 7 is devoted to conclud-

ing remarks.

II. DISTRIBUTION FUNCTIONS ON A LATTICE

We consider a lattice-gas model, namely a system of particles living on

a regular lattice (of arbitrary dimensionality) with N sites. In the grand-

canonical ensemble, the partition function of the system reads

5=1+ :
N

n=1

e;+nZn (2.1)

where ; is the inverse temperature, + is the chemical potential, and Zn is

the (canonical) partition function of a n-particle system. The latter is given

as a (constrained) sum of Boltzmann factors,

Zn=:
(n)

[c]

e&;H[c] (2.2)

in the occupation-number representation where particles are considered as

being indistinguishable. For the sake of clarity we ignore multiple site

occupancy, i.e., ci=0, 1. In Eq. (2.2), the superscript is there to recall
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the number of occupied lattice sites, namely �N
i=1 ci=n. The system

Hamiltonian can be cast into the following general form:

H[c]=:
i

U (1)
i ci+ :

i< j

U (2)
ij ci cj+ :

i< j<k

U (3)
ijk ci cj ck+ } } } (2.3)

with arbitrary one-body, two-body, etc., interactions between particles. At

equilibrium, the probability of having just n particles in the lattice is

Pn=e;+nZn�5, while P0=1�5 is the chance to have an empty lattice.

We define

(A[c]) (n)=
� (n)

[c] A[c] e&;H[c]

Zn

(2.4)

as the (canonical) average of A in a n-particle system, while

(A[c])=
A[0]+�N

n=1 e
;+nZn(A[c])

(n)

5
(2.5)

is the average of the same quantity in the grand-canonical ensemble.

In an ideal-gas system, i.e., H[c]=0, we have Z (id)
n =(Nn ), whence

5 (id)=(1+e;+)N, (ck)
(n)
(id)=n�N, and (ck)

(id)=e ;+�(1+e ;+). The latter

expression coincides with (1�N )(� ln 5 (id)��;+), the density \, a result that

is not limited to the ideal-gas system, provided homogeneity holds, i.e., as

far as U (1)
i =u(1), U (2)

ij =u (2)
i& j , U

(3)
ijk=u (3)

i& j, i&k, j&k , and so on. For such a

system, H[c] is invariant under translations i� i $=R[i]. Any such a

cyclic substitution into the sum (2.4) for A[c]=ck leaves each Boltzmann

factor unchanged, but not ck itself which transforms into ck$ , leading to

(ck)
(n)=(ck$)

(n), i.e., translational invariance. Then (ck)
(n)=(1�N )_

(�i ci)
(n)=(n�N ) and (ck)=(1�N )(� ln 5��;+)=\. More generally, the

p-body density (ck1 } } } ckp) (defined only for kr{ks , when r{s) in a

n-particle ideal-gas system (with n�p) equals

(ck1 } } } ckp)
(n)
(id)=

n(n&1) } } } (n& p+1)

N(N&1) } } } (N& p+1)
(2.6)

In particular, for p=2, we have:

(ckcl)
(id)=

�N
n=2 e

;+nZ (id)
n (ckcl)

(n)
(id)

5 (id)
=\2 (2.7)
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Upon defining the two-body distribution function gkl (for k{l ) as:

gkl=
(ckcl)

\2
(2.8)

we obtain g (id)
kl =1. The above definition of the pair distribution function is

suggested by the general identity (where nc is the current particle number

�i ci and 2nc=nc&(nc) ):

(2n2
c)

(nc)
=1+\ \

1

N
:
N

i=1

:
j{i

(cicj)

\2
&N+ (2.9)

which closely resembles the fluctuation expression for a continuous system:

(2n2
c)

(nc)
=1+

\

V | dr dr$(g2(r, r$)&1) (2.10)

We now seek an expression for the grand-canonical density functions

of a lattice system in terms of probability densities. Upon extracting just

one term from the sum, the M-body density (M�N ) can be written as:

nM(iM )#(ci1 } } } ciM)

=
e ;+MZM

5
(ci1 } } } ciM)

(M )+ :
N

n=M+1

e ;+nZn

5
(ci1 } } } ciM)

(n) (2.11)

(the last term missing when M=N ). There is only one state contributing

to (ci1 } } } ciM)
(M ), i.e., c i1= } } } =ciM=1, whereas ck=0 for k{i1 ,..., iM .

We call UM(iM ) the value corresponding to H[c]. Here, iM=(i1 ,..., iM ).

UM(iM ) represents the interaction energy of M particles sitting at iM when

no other particles are present. Hence:

(ci1 } } } ciM)
(M )=

e&;UM (iM )

ZM

(2.12)

More generally, for n>M it follows:

(ci1 } } } ciM)
(n)=

1

(n&M )!
:
N

i $1 ,..., i $n&M=1

(i $p ,{i $q , i $p{ir )

e&;Un(i
M, i $n&M )

Zn

(2.13)
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where the factorial corrects for multiple counting of (n&M )-tuples, and

there are (N&M )!�(N&n)! terms in the sum. Finally, the canonical parti-

tion function can be re-written as:

Zn=
1

n!
:
N

i1 ,..., in=1

(ip{iq)

e&;Un(i
n)= :

i1< } } } <in

e&;Un(i
n) (2.14)

Now, take the lattice probability density as:

Pn(i
n)=

e ;+ne&;Un(i
n)

5
(2.15)

Pn(i
n) represents the probability of finding n particles in the lattice at the

sites specified by i n. Note that a normalization condition holds:

P0+ :
N

n=1

:
i1<<in

Pn(i
n)=1 (2.16)

Using Eqs. (2.12)�(2.15), the M-body density (2.11) can be written as:

nM(iM )#\MGM(iM )

=PM(iM )+ :
N&M

S=1

1

S !
:
N

i $1 ,..., i $S=1

(i $p{i $q , i $p{ir )

PM+S(i
M, i $S ) (2.17)

The above formula holds even for M=0 if we take n0=G0=1. Quite

generally, it defines the M-body distribution function GM(iM ) in the grand-

canonical ensemble. We note that Eq. (2.17) can be cast into the more

compact form:

nM(iM )=eBPM(iM ) (2.18)

where

B= :
N

j=1

( j{i1 ,..., iM )

b+
j (2.19)

and b+
i is an operator which adds one particle at site i. We enforce single

site occupancy by requiring that (b+i )2=0; moreover, b+
i b+j =b+j b+

i , when
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i{ j, due to the indistinguishability of the particles. Since e&BeB=1,

Eq. (2.18) can be inverted to give:

PM(iM )=\MGM(iM )+ :
N&M

S=1

(&1)S

S !
\M+S :

N

i $1 ,..., i $S=1

(i $p{i $q , i $p{ir )

GM+S(i
M, i $S )

(2.20)

This expression is crucial for obtaining a multiparticle expansion for the

entropy. In particular,

P0=
1

5
=1+ :

N

S=1

(&1)S

S !
\S :

N

i1 ,..., iS=1

(ip{iq )

GS(i
S ) (2.21)

provides an expansion for 5&1.

III. ENTROPY EXPANSION IN THE GRAND-CANONICAL
ENSEMBLE

The inverse temperature ; and (minus) the reduced chemical potential

&;+ are the control parameters in the grand-canonical ensemble represen-

tation. Here, the Massieu function reads

1

kB

S[;, &;+]=
S

kB

&;U+;+N=ln 5 (3.1)

where it is assumed that entropy S, energy U, and particle number N all

depend upon ; and &;+. In particular, the ideal-gas entropy equals:

S (id)

NkB

=&\ ln \&(1&\) ln(1&\) (3.2)

with \=N
(id)�N. This form for the entropy is to be contrasted with the

simpler form (ln \) which holds in the continuum.

We search a general expression of the entropy in terms of multiparticle

correlations, having Eq. (3.2) as the zeroth-order term. To this end, it is

convenient to consider the following function:

FM(iM )=
5

zM
\MGM(iM ) (3.3)
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for 0�M�N and z=e;+. Using Eq. (2.17), we obtain, for 1�M�N&1:

FM(iM )=e&;UM(iM )+ :
N&M

S=1

zS

S !
:
N

i $1 ,..., i $S=1

(i $p{i $q , i $p{ir )

e&;UM+S(i
M, i $S ) (3.4)

Furthermore, we define:

F0=5=1+ :
N

S=1

zS

S !
:
N

i1 ,..., iS=1

(ip{iq )

e&;US(i
S ) (3.5)

and FN(i
N )=e&;UN (i

N ). Taken a linear operator 1 (R) (for R�0) as:

1 (R)=zR
�R

�zR
(3.6)

we have, for 0�M�N&1 and 1�R�N&M:

1 (R)FM(iM )= :
N&M

S=R

zS

(S&R)!
:
N

i $1 ,..., i $S=1

(i $p{i $q , i $p{ir )

e&;UU+S(i
M, i $S ) (3.7)

whereas 1 (R)FN(i
N )=0.

Then, for 0�M�N, we calculate

AM(iM )=
1

FM(iM )
:

N&M

R=0

(&1)R

R!
1 (R)FM(iM ) (3.8)

(note that AN(i
N )=1, since 1 (0)FN=FN ). Using Eq. (3.6), we get (for

M<N ):

AM(iM )=1+
zM

5\MGM(iM )
:

N&M

R=1

:
N&M

S=R

(&1)R zS

R! (S&R)!

_ :
N

i $1 ,..., i $S=1

(i $p{i $q , i $p{ir )

e&;UM+S(i
M, i $S ) (3.9)
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The double sum can be further simplified after noting that:

:
N&M

R=1

:
N&M

S=R

(&1)R zSCS

R! (S&R)!
= :

N&M

S=1
_ :

S

R=1

(&1)R \
S

R+&
zS

S !
CS

=& :
N&M

S=1

zS

S !
CS (3.10)

which leads to:

AM(iM )=
zMe&;UM(iM )

5\MGM(iM )
(3.11)

This result holds for all M�N. In particular, A0=1�5. Equation (3.11)

can be used to calculate the entropy as follows. We first obtain:

&;U+;+N&ln 5=ln A+N ln \+ln G (3.12)

where

B� #P0B0+ :
N

n=1

1

n!
:
N

i1 ,..., in=1

(ip{iq )

Pn(i
n) Bn(i

n) (3.13)

represents the grand-canonical average of a local quantity. Finally, Eqs. (3.1),

(3.2), and (3.12) together give the entropy as:

S

kB

=
S (id)

kB

&ln A&ln G+N(1&\) ln(1&\) (3.14)

We note that the ideal-gas entropy appearing in Eq. (3.14) has the same

form as in Eq. (3.2) but for a density \ which is that of the interacting

system. The entropy expansion is hidden inside Eq. (3.14). Now, we just

need to expand the thermal averages in Eq. (3.14), by making use of the

cumulant method.

Given a function:

f (!)= :
�

m=1

+m

m!
!m (3.15)

which vanishes for !=0, and taken:

g(!)=ln(1+ f (!)) (3.16)
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it follows that g(!) has a power-series expansion around !=0 in the form:

g(!)= :
�

m=1

}m

m!
!m (3.17)

with

}m=&m! :
n1 ,..., nm

(&1)�
m
k=1 nk \ :

m

k=1

nk&1+ ! `
m

k=1

1

nk ! \
+k

k ! +
nk

(3.18)

The sum in Eq. (3.18) is over all m-tuples of non-negative integers under

the condition �m
k=1 knk=m. The numbers }k are called cumulants. The

inverse formula yields:

+m=m! :
n1 ,..., nm

`
m

k=1

1

nk ! \
}k

k!+
nk

(3.19)

with the same prescription as above for n1 ,..., nm . Other useful formulae

are:

dm ln F(x)

dxm =&m! :
n1 ,..., nm

\ :
m

k=1

nk&1+ ! `
m

k=1

1

nk ! \
&1

k! F(x)

d kF(x)

dxk +
nk

(3.20)

and, conversely,

dmF(x)

dxm =m! F(x) :
n1 ,..., nm

`
m

k=1

1

nk! \
1

k!

d k ln F(x)

dxk +
nk

(3.21)

Equations (3.20) and (3.21) are valid for any m-time differentiable function

F(x), with �m
k=1 knk=m.

With the help of Eq. (3.21), we get (for 0�M�N&1):

AM=1+ :
N&M

R=1

(&1)R :
n1 ,..., nR

`
R

k=1

1

nk ! \
1

k!
1 (k) ln FM+

nk

(3.22)

with �R
k=1 knk=R. Taken }R=(&1)R 1 (R) ln FM(iM ) and

g(!)= :
N&M

R=1

}R

R!
!R (3.23)
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we find, using Eq. (3.19):

e g(!)=1+ :
�

R=1

(&!)R :
n1 ,..., nR

`
R

k=1

1

nk ! \
1

k!
1 (k) ln FM+

nk

(3.24)

Finally, comparing Eq. (3.22) with Eq. (3.24), we obtain, in the thermo-
dynamic limit:

AM(iM )=e g(1)=exp \ :
�

R=1

(&1)R

R!
1 (R) ln FM(iM )+ (3.25)

where it has been assumed that the radius of convergence of the power

series in Eq. (3.24) is greater than 1. Finally, plugging Eq. (3.25) into

Eq. (3.14), we get the ``excess entropy'' as

S (ex)

kB

#

S&S (id)

kB

=&ln G& :
R>0

(&1)R

R!
1 (R) ln F+N(1&\) ln(1&\)

(3.26)

We now need to calculate 1 (R) ln FM for 0�M�N&1 and 1�R�

N&M. Using Eq. (3.20), we obtain:

1 (R) ln FM=&R! :
n1 ,..., nR

\ :
R

k=1

nk&1+ ! `
R

k=1

1

nk ! \
&zk

k! FM

�kFM

�zk +
nk

(3.27)

The last derivative can be expressed in terms of correlations, using Eqs. (3.7)

and (2.17), as:

zk

FM

�kFM

�zk
=\k :

i $1 ,..., i $k=1

(i $p{i $q , i $p{ir )

GM+k(i
M, i k)

GM(iM )
(3.28)

Since 1 (R) ln FN=0, we finally get:

1 (R) lnF=
1

5
1 (R) ln 5+ :

N&1

n=1

1

n!
:
N

i1 ,..., in=1

(ir{is)

(&R!)

__\n+RGn(i
n)+ :

N&n

S=1

(&1)S

S !
\n+S+R :

N

i $1 ,..., i $S=1

(i $p{i $q , i $p{ir )

Gn+S(i
n, i$S )&

_ :
n1 ,..., nR

\ :
R

k=1

nk&1+ ! `
R

k=1

1

nk! \
&1

k !
:
N

i $1 ,..., i $k=1

(i $p{i $q , i $p{ir )

Gn+k(i
n, i $k)

Gn(i
n) +

nk

(3.29)
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The last unknown term in the entropy expansion is �R>0 [(&1)R�R !]

_1 (R) ln 5 which must be expressed in terms of the G 's. Recalling that

F0=5 and using Eqs. (3.27) and (3.28), we get:

:
R>0

(&1)R

R!
1 (R) ln 5=& :

R>0

(&\)R :
n1 ,..., nR

(&1)�
R
k=1 nk \ :

R

k=1

nk&1+ !

_`
R

k=1

1

nk! \
1

k!
:
N

i1 ,..., ik=1

(ir{is )

Gk(i
k)+

nk

(3.30)

Hence, the excess entropy takes the following final form (valid only in the

thermodynamic limit):

S (ex)

kB

=N(1&\) ln(1&\)& :
N

n=1

1

n!
:
N

i1 ,..., in=1

(ip{iq )

Pn(i
n) ln Gn(i

n)

+ :
R>0

(&\)R :
N&1

n=1

1

n!

_ :
N

i1 ,..., in=1

(ip{iq )

\\nGn(i
n)+ :

N&n

S=1

(&1)S

S !
\n+S :

N

i $1 ,..., i $S=1

(i $p{i $q , i $p{ir )

Gn+S(i
n, i $S )+

_ :
n1 ,..., nR

\ :
R

k=1

nk&1+ ! `
R

k=1

1

nk ! \
&1

k!
:
N

i $1 ,..., i $k=1

(i $p{i $q , i $p{ir )

Gn+k(i
n, i $k)

Gn(i
n) +

+\1+ :
N

S=1

(&1)S

S!
\S :

N

i1 ,..., iS=1

(ip{iq )

GS(i
S )+

_ :
R>0

(&\)R :
n1 ,..., nR

\ :
R

k=1

nk&1+ ! `
R

k=1

1

nk ! \
&1

k!
:
N

i1 ,..., ik=1

(ip{iq )

Gk(i
k)+

nk

(3.31)

with �R
i=1 ini=R, and where Pn(i

n) in the first line is given by Eq. (2.20).

Equation (3.31) is our main result. This expression has several

analogies with that reported by Hernando for a continuous system.(12)

However, as we are going to show very soon, substantial differences

between the two formulae appear when Eq. (3.31) is cast into the form of
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a multiparticle series expansion. For the sake of clarity, we stop at the

third-order term in the series, which is enough for discussing our point.

It is now straightforward to group terms in Eq. (3.31) using the den-

sity as an ``ordering parameter'' (which is not tantamount to treating \ as

an expansion variable since the distribution functions Gn(i
n) do also

depend on the density). The first term can be written as:

(1&\) ln(1&\)=&\+
\2

2
+

\3

6
+O(\4) (3.32)

Introducing the reduced distribution functions

g2(i1 , i2)=
G2(i1 , i2)

G1(i1) G1(i2)
, g3(i1 , i2 , i3)=

G3(i1 , i2 , i3)

G1(i1) G1(i2) G1(i3)
,..., (3.33)

the second term becomes:

&\ :
N

i1=1

G1(i1) ln G1(i1)&
\2

2
:
N

i1 , i2=1

(i1{i2 )

G2(i1 , i2) ln g2(i1 , i2)

&
\3

6
:
N

i1 , i2 , i3=1

(ip{iq )

G3(i1 , i2 , i3) ln
g3(i1 , i2 , i3)

g2(i1 , i2) g2(i1 , i3) g2(i2 , i3)
+O(\4) (3.34)

Next, we move to the ``configurational'' contributions to the excess

entropy. The first term is simply \ �N
i1=1 G1(i1). The next term reads:

\2

2 \ :
N

i1 , i2=1

(i1{i2)

G2(i1 , i2)& :
N

i1 , i2=1

G1(i1) G1(i2)+

=
\2

2
:
N

i1 , i2=1

(i1{i2)

G1(i1) G1(i2)(g2(i1 , i2)&1)&
\2

2
:
N

i1=1

G2
1(i1) (3.35)

The latter ``addendum'' in Eq. (3.35) has no counterpart in the continuum.

Here, we see at work for the first time the mechanism that is responsible

for the appearance of novel terms in the entropy formula of a lattice

system, some sort of ``self-energy'' terms induced by the regularization. This

situation repeats at the next order which, after long but straightforward

calculations, reads:
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\3

6
:
N

i1 , i2 , i3=1

(ip{iq)

G1(i1) G1(i2) G1(i3)

_[ g3(i1 , i2 , i3)&3g2(i1 , i2) g2(i1 , i3)+3g2(i1 , i2)&1]

&
\3

6
:
N

i1=1

G3
1(i1)&

\3

2
:
N

i1 , i2=1

(i1{i2)

G2
1(i1) G1(i2)(g2(i1 , i2)&1)2 (3.36)

Again, the last two addenda can be read as self-energies.

Collecting together all partial results, the excess entropy can be finally

written as:

S (ex)

kB

=&\ :
N

i1=1

G1(i1) ln G1(i1)+
\2

2
:
N

i1=1

(1&G2
1(i1))+

\3

6
:
N

i1=1

(1&G3
1(i1))

&
\2

2
:
N

i1 , i2=1

(i1{i2)

G1(i1) G1(i2)[g2(i1 , i2) ln g2(i1 , i2)&g2(i1 , i2)+1]

&
\3

2
:
N

i1 , i2=1

(i1{i2)

G2
1(i1) G1(i2)(g2(i1 , i2)&1)2

&
\3

6
:
N

i1 , i2 , i3=1

(ip{iq )

G1(i1) G1(i2) G1(i3)

__ g3(i1 , i2 , i3) ln
g3(i1 , i2 , i3)

g2(i1 , i2) g2(i1 , i3) g2(i2 , i3)
&g3(i1 , i2 , i3)

+3g2(i1 , i2) g2(i1 , i3)&3g2(i1 , i2)+1&+O(\4) (3.37)

This formula (the ``lattice entropy expansion'') can be further sim-

plified if the system is homogeneous (no one-body term in the potential),

since in this case G1(i)=1. This follows from (ck)
(n)=n�N, i.e., (ck)=\

for any k (see the discussion following Eq. (2.5)). For a homogeneous

system the excess entropy thus reads:
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S (ex)

kB

=&
\2

2
:
N

i1 , i2=1

(i1{i2)

(g2(i1 , i2) ln g2(i1 , i2)&g2(i1 , i2)+1)

&
\3

2
:
N

i1 , i2=1

(i1{i2)

(g2(i1 , i2)&1)2

&
\3

6
:
N

i1 , i2 , i3=1

(ip{iq)

_g3(i1 , i2 , i3) ln
g3(i1 , i2 , i3)

g2(i1 , i2) g2(i1 , i3) g2(i2 , i3)
&g3(i1 , i2 , i3)

+3g2(i1 , i2) g2(i1 , i3)-3g2(i1 , i2)+1]+O(\4) (3.38)

Note, in particular, the presence of a term &1
2 \

3 �i1{i2
(g2(i1 , i2)&1)2,

which does not appear in the continuum entropy formula.(12)

Each sum in the power series (3.38) is O(N ), and S (ex) is thus exten-

sive. This is particularly transparent at the second-order level, since the

double sum over i1{i2 gives N times a O(1) number.

As noted above, the multiparticle expansion (3.38) is not a density-

power series, since each coefficient is a function of \ as well. Upon expanding

the coefficients, we can obtain a true density-power series whose third-order

term, for instance, results from the first-order contribution of the two-body

term and from the zeroth-order contribution of the three-body term.

IV. THE FORMULA AT WORK: ONE-DIMENSIONAL ISING
LATTICE GAS

Equation (3.38) gives the first few terms in the expansion of the excess

entropy of a homogeneous lattice system in terms of distribution functions.

We notice, in particular, that the nth order term is the place where n-body
correlations first appear. It is generally believed that the truncated expan-

sion loses validity at high density when many-body correlations cease to be

negligible.

We now use the Ising lattice-gas model in one dimension to check our

formula for the entropy. This system is simple enough to allow the explicit

computation of the two- and three-body distribution functions.

The Ising lattice gas Hamiltonian reads

H[c]=&= :
(i, j)

c i cj (4.1)
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where the sum is over nearest-neighbor pairs of lattice sites only (there are

ND such pairs in a D-dimensional cubic lattice with N sites). When =>0

(the ``ferromagnetic'' case), particles behave gregariously at low tempera-

ture. The grand-canonical partition function of the lattice system,

5= :
c1 ,..., cN

e ;+ � i cie ;= �(i, j ) ci cj (4.2)

can be cast into a more convenient form if we introduce spin variables

si=2ci&1, arriving eventually at the partition function of an Ising model

in D dimensions:

&;HI=K :
(i, j)

si sj+H :
i

si (4.3)

with

H=
;++D;=

2
and K=

;=

4
(4.4)

The partition function 5 is precisely written as:

5=exp \
;+

2
N+

;=

4
ND+ ZI (4.5)

As is well known, in two dimensions, the Ising first-order transition line

H=0, K> 1
2 ln(1+- 2) turns into +=&D=, ;=>2 ln(1+- 2). We now

specialize our discussion to the one-dimensional case where both the free

energy and the radial correlations are known at any H. In particular, the

former reads:

fI#&
1

;
lim

N��

ln ZI

N
=&

1

;
ln(eK cosh H+- e2K sinh2 H+e&2K ) (4.6)

Averages over H[c] are all written in terms of spin averages. In particular

\(;, ;+)#N�N=(1+m)�2, where m is the magnetization per site given as

a function of K(;) and H(;, &;+) by:

m=&
�(;fI)

�H
=

eK sinh H

- e2K sinh2 H+e&2K
(4.7)
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The inverse formula,

sinh \
;+

2
+

;=

2 +=e&;=�2 2\&1

- 1&(2\&1)2
(4.8)

implicitly defines ;+ in terms of ; and \. After eliminating ;+ by this

means, we obtain the entropy of the lattice gas from Eq. (3.1) through the

substitutions S[;, &;+]=kB ln 5, U=&� ln 5��;, and N=N\. After

straightforward but rather lengthy algebraic calculations, we are finally led

to the following expression for the entropy of the one-dimensional Ising

lattice gas:

S

NkB

=(1&2\) ln(:&2(2\&1)+- 1&(1&:&4)(2\&1)2)

&(1&\) ln(1&(2\&1)2)+ln(:&2+- 1&(1&:&4)(2\&1)2)

+
;=

2
:&2

1&(2\&1)2

:&2+- 1&(1&:&4)(2\&1)2
(4.9)

where :=exp(;=�4).
Now that we have got the exact expression of S in terms of tem-

perature and density, we are in a position to check our formula. We can

expand the right-hand side of Eq. (4.9) as a power series of \, truncating
the expansion at the \3 level, and then comparing it with that obtained

from Eq. (3.38) upon inserting the exact expressions of the two- and three-

body distribution functions.

Using the approximation:

- 1&(1&:&4)(2\&1)2

=:&2+2:&2(:4&1) \&2:2(:4&1) \2

+4:2(:4&1)2 \3&2:2(5:12&14:8+13:4&4) \4+O(\5) (4.10)

we obtain the following exact result:

S

NkB

=&\ ln \&(1&\) ln(1&\)&[;=e ;=&(e ;=&1)] \2

&[(e ;=&1)2&2;=e ;=(e ;=&1)] \3+O(\4) (4.11)

A few comments on this equation. First of all, we easily recognize general

properties of the entropy expansion of a homogeneous system such as the
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zeroth-order ideal-gas term and a missing linear term. Secondly, the \2

term is always negative (it vanishes for ;==0 only).

We now calculate the distribution functions that are needed in order

to evaluate all terms in the truncated expansion (3.38). These functions are

more easily computed within the transfer-matrix framework. Given the

Hamiltonian (4.3), one first defines the transfer matrix:

T=\
eK+H

e&K

e&K

eK&H+ (4.12)

whose eigenvalues and eigenvectors are (see, for instance, ref. 37): *1, 2=
eK cosh H\- e2K sinh2 H+e&2K , with v1=(

:1
:2
), v2=(

:2
&:1

), respectively,

and

:21, 2=
1

2 \1\
eK sinh H

- e2K sinh2 H+e&2K + (4.13)

Using the matrix As1 , s$1
=s1$s1 , s$1 , we obtain (s1)=(1�ZN ) tr(ATN ) and

(s1s1+R)=(1�ZN ) tr(AT R
AT N&R), for R>0, where tr(ace) means sum-

ming over all spin states, and ZN=tr(TN ). All traces are easily computed

if the matrix S, the orthogonal matrix which diagonalizes T, is intro-

duced. In the thermodynamic limit, multiple insertion of SS
&1 in the

above formulae gives:

(s1)=:2
1&:2

2=cos ,,
(4.14)

(s1s1+R)=(s1)
2+4:2

1:
2
2 \

*2
*1+

R

=cos2 ,+sin2 , exp \&
R

! +
where cot ,=e2K sinh H (with 0<,<?) and !&1=ln(*1 �*2). The same

technique is employed to calculate triplet correlations. We obtain, for

R1 , R2>0:

(s1s1+R1
s1+R1+R2

)

=cos3 ,+cos , sin2 , _\
*2
*1+

R1

+\
*2
*1+

R2

&\
*2
*1 +

R1+R2

& (4.15)
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After recalling that si=2ci&1, meaning cos ,=2\&1, we finally get (for

i< j and i< j<k, respectively):

gij=1+
1&\

\ \
*2
*1+

j&i

;

(4.16)

gijk=1+
1&\

\ _\
*2
*1+

j&i

+\
*2
*1+

k& j

&+\
1&\

\ +
2

\
*2
*1+

k&i

= gij gjk

It is evident that these functions are translationally invariant. Moreover,

the triplet distribution function obeys a factorization rule that is ultimately

related to the simple connectivity of the 1D lattice, along with the absence

of three and higher-site interactions in the Ising Hamiltonian. In turn, the

entropy reduces to a functional of gij only which, however, does not seem

amenable to be written in closed form.

In order to extract the leading terms in the entropy expansion we use

the fact that:

*2
*1

=\[:4&1&(2:8&3:4+1) \+(:4&1)(5:8&6:4+1) \2]+O(\4)

(4.17)

which yields the following second-order approximation for the two-body

distribution functions:

g01=:4&2:4(:4&1) \+:4(5:8&9:4+4) \2+O(\3);

g02=1+(:4&1)2 \&(:4&1)(4:8&5:4+1) \2+O(\3);
(4.18)

g03=1+(:4&1)3 \2+O(\3);

g04=g05= } } } =1+O(\3)

Trivial substitution of Eq. (4.18) into the expression of the two-body

entropy per site yields:

\2

2N
:
N

i1 , i2=1

(i1{i2)

(&g2(i1 , i2) ln g2(i1 , i2)+ g2(i1 , i2)&1)

=&\2 :
j>0

(g0 j ln g0 j&g0 j+1)

=&;=e;=+(e ;=&1)+2;=e ;=(e ;=&1) \+O(\2) (4.19)
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We now list only the three-body distribution functions that are signifi-

cant at low density:

g012=:8&4:8(:4&1) \+O(\2);

g013=g023=:4+:4(:8&4:4+3) \+O(\2);
(4.20)

g024=1+2(:4&1)2 \+O(\2);

g014=g034= g015= g045= } } } =:4&2:4(:4&1) \+O(\2)

We also notice that gijk= gikj= gkji= } } } , since ci cj ck=ci ck cj=ck cj ci
= } } } . Collecting together all this information, we can evaluate the three-

body entropy per site. The first term reads:

&
\3

6N
:
N

i1 , i2 , i3=1

(ip{iq )

g3(i1 , i2 , i3) ln
g3(i1 , i2 , i3)

g2(i1 , i2) g2(i1 , i3) g2(i2 , i3)

=&
\3

6 _6g012 ln
g012

g01g02 g12
+6(N&4) g013 ln

g013
g01g03 g13

+O(\)&
=O(\4) (4.21)

This term does not give a contribution at third order. The next term is:

\3

6N
:
N

i1 , i2 , i3=1

(ip{iq )

(g3(i1 , i2 , i3)&1)

=
\3

6
[6(g012&1)+6(N&4)(g013&1)+O(\)]

=\3[:8&4:4+3+N(:4&1)]+O(\4) (4.22)

which is not intensive. This is due to the fact that it is only the whole three-

body entropy that must eventually be extensive (single pieces do not

necessarily show this property). The forthcoming term reads:

\3

2N
:
N

i1 , i2 , i3=1

(ip{iq)

g2(i1 , i2)(1&g2(i1 , i3))

=
\3

2
[2:4(1&:4)+(2(N&2)&2)(1&:4)]

=\3[&:8+4:4&3&N(:4&1)]+O(\4) (4.23)
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which cancels exactly the preceding one. Finally:

&
\3

2N
:
N

i1 , i2=1

(i1{i2)

(g2(i1 , i2)&1)2=2\3 :
j>0

(g0 j&
1
2 g

2
0 j&

1
2)

=\3(&:8+2:4&1)+O(\4) (4.24)

Collecting together all the partial results, we finally obtain the following

expansion for the excess entropy per site:

S (ex)

NkB

=&[;=e ;=&(e ;=&1)] \2+[2;=e ;=(e ;=&1)&(e ;=&1)2] \3+O(\4)

(4.25)

which reproduces Eq. (4.11). It is curious to observe that the third-order

term in this expansion precisely comes from the O(\) term of

&1
2 (g2 ln g2& g2+1) and from the zeroth-order term of &1

2 (g2&1)2. This

last term has no counterpart in the continuum entropy formula.

V. BACK TO THE CONTINUUM: ANOTHER DERIVATION
OF THE ENTROPY FORMULA

This paragraph deviates in part from the main body of the text, being

devoted to a novel derivation of the entropy formula for a continuous

system in the canonical ensemble. We now suppose that the system under

study has continuous degrees of freedom, volume V and particle number N,

while being in contact with a heat bath. We use the notation rN=

[r1 , r2 ,..., rN] for the system configuration. Let UN (r
N ) be the potential.

The canonical partition function takes the form ZN=Z (id)
N QN , where Z (id)

N

is the ideal-gas partition function and QN is the configurational integral.

The Massieu function for the canonical equilibrium reads:

S[;]

kB

=ln Z=
S (id)

kB

&
DN

2
+

S (ex)

kB

&;(UN) (5.1)

where

S (ex)

kB

=&|
drN

V N

e&;UN (r
N )

QN

ln
e&;UN (r

N )

QN

(5.2)
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We now define (for k=1,..., N&1):

P(k)(rk)=|
drk+1 } } } drN

VN&k

e&;UN (r
N )

QN

(5.3)

and

P(N )(rN )=
e&;UN (r

N )

QN

(5.4)

Note that P(k)=1 for an ideal gas. Moreover, P(1)=1 for a homogeneous

system. The normalization of Eqs. (5.3) and (5.4) is to be intended in the

following sense:

|
dr1 } } } drk

V k P(k)(rk)=1 (5.5)

We also notice that:

|
drk+1

V
P(k+1)(rk+1)=P(k)(rk) (5.6)

In the foregoing, we shall use the shorthand notation Pi1 } } } ik
=P(k)(ri1 ,..., rik).

Finally, distribution functions are defined (for n=2,..., N ) as:

g12 } } } n=\1&
1

N+\1&
2

N+ } } } \1&
n&1

N +
P12 } } } n

P1P2 } } }Pn

(5.7)

with the property

|
drk+1

V
Pk+1g1 } } } k+1=

N&k

N
g1 } } } k (5.8)

Simplifying the notation for the sake of clarity, we state that the

entropy expansion is simply given by the identity:

&
S (ex)

kB

=| P1 } } }N ln P1 } } }N

=N | P1 ln P1+| P1 } } }N ln
P1 } } }N

P1 } } } PN
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=N | P1 ln P1+\
N

2 + | P12 ln
P12

P1P2

+\
N

3 +{| P123 ln
P123

P1P2P3

&\
3

2+ | P12 ln
P12

P1P2=
+\

N

4 +{| P1234 ln
P1234

P1P2P3P4

&\
4

3+| P123 ln
P123

P1P2P3

+\
4

2+ | P12 ln
P12

P1P2=
+ } } } +{| P1 } } }N ln

P1 } } }N

P1 } } }PN

&\
N

N&1+ | P1 } } }N&1 ln
P1 } } }N&1

P1 } } }PN&1

+ } } } +(&1)N \
N

2 + | P12 ln
P12

P1P2= (5.9)

which stems from the following combinatorial formula (valid for 0�k<N ):

:
N

n=k

(&1)n \
N

n +\
n

k+=(&1)k :
N&k

n=0

(&1)n \
N

n+k+\
n+k

k +
=(&1)k \

N

k + :
N&k

n=0

(&1)n \
N&k

n +=0 (5.10)

The procedure adopted above to obtain the entropy expansion bypasses

the more standard use of the potentials of average force.(14)

Now, it can be proven sistematically, i.e., order by order, that the

various terms in Eq. (5.9) have the usual form when expressed in terms of

distribution functions. In fact, we shall stop at the third-order term in the

expansion.

Taking advantage of Eq. (5.7), the second term in Eq. (5.9) can be

written as:

\
N

2 + |
dr1 dr2
V 2

P12 ln
P12

P1P2

=\
N

2 + ln
N

N&1
+

1

2
\2 | dr1 dr2 P1P2 g12 ln g12

=
1

2
\2 | dr1 dr2 P1P2(g12 ln g12& g12+1)+N \

N&1

2
ln

N

N&1
&

1

2+
(5.11)
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The rearrangement in Eq. (5.11) ensures a faster convergence of the

integrand. Note, moreover, that the additional number in Eq. (5.11) is O(1)

in the thermodynamic limit.

The next piece of Eq. (5.9) reads:

\
N

3 +{|
dr1 dr2 dr3

V 3
P123 ln

P123

P1P2P3

&3 |
dr1 dr2
V 2

P12 ln
P12

P1P2=
=\

N

3 + ln
(N&1)2

N(N&2)
+

1

6
\3 | dr1 dr2 dr3 P1P2P3g123 ln

g123
g12g13g23

=
1

6
\3 | dr1 dr2 dr3

_P1P2P3 \ g123 ln
g123

g12g13g23
&g123+3g12g13&3g12+1+

+N _
(N&1)(N&2)

6
ln

(N&1)2

N(N&2)
&

1

6& (5.12)

Again, rearranging the terms in Eq. (5.12) in such a way as to reproduce

the grand-canonical three-body entropy(12) leaves outside the integral a

number which is O(1) in the N�� limit. More generally, we surmise that

at each order in the expansion, completing the integral as stated above

produces a residual O(1) quantity.

The spurious terms appearing at each order in the expansion can be

easily re-summed by means of Eq. (5.10), obtaining:

\
N

2 + ln
N

N&1
+\

N

3 + {ln
N 2

(N&1)(N&2)
&3 ln

N

N&1=
+\

N

4 + {ln
N 3

(N&1)(N&2)(N&3)
&4 ln

N 2

(N&1)(N&2)
+6 ln

N

N&1=
+ } } } +{ln

N N&1

(N&1)(N&2) } } } 2 } 1
&N ln

N N&2

(N&1)(N&2) } } } 3 } 2

+ } } } +(&1)N \
N

2 + ln
N

N&1=
=ln

N N&1

(N&1)!
=ln

N N

N!
(5.13)
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It then follows:

S (ex)

kB

=&ln
NN

N!
+N \

1

2
+

1

6
+ } } } +&\ | dr1P1 ln P1

&
1

2
\2 | dr1 dr2 P1P2(g12 ln g12& g12+1)

&
1

6
\3 | dr1 dr2 dr3 P1P2P3

_\g123 ln
g123

g12g13g23
& g123+3g12g13&3g12+1++ } } } (5.14)

We emphasize that Eq. (5.14) contains only a finite number of terms, the

last term being the N-body entropy.

The first two terms on the right-hand side of Eq. (5.14) can be written

in a more transparent way after using the N-particle ideal-gas entropy:

DN

2
+ln _

1

N ! \
V

4D+
N

&=N _
D

2
&ln(\4D)&&ln

N !

NN (5.15)

We show below that 1
2+

1
6+ } } } is just the Mengoli series (stopped at

1�N(N&1)). Hence, Eq. (5.14) becomes:

S

kB

=
S (id)

kB

&1&\ | dr1 P1 ln P1&
1

2
\2 | dr1 dr2 P1P2(g12 ln g12& g12+1)

&
1

6
\3 | dr1 dr2 dr3 P1P2P3

_\ g123 ln
g123

g12g13g23
& g123+3g12g13&3g12+1++ } } } (5.16)

where

S (id)

kB

=N _
D+2

2
&ln(\4D)& (5.17)

is the ideal-gas entropy in the thermodynamic limit. Equation (5.16) is the

entropy formula in the canonical ensemble. At variance with the analogous

expansion in the grand-canonical ensemble, it is valid for arbitrary N.
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We finally show that each of the numbers appearing on the left-hand

side of Eq. (5.13) behaves like N�k(k&1) (k=2, 3,..., N ), for large N. To

this end, consider the generic term:

ln
N k&1

(N&1) } } } (N&k+1)
&\

k

k&1+ ln
N k&2

(N&1) } } } (N&k+2)

+ } } } +(&1)k \
k

2+ ln
N

N&1

= :
k&1

n=1

(&1)n \
k&1

n&1+ ln \1&
k&n

N + (5.18)

Since we are going to take the N�� limit of this expression, we expand

the right-hand side of Eq. (5.18) in powers of N&1 to get:

&
1

N
:
k&1

n=1

(&1)n \
k&1

n&1+ (k&n)&
1

2N 2
:
k&1

n=1

(&1)n \
k&1

n&1+ (k&n)2+ } } }

(5.19)

In order to calculate the leading term in Eq. (5.19), we preliminary show

(for k=2, 3,...) that:

for

&(&1)k,
d=0

:
k&1

n=1

(&1)n \
k&1

n&1+ (k&n)d={0, for
(5.20)

&(k&1)!,
d=1, 2,..., k&2

for

d=k&1

For d=0 and for k=2, 3, the proof of Eq. (5.20) is straightforward. When

k>3 and d=1, 2,..., k&1, we carry on by induction over k. We find:

:
k

n=1

(&1)n \
k

n&1+ (k+1&n)d

=k :
k&1

n=1

(&1)n \
k&1

n&1+ (k+1&n)d&1+(&1)k k

=k :
d&1

m=0
\
d&1

m + :
k&1

n=1

(&1)n \
k&1

n&1+ (k&n)m+(&1)k k

=k :
d&1

m=1
\
d&1

m + :
k&1

n=1

(&1)n \
k&1

n&1+ (k&n)m (5.21)
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When d�k&1, the above number is zero, due to Eq. (5.20). Instead, when

d=k the result is:

k :
k&1

n=1

(&1)n \
k&1

n&1+ (k&n)k&1=&k ! (5.22)

which completes the proof of Eq. (5.20). Using this equation, it is now easy

to see that the first term surviving in Eq. (5.19) is d=k&1, which even-

tually leads to

\
N

k + _ln
N k&1

(N&1) } } } (N&k+1)
+ } } } +(&1)k \

k

2+ ln
N

N&1&t
N

k(k&1)

(5.23)

as anticipated above.

We add a final comment to Eq. (5.9). This equation gives the excess

entropy as a sum of N terms whose values become progressively smaller

and smaller provided the density is not too high. Hence, the approximation

obtained upon truncating the sum at a given order improves with the number

of terms that are being kept. This procedure can be made more systematic by

introducing a functional S*=&( ln P*1 } } }N) , which for P*1 } } }N=P1 } } }N

gives back the total excess entropy. In particular, the truncation of Eq. (5.9)

after the first, second, and third term respectively, can be accomplished by

assuming:

P*1 } } }N=`
i

Pi ,

P*1 } } }N=\`
i

P&1
i +

N&2

`
i< j

Pij , (5.24)

P*1 } } }N=\`
i

Pi+
(N&2)(N&3)�2

\`
i< j

P&1
ij +

N&3

`
i< j<k

Pijk

VI. LATTICE ENTROPY EXPANSION IN THE CANONICAL
ENSEMBLE

We now come back to the lattice-gas system. We start from the parti-

tion function of a n-particle system on a lattice with N sites, Zn=Z (id)
n Qn .

The configurational integral reads:

Qn=
(N&n)!

N !
:
N

i1 ,..., in=1

(ip{iq )

e&;Un(i
n) (6.1)
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We then define distribution functions (for k=1,..., n&1):

P(k)(i k)=
(N&n)!

(N&k)!
:
N

ik+1 ,..., in=1

(ip{iq )

e&;Un(i
n)

Qn

(6.2)

each being 1 for the ideal gas. We also define:

P(n)(i n)=
e&;Un(i

n)

Qn

(6.3)

In the following, we shall use the shorthand notation Pi1 } } } ik
=P(k)(i1 ,..., ik).

Useful identities which hold for any k are:

:
N

i1 ,..., ik=1

(ip{iq )

Pi1 } } } ik
=

N!

(N&k)!
(6.4)

and

:
N

ik+1{i1 ,..., ik

Pi1 } } } ik+1
=(N&k) P i1 } } } ik

(6.5)

Both of the two have an obvious counterpart in the continuum. Using

Eq. (2.13), the reduced distribution functions become:

gi1 } } } im#
(ci1 } } } cim)

(n)

(ci1)
(n) } } } (cim)

(n)= g*m
Pi1 } } } im

Pi1
} } } Pim

(6.6)

for m=2,..., n, where

g*m#\&m n(n&1) } } } (n&m+1)

N(N&1) } } } (N&m+1)
= g (id)

i1 } } } im
(6.7)

and \=n�N. The sum-rules

\m :
N

i1 ,..., im=1

(ip{iq )

Pi1
} } } Pim

gi1 } } } im=
n!

(n&m)!
(6.8)

and

\ :
N

im+1{i1 ,..., im

Pim+1
gi1 } } } im+1

=(n&m) gi1 } } } im (6.9)

162 Prestipino and Giaquinta



hold for any m. Finally, the excess entropy is given by:

S (ex)

kB

=&
(N&n)!

N !
:
N

i1 ,..., in=1

(ip{iq )

e&;Un(i
n)

Qn

ln
e&;Un(i

n)

Qn

(6.10)

In a way analogous to Eq. (5.10), we can write an identity also for the

lattice entropy, whose leading terms at low density are:

S (ex)
1

kB

=&\
n

1+
(N&1)!

N!
:
N

i1=1

P i1
ln P i1

=&\ :
N

i1=1

Pi1
ln Pi1

(6.11)

S (ex)
2

kB

=&\
n

2+_
(N&2)!

N !
:
N

i1 , i2=1

(i1{i2)

Pi1 i2
ln Pi1 i2

&2
(N&1)!

N !
:
N

i1=1

Pi1
ln Pi1&

=&
1

2
\2 :

N

i1 , i2=1

(i1{i2)

Pi1
Pi2

gi1 i2 ln gi1 i2+\
n

2+ ln \
n&1

n

N

N&1+ (6.12)

S (ex)
3

kB

=&\
n

3+_
(N&3)!

N !
:
N

i1 , i2 , i3=1

(ip{iq )

Pi1 i2 i3
ln Pi1 i2 i3

&3
(N&2)!

N !
:
N

i1 , i2=1

(i1{i2)

Pi1 i2
ln P i1 i2

+3
(N&1)!

N !
:
N

i1=1

Pi1
ln Pi1&

=&
1

6
\3 :

N

i1 , i2 , i3=1

(ip{iq )

Pi1
Pi2

Pi3
g i1 i2 i3 ln

gi1 i2 i3
gi1 i2g i1 i3gi2 i3

+\
n

3+ ln _
n(n&2)

(n&1)2
(N&1)2

N(N&2)& (6.13)

In order to make a comparison with the grand-canonical series, we

need to consider the general term appearing in the entropy expansion, i.e.:

&\
n

m+
(N&m)!

N !
:
N

i1 ,..., im=1

(ip{iq )

Pi1 } } } im
ln

Pi1 } } } im

Pi1
} } } Pim

=&
1

m!
\m :

N

i1 ,..., im=1

(ip{iq )

Pi1
} } } Pim

gi1 } } } im ln gi1 } } } im+\
n

m+ ln g*m (6.14)
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Using the same trick as before (see Eq. (5.11)) to sum up the numbers

( nm) ln g*m=&( nm) ln[n
m&1�(n&1) } } } (n&m+1)]+( nm) ln[N

m&1�(N&1)

} } } (N&m+1)], we obtain:

&ln
nn

n!
+ln

N n&1

(N&1)(N&2) } } } (N&n+1)
=&ln

nn

n!
+ln _

N n(N&n)!

N ! &
(6.15)

which, added to the n-particle ideal-gas entropy

ln \
N

n +=&N[\ ln \+(1&\) ln(1&\)]

+ln
nn

n!
+ln

N!

NN+ln
(N&n)N&n

(N&n)!
(6.16)

yields the total entropy as:

S

kB

=
S (id)

kB

+N(1&\) ln(1&\)&\ :
N

i1=1

Pi1
ln Pi1

&
1

2
\2 :

N

i1 , i2=1

(i1{i2)

Pi1
Pi2

gi1 i2 ln gi1 i2

&
1

6
\3 :

N

i1 , i2 , i3=1

(ip{iq )

Pi1
Pi2

Pi3
gi1 i2 i3 ln

gi1 i2 i3
g i1 i2gi1 i3gi2 i3

+ } } } (6.17)

where

S (id)

kB

=&N[\ln \+(1&\) ln(1&\)] (6.18)

is the ideal-gas entropy in the thermodynamic limit (note, however, that \
is the density of the interacting system).

Equation (6.17) is the lattice-gas analogue of the cumulant expansion

reported by several authors.(2, 14) However, it is of little interest here, since

our main purpose is to trace a comparison with the grand-canonical

entropy series, Eq. (3.38). For the entropy expansion to be formally the

same in any ensemble, the number N(1&\) ln(1&\) in Eq. (6.17) must

represent the sum of all configurational terms in the excess entropy. In fact,
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this can be proven by rearranging terms in Eq. (6.17) with the use of Eqs.

(6.8) and (6.9). We consider only the two- and the three-body terms:

&
1

2
\2 :

N

i1 , i2=1

(i1{i2)

Pi1
Pi2

gi1 i2 ln gi1 i2

=
n

2
&

n

2
\+

1

2
\2 :

N

i1=1

(1&P2
i1
)

&
1

2
\2 :

N

i1 , i2=1

(i1{i2)

Pi1
Pi2

(gi1 i2 ln gi1 i2& g i1 i2+1) (6.19)

&
1

6
\3 :

N

i1 , i2 , i3=1

(ip{iq )

Pi1
Pi2

Pi3
gi1 i2 i3 ln

gi1 i2 i3
g i1 i2gi1 i3gi2 i3

=
n

6
&

n

6
\2+

1

6
\3 :

N

i1=1

(1&P3
i1
)&

1

2
\3 :

N

i1 , i2=1

(i1{i2)

Pi1
P2

i2
(gi1 i2&1)2

&
1

6
\3 :

N

i1 , i2 , i3=1

(ip{iq)

Pi1
Pi2

Pi3

_\g i1 i2 i3 ln
gi1 i2 i3

gi1 i2g i1 i3gi2 i3
& g i1 i2 i3+3gi1 i2g i1 i3&3gi1 i2+1+ (6.20)

Apart from additional terms that are eventually to be summed up, Eqs. (6.19)

and (6.20) contain the same sums of distribution functions which appear in

the grand-canonical entropy expansion, including the novel term at the

third-order level. As to the additional terms, we surmise, by analogy with

the continuum case, that all of them amount to:

n :
n

k=2

1&\k&1

k(k&1)
=n&1&n :

n

k=2
\
\k&1

k&1
&

\k&1

k +
t&N(1&\) ln(1&\) (6.21)

The term on the right-hand side of Eq. (6.21) is the leading one in the

n�� (thermodynamic) limit. Granted the above assumption, the entropy

expansion can be re-written (discarding O(1) terms) as:
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S

kB

=
S (id)

kB

&\ :
N

i1=1

Pi1
ln Pi1

+
1

2
\2 :

N

i1=1

(1&P2
i1
)+

1

6
\3 :

N

i1=1

(1&P3
i1
)

&
1

2
\2 :

N

i1 , i2=1

(i1{i2)

Pi1
Pi2

(gi1 i2 ln g i1 i2& g i1 i2+1)

&
1

2
\3 :

N

i1 , i2=1

(i1{i2)

Pi1
P2

i2
(gi1 i2&1)2

&
1

6
\3 :

N

i1 , i2 , i3=1

(ip{iq )

P i1
P i2

Pi3

_\ gi1 i2 i3 ln
gi1 i2 i3

gi1 i2g i1 i3gi2 i3
& gi1 i2 i3+3gi1 i2gi1 i3&3g i1 i2+1++ } } } (6.22)

which is formally the same as the grand-canonical entropy expansion (3.37)

for an inhomogeneous lattice-gas system.

VII. CONCLUSIONS

In this paper we have derived a formula expressing the statistical

entropy of a lattice-gas system in terms of multi-particle correlations, both

in the grand-canonical and in the canonical ensemble. We have also shown

that, in the thermodynamic limit, the expansion turns out to be the same

in the two ensembles.

The lattice entropy expansion shows some differences with respect to

the same series in the continuum. In particular, the pair entropy of the

inhomogeneous lattice system contains an additional term, whereas the

three-body entropy includes an extra term also in the absence of external

fields. Indeed, in the one-dimensional Ising model, this last term con-

tributes to the total entropy evaluated at third order in the density,

whereas the term involving the three-body distribution function does not.

We plan to investigate, in a forthcoming paper, the relation between

the fine structure of the statistical entropy and the phase transitions under-

gone by some specific lattice-gas models in two dimensions.(38)
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1. The original version of the manuscript was received by the Editor
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4. Equation (2.13): The comma just before the first inequality sign,

that is enclosed within parentheses in the lower limit of the sum, is spurious

and should be removed. Equation (2.13) should then read as follows:

(ci1 } } } ciM)
(n)=

1

(n&M )!
:
N

i $1 ,..., i $n&M=1

(i $p{i $q , i $p{ir)

e&;Un(i
m, i $n&M )

Zn

(2.13)
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5. Equation (2.16): Dots are missing in the lower limit of the second

sum. Equation (2.16) should then read as follows:

P0+ :
N

n=1

:
i1< } } } <in

Pn(i
n)=1 (2.16)

6. Equation (3.7): There is a misprint in the argument of the

exponential. The index labelling the U function should be M+S. Equa-

tion (3.7) should then read as follows:

1 (R)FM(iM)= :
N&M

S=R

zS

(S&R)!
:
N

i $1 ,..., i $S=1

(i $p{i $q , i $p{ir)

e&;UM+S(i
m, i $S) (3.7)

7. Equation (3.28): (i) The upper limit, N, of the sum is missing; (ii)

furthermore, a prime is missing in the second argument of the function

GM+k . Equation (3.28) should then read as follows:

zk

FM

�kFM

�zk
=\k :

N

i $1 ,..., i $k=1

(i $p{i $q , i $p{ir)

GM+k(i
M, i $k)

GM(i
M)

(3.28)

8. Equation (3.31) [fourth line]: The exponent nk of the last quan-

tity in parentheses is missing. The fourth line of Equation (3.31) should

then read as follows:

_ :
n1 ,..., nR

\ :
R

k=1

nk&1+ ! `
R

k=1

1

nk! \
&1

k !
:
N

i $1 ,..., i $k=1

(i $p{i $q , i $p{ir)

Gn+k(i
n, i $k)

Gn(i
n) +

nk

(3.31)

9. Equation (3.38) [fourth line]: A ``hyphen'' was printed in

between the first two terms (just before the second ``3'') instead of a

``minus'' sign. The fourth line of Equation (3.38) should then read as

follows:

+3g2(i1 , i2) g2(i1 , i3)&3g2(i1 , i2)+1]+O(\4) (3.38)

10. Equation (4.12): The matrix T was printed as a column vector.

Equation (4.12) should read as follows:

T=\
eK+H

e&K

e&K

eK&H+ (4.12)
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11. The symbol T, appearing three times in the two lines of text

following Equation (4.13), should have been printed, instead, as T.

12. Equation (5.20): A misalignment occurred in the three lines of

text on the extreme right-hand side of this equation. Equation (5.20)

should read as follows:

&(&1)k, for d=0

:
k&1

n=1

(&1)n \
k&1

n&1+ (k&n)d={0, for d=1, 2,..., k&2 (5.20)

&(k&1)!, for d=k&1
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