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1. Introduction

One-phase criteria have often been introduced to estimate the location of the phase
boundaries of liquid and solid phases [1]. These empirical rules are usually rather specific.
Nevertheless, they can be quite useful when it is not easy or straightforward to evaluate
the free energies of the competing phases. Among such rules, one formerly proposed
by Giaquinta and co-workers [2] has proved to be a rather general and flexible tool
that can be successfully applied to a variety of models under different structural and
thermodynamic conditions. This rule actually qualifies as an ordering criterion that can
be readily implemented on the basis of the properties of the more disordered phase. The
theoretical framework is provided by the multiparticle-correlation expansion (MPCE)
of the excess entropy of a classical fluid that was originally derived by H S Green in
the canonical ensemble [3], and was later extended by Nettleton and M S Green to an
open system [4]. According to this formula, the entropy can be written as an infinite
series whose nth term is the contribution associated with density correlations involving
n-particle multiplets. In short, the criterion states that the overall contribution to the
entropy of a fluid arising from the spatial correlations involving more than two particles—
a quantity called ‘residual multi-particle entropy’ (RMPE)—changes sign concurrently
with the local emergence of any new kind of structural organization in the system. The
zero-RMPE criterion has been tested against such diverse thermodynamic phenomena
as freezing [2, 5, 6], fluid–fluid phase separation in hard-sphere mixtures [7], mesophase
formation in model liquid crystals [8, 9], the Kosterlitz and Thouless metal–insulator
transition in a two-dimensional Coulomb lattice gas [10], and, more recently, the density-
maximum anomaly in liquid water [11].

In a previous paper, we gave an entirely new proof of the entropy MPCE in the
canonical ensemble by exploiting a simple combinatorial identity [12]. The proof applies
to both continuous and lattice systems. In this paper we reconsider this derivation from
a different perspective which discloses the significance of each term in the expansion.
Moreover, we outline an iterative method for building up the expansion term by term.
This method is then extended to systems composed of two different species of particles.
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Indeed, the present physical motivation for developing this formalism, besides the self-
standing interest in the formal derivation of an entropy MPCE for binary mixtures, is
that of demonstrating the effectiveness and reliability of the zero-RMPE criterion also
in the case of a colloidal mixture of spherical and rod-like particles. In particular, we
plan to check whether the miscible low-density phase of such a model undergoes a kind
of structural instability—of the type indicated by the vanishing of the RMPE—towards a
more ordered phase, be it lamellar (for low concentrations of the spheres) or immiscible
(the bulk-phase-separated system), for values of the total packing fraction close to those
independently ascertained by experiment and numerical simulation [13, 14]. Previous
studies have already shown that the RMPE of parallel spherocylinders vanishes at about
the same density where the smectic order sets in [8]. We are confident that the effects on
the phase behaviour that are associated with the addition of a small quantity of spheres
will be correctly accounted for by the RMPE.

While deferring to a forthcoming paper the discussion of the numerical simulation
study of a mixture of hard spheres and spherocylinders, we anticipate here the analysis of
the symmetries owned by the three pair distribution functions that enter the calculation
of the two-body entropy.

2. One-component systems

We start by discussing the entropy MPCE of one-component systems in the canonical
ensemble. This choice is by no means restrictive since, as Baranyai and Evans first pointed
out, it is always possible to take advantage of the canonical sum rules of the correlation
functions and then rearrange the entropy MPCE in an ensemble-invariant form [15].

Let RN = {R1, . . . ,RN} and PN = {P1, . . . ,PN} be the set of all particle coordinates
and momenta, respectively. The canonical partition function of the system can always be
split into an ideal and an excess part, ZN = Z id

NZ
ex
N , where

Z id
N =

1

N !

(
V

Λ3

)N

and Zex
N =

1

V N

∫
d3R1 · · ·d3RN e−βVN (RN ). (2.1)

In equation (2.1), β = 1/(kBT ), Λ = h/
√

2πmkBT , V is the volume, and VN(RN) is an
arbitrary potential-energy function (in the most general case, VN is a sum of n-body terms
with n = 1, 2, . . . , N). The excess entropy Sex

N ≡ SN − S id
N reads

Sex
N

kB
= −

∫
d3R1 · · ·d3RN

V N

e−βVN (RN )

Zex
N

ln
e−βVN (RN )

Zex
N

. (2.2)

Upon defining a set of N normalized distribution functions (DFs) as

P (N)(RN) =
e−βVN (RN )

Zex
N

;

P (n)(Rn) =

∫
d3Rn+1 · · ·d3RN

V N−n

e−βVN (RN )

Zex
N

(n = 1, . . . , N − 1),

(2.3)

with the properties∫
d3R1 · · ·d3Rn

V n
P (n)(Rn) = 1 and

∫
d3Rn+1

V
P (n+1)(Rn+1) = P (n)(Rn), (2.4)
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the ordinary n-body DFs can be expressed as

f (n)(rn) ≡
〈∑

i1...in

′
δ3(Ri1 − r1) · · · δ3(Rin − rn)

〉

=
N !

(N − n)!

〈
δ3(R1 − r1) · · · δ3(Rn − rn)

〉
=

N !

(N − n)!

P (n)(rn)

V n
, (2.5)

where the sum is carried out over all n-tuples of distinct particle labels. The reduced
n-body DFs (for n = 2, . . . , N) read

g(n)(rn) ≡ f (n)(rn)

f (1)(r1) · · ·f (1)(rn)

=

(
1 − 1

N

)
· · ·
(

1 − n− 1

N

)
P (n)(rn)

P (1)(r1) · · ·P (1)(rn)

≡
n∏

a=1

(
1 − a− 1

N

)
P̃ (n)(rn), (2.6)

and verify the property∫
d3Rn+1

V
P (1)(Rn+1)g

(n+1)(Rn+1) =
(
1 − n

N

)
g(n)(Rn), (2.7)

which also holds for n = 1 if g(1) ≡ 1. We note that P (1) = 1 and f (1) = N/V if
no one-body term is present in VN , i.e., if no external potential acts on the particles
(for the ideal gas, P (n) = 1 for all n). From now on, we shall adopt the shorthand
notations P12...n = P (n)(Rn) and P̃12...n = P̃ (n)(Rn). Moreover, any integral of the form
V −n

∫
d3R1 · · ·d3Rn (· · ·) is hereafter denoted as

∫
(· · ·).

Now, we show how to build up the MPCE of the entropy term by term. The strategy
is to consider a progressively increasing number of particles in the system. For N = 1,
the (adimensional) excess entropy is just Sex

1 /kB = − ∫ P1 lnP1, which leads to a first-

order approximation to the excess entropy of a N -particle system, Sex
N /kB ≈ S

(1)
N /kB ≡

−N ∫ P1 lnP1 (namely, each particle contributes to the entropy independently of the other
particles).

Next, we move to a system of two particles only, and write its excess entropy as S
(1)
2

plus a remainder kBR2 that is equal to

R2 ≡ Sex
2 − S

(1)
2

kB

= −
∫
P12 lnP12 + 2

∫
P1 lnP1 = −

∫
P12 ln P̃12. (2.8)

Equation (2.8) leads to a second-order approximation for Sex
N under the hypothesis that

each distinct pair of particles contributes an equal two-body residual term to the entropy:

S
(2)
N

kB
= −N

∫
P1 lnP1 −

(
N

2

)∫
P12 ln P̃12. (2.9)

Note that the approximation (2.9) is exact for N = 2, i.e., S
(2)
2 = Sex

2 .
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When there are three particles in the system, the excess entropy is the sum of S
(2)
3

and a remainder kBR3:

R3 ≡ Sex
3 − S

(2)
3

kB

= −
∫
P123 ln P̃123 +

(
3

2

)∫
P12 ln P̃12, (2.10)

which suggests a third-order approximation for Sex
N in the form

S
(3)
N

kB
= −N

∫
P1 lnP1 −

(
N

2

)∫
P12 ln P̃12 −

(
N

3

)[∫
P123 ln P̃123 −

(
3

2

)∫
P12 ln P̃12

]
.

(2.11)

Again, note that S
(3)
3 = Sex

3 . Equation (2.11) reproduces the first three terms in the rhs
of equation (5.9) of [12], and one may suspect that the remaining terms will be similarly
discovered by arguing for N = 4, 5, . . . as we did for N = 1, 2, 3. The related proof can be
obtained by induction over N . In fact, we know our target [12]:

Sex
N

kB
= −N

∫
P1 lnP1 −

∫
P12...N ln P̃12...N

= −N
∫
P1 lnP1 −

N∑
n=2

(
N

n

) n∑
a=2

(−1)n−a

(
n

a

)∫
P1...a ln P̃1...a. (2.12)

After taking Ia ≡ ∫ P1...a ln P̃1...a and Ja ≡ ∫ P1...a lnP1...a (for a = 1, . . . , N), we first show
that equation (2.12) is correct or, equivalently, that

IN =

N∑
n=2

(
N

n

) n∑
a=2

(−1)n−a

(
n

a

)
Ia. (2.13)

To this aim, it is enough to observe that the coefficient of Ia in the sum (2.13) is (cf
equation (5.10) of [12])

N∑
n=a

(−1)n−a

(
N

n

)(
n

a

)
=

{
0, for 0 ≤ a < N

1, for a = N .
(2.14)

Equation (2.12) can be built up term by term using the same procedure as sketched
above for N = 1, 2, 3. Upon defining for a given M (with 2 ≤M ≤ N − 1)

S
(M)
N

kB

= −NJ1 −
M∑

n=2

(
N

n

) n∑
a=2

(−1)n−a

(
n

a

)
Ia, (2.15)

which is tantamount to truncating the sum (2.12) over n after the Mth term, we set

Sex
M+1 ≡ S

(M)
M+1 + kBRM+1, where

RM+1 = −(JM+1 − (M + 1)J1︸ ︷︷ ︸
IM+1

) +
M∑

n=2

(
M + 1

n

) n∑
a=2

(−1)n−a

(
n

a

)
Ia

= −
M+1∑
n=2

(
M + 1

n

) n∑
a=2

(−1)n−a

(
n

a

)
Ia +

M∑
n=2

(
M + 1

n

) n∑
a=2

(−1)n−a

(
n

a

)
Ia

= −
M+1∑
a=2

(−1)M+1−a

(
M + 1

a

)
Ia. (2.16)
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This result allows one to define a higher-order approximation to the entropy as

S
(M+1)
N

kB

≡ S
(M)
N

kB

+

(
N

M + 1

)
RM+1

= −NJ1 −
M∑

n=2

(
N

n

) n∑
a=2

(−1)n−a

(
n

a

)
Ia −

(
N

M + 1

)

×
M+1∑
a=2

(−1)M+1−a

(
M + 1

a

)
Ia

= −NJ1 −
M+1∑
n=2

(
N

n

) n∑
a=2

(−1)n−a

(
n

a

)
Ia, (2.17)

which is exactly the same as (2.15), but for the quantity M + 1 which replaces M .
The MPCE of the entropy remains formally the same if the particles possess further

degrees of freedom besides those pertaining to the centre of mass. For instance, in the case
of liquid-crystal molecules (i.e., elongated particles with cylindrical symmetry), there are
two more degrees of freedom for each particle since two angular coordinates are needed
to specify the orientation of the molecule in three-dimensional space. If the body z axis
is taken to coincide with the molecular axis, we can represent the direction of a molecule
by resorting to the Euler angles θ and φ (see figure 1). The third angle, ψ, describes a
rotation around the molecular axis and, as such, it is not relevant for the configuration
of the molecule. Let ξ = (R, θ, φ) be the five-dimensional vector of coordinates of an
individual molecule. The interaction potential is then a function of ξN .

One of the simplest reference models for a liquid crystal is a system of hard
spherocylinders or, equivalently, rods that cannot approach each other beyond a given
distance σ (the spherocylinder diameter). Such particles show up–down symmetry. In
this specific case, the potential VN(ξN) will also reflect this symmetry, in that it must be
invariant upon interchanging (θ, φ) with (π − θ, π + φ).

The rotational kinetic energy Krot of a massive rod, written in canonical coordinates,
reads

Krot =
P 2

θ

2I
+

P 2
φ

2I sin2 θ
, (2.18)

where I is the moment of inertia relative to any axis perpendicular to the rod and passing
through its centre. It then easily follows that the ideal and excess partition functions are

Z id
N =

1

N !

(
4πV

λ2Λ3

)N

and Zex
N =

1

(4πV )N

∫
d5ξ1 · · ·d5ξNe−βVN (ξN ), (2.19)

where λ = h/
√

2πIkBT and d5ξ = sin θ d3R dθ dφ. The factor sin θ in the volume element
originates from the Gaussian integral over Pφ. Because of this factor, the delta function
of argument ξ should be interpreted as follows:

δ5(ξ − ξ1) ≡ δ3(R− R1)
δ(θ − θ1)

sin θ
δ(φ− φ1). (2.20)

With this proviso, the formal definition of the DFs, given by equation (2.5), as well as
the overall appearance of the entropy formula (see equation (2.12)), remains unchanged
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Figure 1. The Euler angles θ, φ, and ψ. The axes x, y, and z form the laboratory
reference frame, whereas x′, y′, and z′ are parallel to the body set of axes. ζ,
called the nodal line, is the straight line perpendicular to z and z′. It can also
be viewed as the intersection between the xy and x′y′ planes. The z′ axis is
chosen so as to coincide with the symmetry axis of the molecule (represented in
the picture as a rod). The Euler angles are in the ranges 0 ≤ θ < π, 0 ≤ φ < 2π,
and 0 ≤ ψ < 2π.

provided that we now interpret
∫

(· · ·) as (4πV )−n
∫

d5ξ1 · · ·d5ξn (· · ·) (the value of n is
always implicit in the form of the integrand).

Let us now consider the properties of the reduced pair distribution function (PDF)
in relation to the symmetries of the system. Assume that no external field is present and
that the molecular interaction includes, besides the hard-core repulsion, at most a pair
term whose strength depends on the distance between the centres of mass. In such a case,
the PDF g(2)(ξ1, ξ2) will only depend on the relative position of the two molecules. In a
reference frame Σ1 where molecule 1 is placed at the origin and oriented along the z axis,
the position of molecule 2 is thoroughly described by the three (spherical) coordinates
of its centre of mass (r12, ϑ12, and ϕ12) plus two more angles, θ12 and φ12, specifying the
direction of its axis. However, the above description is redundant since the orientation
of, say, the x axis of Σ1 is still arbitrary and we can always arrange things in such a way
that ϕ12 = 0. Hence, g(2) will depend on four variables only, namely one distance (r12)
and three angles (ϑ12, θ12, and φ12).

An even simpler situation is that of an artificially constrained nematic fluid, namely a
system of elongated particles whose axes are kept parallel to each other while their centres
of mass are free to move. In this case, the angles θ12 and φ12 are no longer necessary, with
the result that the PDF depends just on r12 and ϑ12 (or, equivalently, on ρ12 = r12 sinϑ12

and z12 = r12 cosϑ12).
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Another interesting case is that of an inhomogeneous system of rod-like molecules
confined by an impenetrable wall. This model is useful for investigating the wetting
properties of a nematic fluid and the onset and growth of a smectic layer at the wall. If
the strength of the wall–particle attraction depends just on the distance z of the molecular
centre of mass from the wall, the number density f (1)(ξ) turns out to be a function of
χ = (z, θ, φ) (i.e., the axis direction is relevant even when the wall does not exert any
attraction), while the PDF g(2)(ξ1, ξ2) depends on χ1 and χ2.

3. Two-component systems

In this section, we generalize the MPCE of the entropy to binary systems composed
of two different kinds of particles. We shall proceed in two steps. We shall first use
the iterative method outlined in the previous section as a guidance for conjecturing the
complete formula from its first few terms. Then, we shall give a formal proof of this
formula by induction over the total number of particles.

The canonical partition function of a two-component system with N = N1 + N2

classical point particles generally reads ZN1,N2 = Z id,1
N1
Z id,2

N2
Zex

N1,N2
, where the excess part

has the form

Zex
N1,N2

=
1

V N

∫
d3N1R d3N2Q e−βVN1,N2

(RN1 ,QN2). (3.1)

In equation (3.1), the potential-energy function is arbitrary. The excess entropy is given
by the integral

Sex
N1,N2

kB

= − 1

V N

∫
d3N1R d3N2Q

e−βVN1,N2
(RN1 ,QN2)

Zex
N1,N2

ln
e−βVN1,N2

(RN1 ,QN2 )

Zex
N1,N2

. (3.2)

Upon defining

P (N1,N2)(RN1,QN2) =
e−βVN1,N2

(RN1 ,QN2)

Zex
N1,N2

;

P (n1,n2)(Rn1,Qn2) =

∫
d3Rn1+1 · · ·d3RN1

V N1−n1

d3Qn2+1 · · ·d3QN2

V N2−n2

e−βVN1,N2
(RN1 ,QN2 )

Zex
N1,N2

(with n1 ≤ N1, n2 ≤ N2, n1 + n2 = 1, . . . , N − 1), (3.3)

we have the following properties:∫
d3R1 · · ·d3Rn1

V n1

d3Q1 · · ·d3Qn2

V n2
P (n1,n2)(Rn1,Qn2) = 1;∫

d3Rn1+1

V
P (n1+1,n2)(Rn1+1,Qn2) = P (n1,n2)(Rn1,Qn2);∫

d3Qn2+1

V
P (n1,n2+1)(Rn1,Qn2+1) = P (n1,n2)(Rn1,Qn2).

(3.4)

When external fields are absent, P (1,0) = 1 and P (0,1) = 1. For a binary ideal mixture
(i.e., VN1,N2 = 0), the P functions are all equal to 1.
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The DF of order (n1, n2) is defined as

f (n1,n2)(rn1 ,qn2) =
N1!

(N1 − n1)!

N2!

(N2 − n2)!

P (n1,n2)(rn1,qn2)

V n1+n2
. (3.5)

While the definition of the self reduced DFs g(n1,0) (for n1 ≥ 1) and g(0,n2) (for n2 ≥ 1)
is strictly analogous to that given for a one-component system, the distinct reduced DFs
are defined, for n1, n2 ≥ 1, as

g(n1,n2)(rn1,qn2) =

n1∏
a=1

(
1 − a− 1

N1

) n2∏
b=1

(
1 − b− 1

N2

)
P̃ (n1,n2)(rn1 ,qn2), (3.6)

where

P̃ (n1,n2)(rn1 ,qn2) ≡ P (n1,n2)(rn1,qn2)

P (1,0)(r1) · · ·P (1,0)(rn1)P
(0,1)(q1) · · ·P (0,1)(qn2)

. (3.7)

For n1 + n2 ≥ 1, a property analogous to that expressed in equation (2.7) holds:∫
d3rn1+1

V
P (1,0)(rn1+1)g

(n1+1,n2)(rn1+1,qn2) =

(
1 − n1

N1

)
g(n1,n2)(rn1 ,qn2), (3.8)

plus a similar identity involving g(n1,n2+1).
From now on, a short notation is adopted where Pab stands for P (a,b)(ra,qb) and any

integral of the form V −n1−n2
∫

d3n1r d3n2q(· · ·) is simply denoted as
∫

(· · ·). Moreover, for

future convenience, we take Iab ≡ ∫
Pab ln P̃ab and Jab ≡ ∫

Pab lnPab (with a ≤ N1, b ≤
N2, a+ b ≥ 1). For instance, the excess entropy (3.2) can be rewritten as

Sex
N1,N2

kB
= −

∫
PN1N2 lnPN1N2

= −N1

∫
P10 lnP10 −N2

∫
P01 lnP01 −

∫
PN1N2 ln P̃N1N2 , (3.9)

or JN1N2 = N1J10 +N2J01 + IN1N2 .
We now move on to determine an MPCE for the entropy of a mixture. To this aim,

we consider increasing particle numbers in the system, starting from N1 + N2 = 1 (i.e.,
only one particle, either of type 1 or 2, is present). By reasoning in the usual way, we
immediately obtain a first-order approximation to the excess entropy in the form

S
(1)
N1,N2

kB
= −N1

∫
P10 lnP10 −N2

∫
P01 lnP01. (3.10)

Then, we analyse the three cases with N1 + N2 = 2. For N1 = 2 and N2 = 0
(or the other way round), things are the same as for a one-component system, i.e.,

Sex
2,0 = S

(1)
2,0 + kBR2,0, with R2,0 = − ∫ P20 ln P̃20. Instead, for N1 = N2 = 1,

R1,1 ≡
Sex

1,1 − S
(1)
1,1

kB

= −
∫
P11 lnP11 +

∫
P10 lnP10 +

∫
P01 lnP01 = −

∫
P11 ln P̃11,

(3.11)
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thus leading to the following second-order approximation for Sex
N1,N2

:

S
(2)
N1,N2

kB
= −N1

∫
P10 lnP10 −N2

∫
P01 lnP01

−
(
N1

2

)∫
P20 ln P̃20 −N1N2

∫
P11 ln P̃11 −

(
N2

2

)∫
P02 ln P̃02. (3.12)

For N1 + N2 = 3, we just reproduce below the expression of S
(3)
N1,N2

, which results
from carefully considering the implied four cases:

S
(3)
N1,N2

kB

= −N1

∫
P10 lnP10 −N2

∫
P01 lnP01 −

(
N1

2

)∫
P20 ln P̃20 −N1N2

∫
P11 ln P̃11

−
(
N2

2

)∫
P02 ln P̃02 −

(
N1

3

)[∫
P30 ln P̃30 −

(
3

2

)∫
P20 ln P̃20

]

−
(
N1

2

)
N2

[∫
P21 ln P̃21 −

∫
P20 ln P̃20 − 2

∫
P11 ln P̃11

]

− N1

(
N2

2

)[∫
P12 ln P̃12 − 2

∫
P11 ln P̃11 −

∫
P02 ln P̃02

]

−
(
N2

3

)[∫
P03 ln P̃03 −

(
3

2

)∫
P02 ln P̃02

]
. (3.13)

On the basis of the above structure, we conjecture the following general formula:

Sex
N1,N2

kB
= −N1

∫
P10 lnP10 −N2

∫
P01 lnP01 −

∑
n1+n2≥2

n1≤N1,n2≤N2

(
N1

n1

)(
N2

n2

)

×
∑

a+b≥2
a≤n1,b≤n2

(−1)n1+n2−a−b

(
n1

a

)(
n2

b

)∫
Pab ln P̃ab, (3.14)

which was preliminarily checked against the form of S
(4)
N1,N2

as independently got by our
iterative method. Note that the double sum in equation (3.14) can also be arranged in
such a way that all the terms with the same value of n ≡ n1 + n2 are gathered together:

IN1N2 =

N1+N2∑
n=2

min{n,N1}∑
n1=max{n−N2,0}

(
N1

n1

)(
N2

n− n1

) ∑
a+b≥2

a≤n1,b≤n−n1

(−1)n−a−b

(
n1

a

)(
n− n1

b

)
Iab.

(3.15)

First of all, we prove that equation (3.14) is an exact identity. Indeed, for given a
and b (with a ≤ N1, b ≤ N2, a+ b ≥ 2), the coefficient of Iab on the rhs of (3.14) is

−
∑

n1+n2≥2
a≤n1≤N1,b≤n2≤N2

(
N1

n1

)(
N2

n2

)
× (−1)n1+n2−a−b

(
n1

a

)(
n2

b

)

= −
N1∑

n1=a

(−1)n1−a

(
N1

n1

)(
n1

a

)
×

N2∑
n2=b

(−1)n2−b

(
N2

n2

)(
n2

b

)
. (3.16)
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On account of equation (2.14), the number (3.16) is always zero but for the case
(a, b) = (N1, N2), where it equals −1. Hence, equation (3.14) is correct.

We next prove, by induction, that equation (3.14) also follows from our iterative
method. We define, for any M such that 2 ≤M ≤ N − 1,

S
(M)
N1,N2

kB
= −N1J10 −N2J01 −

M∑
n=2

min{n,N1}∑
n1=max{n−N2,0}

(
N1

n1

)(
N2

n− n1

)

×
∑

a+b≥2
a≤n1,b≤n−n1

(−1)n−a−b

(
n1

a

)(
n− n1

b

)
Iab. (3.17)

Moreover, for each pair (M1,M2) satisfying M1 + M2 = M + 1, let us put Sex
M1,M2

=

S
(M)
M1,M2

+ kBRM1,M2 , where

RM1,M2 = −(JM1M2 −M1J10 −M2J01︸ ︷︷ ︸
IM1M2

) +

M∑
n=2

min{n,M1}∑
n1=max{n−M2,0}

(
M1

n1

)(
M2

n− n1

)

×
∑

a+b≥2
a≤n1,b≤n−n1

(−1)n−a−b

(
n1

a

)(
n− n1

b

)
Iab

= −
M+1∑
n=2

min{n,M1}∑
n1=max{n−M2,0}

(
M1

n1

)(
M2

n− n1

) ∑
a+b≥2

a≤n1,b≤n−n1

(−1)n−a−b

(
n1

a

)(
n− n1

b

)
Iab

+
M∑

n=2

min{n,M1}∑
n1=max{n−M2,0}

(
M1

n1

)(
M2

n− n1

) ∑
a+b≥2

a≤n1,b≤n−n1

(−1)n−a−b

(
n1

a

)

×
(
n− n1

b

)
Iab = −

M1∑
n1=M+1−M2

(
M1

n1

)(
M2

M + 1 − n1

)

×
∑

a+b≥2
a≤n1,b≤M+1−n1

(−1)M+1−a−b

(
n1

a

)(
M + 1 − n1

b

)
Iab

= −
∑

a+b≥2
a≤M1,b≤M2

(−1)M+1−a−b

(
M1

a

)(
M2

b

)
Iab. (3.18)

In the third line of the above equation, the identity (3.15) was used for IM1M2. In the

end, the same structure of S
(M)
N1,N2

emerges for S
(M+1)
N1,N2

(i.e., equation (3.17) where M + 1
replaces M), as long as we define, in close analogy with the one-component case,

S
(M+1)
N1,N2

kB
=
S

(M)
N1,N2

kB
+

min{M+1,N1}∑
M1=max{M+1−N2,0}

(
N1

M1

)(
N2

M + 1 −M1

)
RM1,M+1−M1. (3.19)

This concludes our proof.
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Equations (2.12) and (3.14) express the canonical MPCE of the excess entropy in
compact form for pure and mixed systems, respectively. In the literature, the expressions
quoted for the first few terms of this expansion are far more involved because they
are usually written in terms of the reduced DFs. We have already shown in [12] that
the familiar form of the entropy formula for one-component systems in the canonical
ensemble emerges when the P s are eliminated in favour of the gs through the reverse of
equation (2.6). In doing so, a constant term can be extracted from the correlation integrals
which, if absorbed into the ideal-gas part of the entropy, makes the latter equivalent to
the entropy of the infinite-sized ideal-gas system (for the sake of clarity, this argument is
reformulated in appendix A).

Before providing a similar demonstration for mixed systems, let us see what happens

to S
(2)
N1,N2

. Upon repeatedly using equations (3.4) and (3.8), we obtain (with ρ1 = N1/V
and ρ2 = N2/V )

S
(2)
N1,N2

kB
= −ρ1

∫
d3r P10(r) lnP10(r) − ρ2

∫
d3r P01(r) lnP01(r) −

(
N1

2

)
ln

N1

N1 − 1

− 1
2
ρ2

1

∫
d3r d3r′ P10(r)P10(r

′)g20(r, r
′) ln g20(r, r

′)

− ρ1ρ2

∫
d3r d3r′ P10(r)P01(r

′)g11(r, r
′) ln g11(r, r

′) −
(
N2

2

)
ln

N2

N2 − 1

− 1
2
ρ2

2

∫
d3r d3r′ P01(r)P01(r

′)g02(r, r
′) ln g02(r, r

′), (3.20)

where all terms, including the two constants, are extensive, namely, each term scales in
the thermodynamic limit linearly with either N or V .

However, in a closed system the asymptotic value of the two-body self reduced
DFs differs at large distances from 1 for O(N−1) terms [16]. This makes the numerical
evaluation of the integrals in (3.20) particularly harmful for a small system (i.e., sensitive
to its boundary). To (partially) cure this problem, we can take advantage of the canonical
sum rules for the DFs (see equation (3.8)), adding (and subtracting) to each integral
precisely the extensive term that makes the integrand of order N−2 at infinity:

S
(2)
N1,N2

kB

= −ρ1

∫
d3r P10(r) lnP10(r) − ρ2

∫
d3r P01(r) lnP01(r)

− 1
2
ρ2

1

∫
d3r d3r′ P10(r)P10(r

′)[g20(r, r
′) ln g20(r, r

′) − g20(r, r
′) + 1]

− ρ1ρ2

∫
d3r d3r′ P10(r)P01(r

′)[g11(r, r
′) ln g11(r, r

′) − g11(r, r
′) + 1]

− 1
2
ρ2

2

∫
d3r d3r′ P01(r)P01(r

′)[g02(r, r
′) ln g02(r, r

′) − g02(r, r
′) + 1]

− N1

(
N1 − 1

2
ln

N1

N1 − 1
− 1

2

)
−N2

(
N2 − 1

2
ln

N2

N2 − 1
− 1

2

)
. (3.21)

As a result, (i) the contribution from the boundary now grows like V ×V 2/3N−2 ∝ N−1/3;
(ii) the overall constant term outside of the integrals is of O(1); and (iii) the new integrals
now conform to those in the grand-canonical-ensemble expansion.

J. Stat. Mech.: Theor. Exp. (2004) P09008 (stacks.iop.org/JSTAT/2004/P09008) 12

http://stacks.iop.org/JSTAT/2004/P09008


JS
TAT

(2004)
P

09008

Entropy multiparticle-correlation expansion for binary mixtures

For general (N1, N2), the constant terms amount to

∑
n1+n2≥2

n1≤N1,n2≤N2

(
N1

n1

)(
N2

n2

) ∑
a+b≥2

a≤n1,b≤n2

(−1)n1+n2−a−b

(
n1

a

)(
n2

b

)

× ln


max{0,a−1}∏

i1=0

(
1 − i1

N1

)max{0,b−1}∏
i2=0

(
1 − i2

N2

) . (3.22)

For fixed a and b (with a+b ≥ 2) the prefactor of each logarithm is the opposite of (3.16).
Hence, the sum (3.22) equals ln(N1!N

−N1
1 ) + ln(N2!N

−N2
2 ), leading to an alternative

expression for the entropy MPCE:

SN1,N2

kB

= N1

[
3

2
− ln(ρ1Λ

3
1)

]
+N2

[
3

2
− ln(ρ2Λ

3
2)

]

− N1

∫
P10 lnP10 −N2

∫
P01 lnP01 −

∑
n1+n2≥2

n1≤N1,n2≤N2

(
N1

n1

)(
N2

n2

)

×
∑

a+b≥2
a≤n1,b≤n2

(−1)n1+n2−a−b

(
n1

a

)(
n2

b

)∫
Pab ln gab. (3.23)

We argue that, using the sum rules (3.8), it is always possible to ‘complete’ the integrals∫
Pab ln gab in such a way that the integrand behaves like N−a−b at infinity. In a way

analogous to the one-component case, this is accomplished by adding and subtracting a
suitable constant (which is −N1/2 −N2/2 to second order). If ensemble invariance must
hold for the entropy MPCE, the constant needed is necessarily the opposite of the number
that, added to(
N1

n1

)(
N2

n2

) ∑
a+b≥2

a≤n1,b≤n2

(−1)n1+n2−a−b

(
n1

a

)(
n2

b

)

× ln


max{0,a−1}∏

i1=0

(
1 − i1

N1

)max{0,b−1}∏
i2=0

(
1 − i2

N2

) , (3.24)

gives back a O(1) quantity as an outcome.
If either n1 or n2 is zero, we are led to the one-component case, which is treated in

appendix A. Otherwise, when both n1 and n2 are non-zero, the sum in (3.24) yields

∑
a+b≥2

a≤n1,b≤n2

(−1)n1+n2−a−b

(
n1

a

)(
n2

b

)


max{0,a−1}∑
i1=0

ln

(
1 − i1

N1

)
+

max{0,b−1}∑
i2=0

ln

(
1 − i2

N2

)


=

n1−1∑
i1=0

ln

(
1 − i1

N1

) ∑
a+b≥2

i1+1≤a≤n1,b≤n2

(−1)n1+n2−a−b

(
n1

a

)(
n2

b

)
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+

n2−1∑
i2=0

ln

(
1 − i2

N2

) ∑
a+b≥2

a≤n1,i2+1≤b≤n2

(−1)n1+n2−a−b

(
n1

a

)(
n2

b

)

=

n2∑
b=0

(−1)n2−b

(
n2

b

)
︸ ︷︷ ︸

0

n1−1∑
i1=1

[
ln

(
1 − i1

N1

) n1∑
a=i1+1

(−1)n1−a

(
n1

a

)]

+

n1∑
a=0

(−1)n1−a

(
n1

a

)
︸ ︷︷ ︸

0

n2−1∑
i2=1

[
ln

(
1 − i2

N2

) n2∑
b=i2+1

(−1)n2−b

(
n2

b

)]
= 0. (3.25)

Hence, in order to produce an ensemble-invariant formula, a null integral correction
must be added to the canonical correlation integrals associated with the distinct DFs
(n1 = n2 = 1 was such a case; see equations (3.20) and (3.21)).

We reproduce hereafter the entropy MPCE in its final form:

SN1,N2

kB
= N1

[
5

2
− ln(ρ1Λ

3
1)

]
+N2

[
5

2
− ln(ρ2Λ

3
2)

]
−N1

∫
P10 lnP10 −N2

∫
P01 lnP01

−
∑

n1+n2≥2
n1≤N1,n2≤N2

(
N1

n1

)(
N2

n2

) ∑
a+b≥2

a≤n1,b≤n2

(−1)n1+n2−a−b

(
n1

a

)(
n2

b

)

×
∫
Pab ln gab −N1 −N2. (3.26)

In the rhs of the above formula, the first four terms are the only ones which survive
in the absence of any interaction between particles and, as such, constitute the ideal
contribution to the entropy. Instead, the last two terms arise from the resummation of
the numbers (A.7) for each species. When suitably absorbed into the integrals

∫
Pa0 ln ga0

and
∫
P0b ln g0b, these terms eventually make the canonical-ensemble entropy expansion

look like the grand-canonical one. In particular, for a large (N1, N2 � 1) and homogeneous
binary system, the entropy expansion starts as follows:

SN1,N2

kB
= N1

[
5

2
− ln(ρ1Λ

3
1)

]
+N2

[
5

2
− ln(ρ2Λ

3
2)

]
− 1

2
ρ2

1

∫
d3r d3r′[g20(r, r

′) ln g20(r, r
′) − g20(r, r

′) + 1]

−ρ1ρ2

∫
d3r d3r′ [g11(r, r

′) ln g11(r, r
′) − g11(r, r

′) + 1]

− 1
2
ρ2

2

∫
d3r d3r′ [g02(r, r

′) ln g02(r, r
′) − g02(r, r

′) + 1] + · · · . (3.27)

If the above expansion is truncated after its pair-correlation terms, this formula provides
a low-density approximation for the entropy of the mixture.

The MPCE of the entropy derived above applies to a binary mixture of interacting
point particles. However, the formula does not change even if the particles possess further
degrees of freedom. In fact, the same comments that we made at the end of section 2 still
apply. A case of this sort is a mixture of spheres and spherocylinders. We shall analyse
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in a future publication the phase diagram of this model system in terms of the RMPE.
Here, we focus our attention on the general structure of the distinct two-body reduced
DF, since the case of the sphere–sphere DF is obvious while the symmetries of the self
DF for spherocylinders have been already discussed in section 2.

In order to find the maximum number of independent scalar variables that intervene
in the calculation of g11(ξ,q), it is convenient to work in a reference system where the
spherocylinder (species 1) is centred at the origin and lies along the z axis. In this reference
frame, the position of the sphere (species 2) can be parameterized in terms of two variables
only, namely the length r12 and colatitude ϑ12 of the vector joining the two centres of mass
(as usual, ϕ12 = 0 for a convenient choice of the x axis). The same result is obviously
obtained when viewing the situation from a reference system where the sphere is centred
at the origin. In this case, the need for two further θ12 and φ12 variables (see section 2)
is only apparent, since the z axis and the x axis can be chosen in such a way that such
two variables vanish altogether. If the axes of the spherocylinders are frozen and parallel
to each other, no further simplification occurs, and the distinct two-body DF is again a
function of r12 and ϑ12.

The numerical calculation of g11 for a homogeneous mixture is carried out as follows.
After taking ξ = (r, θ, φ), x = q − r, and invoking homogeneity, we have

ρ1

4π
ρ2 g11(ξ,q) =

1

4πV

∫
d5ξ

〈
N1∑
i=1

N2∑
j=1

δ5(Ξi − ξ)δ3(Qj − q)

〉

=
1

4πV

〈∑
i,j

∫
dθ dφ δ(Θi − θ)δ(Φi − φ)

∫
d3r δ3(Ri − r)δ3(Qj − r − x)

〉

=
N1

4πV

〈
N2∑
j=1

δ3(Qj − (R1 + x))

〉
. (3.28)

Hence, ρ2 g11(ξ,q) is the average density of spheres in R1 + x when a spherocylinder is
centred in R1. An explicit formula is

g11(r12, ϑ12) � ∆N2(r12, ϑ12)

ρ2 · 2πr2
12 sinϑ12∆r12∆ϑ12

, (3.29)

∆N2(r12, ϑ12) being the number of spheres within a tiny spherical ring of volume
2πr2

12 sin ϑ12∆r12∆ϑ12, centred at the position specified by r12 and ϑ12.

4. Conclusions

In this paper, we have outlined a constructive method for building up the entropy
multiparticle-correlation expansion in the canonical ensemble, term by term, for both
pure and mixed systems of classical particles. The aim of this effort is twofold:

(i) to unveil the hidden combinatorial structure behind the expansion;

(ii) to set the stage for an application of the entropy-based ordering criterion introduced
by Giaquinta and co-workers to the phase diagram of a binary mixture of hard spheres
and spherocylinders.
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In this respect, we have discussed here the general symmetries owned by the three pair
distribution functions. A detailed analysis of the phase diagram of the model in the
framework provided by the zero-RMPE criterion will be the object of a forthcoming
publication.

Appendix A. Ensemble invariance of the entropy MPCE

In this appendix, an argument appearing in [12] is reproduced for the reader’s convenience.
This argument deals with the overall constant term that appears in equation (2.12) when
we eliminate the normalized DFs in favour of the reduced DFs through equation (2.6).

For one-component systems, this constant amounts to

N∑
n=2

(
N

n

) n∑
a=2

(−1)n−a

(
n

a

)
ln

(N − 1)(N − 2) · · · (N − a+ 1)

Na−1
. (A.1)

For each a value, the prefactor of the respective logarithm is just the number (2.14).
Hence, the sum (A.1) equals ln(N !N−N ), thus yielding a new form of the entropy MPCE:

SN

kB

= N

[
3

2
− ln(ρΛ3)

]
−N

∫
P1 lnP1 −

N∑
n=2

(
N

n

) n∑
a=2

(−1)n−a

(
n

a

)∫
P1...a ln g1...a, (A.2)

where ρ = N/V .
We now show that any single term in the sum over n at (A.1) is extensive. In fact,

we have first(
N

n

) n∑
a=2

(−1)n−a

(
n

a

) a−1∑
k=1

ln

(
1 − k

N

)
=

(
N

n

) n−1∑
k=1

[
ln

(
1 − k

N

) n∑
a=k+1

(−1)n−a

(
n

a

)]
.

(A.3)

We prove in appendix B that
n∑

a=k+1

(−1)n−a

(
n

a

)
= (−1)n−1−k

(
n− 1

k

)
. (A.4)

Then,(
N

n

) n∑
a=2

(−1)n−a

(
n

a

)
ln

(N − 1)(N − 2) · · · (N − a + 1)

Na−1

= −
(
N

n

) n−1∑
k=1

(−1)n−k

(
n− 1

k

)
ln

(
1 − k

N

)

=

(
N

n

){
1

N

n−1∑
k=1

(−1)n−k

(
n− 1

k

)
k +

1

2N2

n−1∑
k=1

(−1)n−k

(
n− 1

k

)
k2 + . . .

}
.

(A.5)
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In appendix B, we also show that

n−1∑
k=1

(−1)n−k

(
n− 1

k

)
kd =

{
0, for d = 1, . . . , n− 2

−(n− 1)!, for d = n− 1.
(A.6)

In conclusion, we obtain(
N

n

) n∑
a=2

(−1)n−a

(
n

a

)
ln

(N − 1)(N − 2) · · · (N − a + 1)

Na−1
∼ − N

n(n− 1)
. (A.7)

As discussed in the main text, the integrals in equation (A.2) cannot be easily
computed numerically since, for finite N , the system boundary also contributes in a
significant way. However, upon taking advantage of the canonical-ensemble sum rules for
the reduced DFs (see equation (2.7)), it should always be possible to make every integrand
in equation (A.2) sufficiently small at large distances. This is accomplished by adding (and
subtracting) a quantity equal to the number in (A.7), with the result of leaving an overall
O(1) number outside the integral. Furthermore, the new form of the integral can be made
identical to the (so-called) fluctuation integral of the same order which appears in the
grand-canonical-ensemble expansion.

We show this explicitly for the third-order term in the entropy expansion, which,
when expressed in terms of the reduced DFs, reads

−
(
N

3

)
ln

(N − 1)2

N(N − 2)
− 1

6
ρ3

∫
d3r1 d3r2 d3r3 P1P2P3g123 ln

g123

g12g13g23

. (A.8)

In order to conform to the grand-canonical-ensemble expansion, we have to add the
integral

−1
6
ρ3

∫
d3r1 d3r2 d3r3 P1P2P3(−g123 + 3g12g13 − 3g12 + 1), (A.9)

which, in view of the canonical-ensemble sum rules (2.4) and (2.7), is equal to −N/6.
This number is exactly the same constant that must be subtracted from

−
(
N

3

)
ln

(N − 1)2

N(N − 2)
(A.10)

in order to produce an O(1) constant. As a caveat, we note that

−1

6
ρ3

∫
d3r1 d3r2 d3r3 P1P2P3[κg123 + (1 − 2κ)g12g13 + (κ− 2)g12 + 1] = −N

6
(A.11)

for any real κ, not simply −1.

Appendix B. Two combinatorial identities

In this appendix, the formulae (A.4) and (A.6) are proved by induction.
First, we prove that, for any n ≥ 2 and 1 ≤ k ≤ n− 1,

n∑
a=k+1

(−1)n−a

(
n

a

)
= (−1)(n−1)−k

(
n− 1

k

)
. (B.1)
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Equation (B.1) is also valid for k = 0 and any n ≥ 1. We argue by induction over
n. For n = 2 and k = 1, formula (B.1) is trivially correct. Then, assuming that the
formula is correct for an arbitrary fixed n and all positive k < n, we calculate the lhs of
equation (B.1) for n+ 1 and any 1 ≤ k ≤ n− 1 (the case k = n is obvious):

n+1∑
a=k+1

(−1)(n+1)−a

(
n + 1

a

)
= −

n∑
a=k+1

(−1)n−a

[(
n

a

)
+

(
n

a− 1

)]
+ 1

= −(−1)(n−1)−k

(
n− 1

k

)
+

n∑
a=k

(−1)n−a

(
n

a

)

= (−1)n−k

[(
n− 1

k

)
+

(
n− 1

k − 1

)]
= (−1)n−k

(
n

k

)
, (B.2)

which is just the rhs of equation (B.1), but for n + 1 which replaces n.
Next, we show that, for n ≥ 3,

n−1∑
k=1

(−1)n−k

(
n− 1

k

)
kd =

{
0, for d = 1, . . . , n− 2

−(n− 1)!, for d = n− 1,
(B.3)

while it is trivial to check that

n−1∑
k=1

(−1)n−k

(
n− 1

k

)
kd = −1 (n = 2, d = 1). (B.4)

Arguing inductively, let us suppose that equation (B.3) is valid for a given value n
(checking this for n = 3 is immediate), and see what happens for n + 1:

n∑
k=1

(−1)n+1−k

(
n

k

)
kd = −

n−1∑
k=1

(−1)n−k

(
n

k

)
kd − nd

= −
n−1∑
k=1

(−1)n−k

[(
n− 1

k

)
+

(
n− 1

k − 1

)]
kd − nd

= −
n−1∑
k=1

(−1)n−k

(
n− 1

k

)
kd +

n−2∑
k=0

(−1)n−k

(
n− 1

k

)
(k + 1)d − nd

= −
n−1∑
k=1

(−1)n−k

(
n− 1

k

)
kd +

n−1∑
k=1

(−1)n−k

(
n− 1

k

)
(k + 1)d + (−1)n

= −
n−1∑
k=1

(−1)n−k

(
n− 1

k

)
kd +

n−1∑
k=1

(−1)n−k

(
n− 1

k

) d∑
m=0

(
d

m

)
km + (−1)n

= −
n−1∑
k=1

(−1)n−k

(
n− 1

k

)
kd +

d∑
m=0

(
d

m

){n−1∑
k=1

(−1)n−k

(
n− 1

k

)
km

}
+ (−1)n.

(B.5)
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Focusing on this intermediate result, we distinguish three cases.

(i) For 1 ≤ d < n− 1, the first term is zero as is the second for m > 0. As for the rest,

n−1∑
k=1

(−1)n−k

(
n− 1

k

)
+ (−1)n = −

n−1∑
k=1

(−1)(n−1)−k

(
n− 1

k

)
+ (−1)n

= −
n−1∑
k=0

(−1)(n−1)−k

(
n− 1

k

)
= −(1 − 1)n−1 = 0. (B.6)

(ii) For d = n−1 instead, the first term is (n−1)!, while the second is zero for 0 < m < d.
The rest is equal to

(n− 1)! +
n−1∑
k=1

(−1)n−k

(
n− 1

k

)
kn−1 +

n−1∑
k=1

(−1)n−k

(
n− 1

k

)
+ (−1)n

=
n−1∑
k=1

(−1)n−k

(
n− 1

k

)
+ (−1)n = 0, (B.7)

like in the previous case.

(iii) Finally, and given all the above results, for d = n we have

−
n−1∑
k=1

(−1)n−k

(
n− 1

k

)
kn +

(
n

0

) n−1∑
k=1

(−1)n−k

(
n− 1

k

)

+

n−2∑
m=1

(
n

m

) n−1∑
k=1

(−1)n−k

(
n− 1

k

)
km −

(
n

n− 1

)
(n− 1)!

+

(
n

n

) n−1∑
k=1

(−1)n−k

(
n− 1

k

)
kn + (−1)n = −n!, (B.8)

as we wanted to show.
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