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ABSTRACT: The return of a supercooled liquid to equilibrium usually begins with a fast
heating up of the sample which ends when the system reaches the equilibrium freezing
temperature. At this stage, the system is still a microsegregated mixture of solid and liquid.
Only later is solidification completed through the exchange of energy with the surroundings.
Using the IAPWS-95 formulation, we investigate the adiabatic freezing of supercooled water
in a closed and rigid vessel, i.e., under thermally and mechanically isolated conditions, which
captures the initial stage of the decay of metastable water to equilibrium. To improve
realism further, we also account for a fixed amount of foreign gas in the vessel. Under the
simplifying assumption that the system is at equilibrium immediately after the nominal
freezing temperature has been attained, we determineas a function of undercooling and
gas mole numberthe final temperature and pressure of the system, the fraction of ice at
equilibrium, and the entropy increase. Assuming a nonzero energy cost for the ice−water
interface, we also show that, unless sufficiently undercooled, perfectly isolated pure-water
droplets cannot start freezing in the bulk.

I. INTRODUCTION

When gently cooled below its equilibrium freezing point, liquid
water becomes metastable, remaining in a state of apparent
equilibrium until a favorable density fluctuation promotes the
nucleation of ice. Once the first solid embryo has formed, ice
growth proceeds so rapidly that crystallization of water initially
occurs, to all practical purposes, adiabatically, i.e., as though
water were thermally isolated from the environment.1−4 This
phenomenon is well-known, especially in atmospheric
science5,6 and metallurgy.7,8 It is accompanied with a steep
temperature increase (recalescence),2,3 caused by the latent heat
released during solidification, and is signaled by a sudden
glowing of the sample or a change of color whatsoever.
Freezing is nevertheless still partial after recalescence, requiring
more time to be completed via standard heat transfer to the
bath. The relative amount of water and ice at the end of the
recalescence stage will clearly depend on the extent of
undercooling as well as on the type of constraints applied to
the system, e.g., whether its volume or pressure (besides the
total mass) has been kept fixed.
Recalescence is an amazing phenomenon, since one might

reasonably expect crystallization of a supercooled liquid to
occur isothermally, with the energy reservoir grabbing all the
heat generated by the formation of ice. Indeed, the entropy of
the universe (system plus bath) is maximized in the stable
crystal phase at the temperature of the bath. By contrast, what
is often found is that kinetics influences the crystallization
process in an essential way, bringing rapidly the system to the
equilibrium freezing temperature before conduction of heat to
the bath becomes effective. The route to equilibrium would be
different if, for some reasons, crystal growth were much slower,

as in intrinsically anisotropic crystals. In this case the initial
temperature rise would be milder and the system probably
would not pass through intermediate states of two-phase
coexistence at the freezing point.
Recently, Aliotta et al. discussed the adiabatic freezing of

water under constant-pressure conditions.9 Upon modeling
water by the IAPWS-95 formulation,10 they focused their
attention on the behavior of volume at ambient pressure and
found that the spontaneous freezing of water invariably results
in an expansion. After reaching a maximum for a moderate
undercooling, the expansion decreases on further cooling until
it becomes negligible at a temperature close to the
homogeneous-nucleation temperature, TH ≃ 232 K, which
sets the ultimate threshold for water metastability. This
behavior is different from that of other liquids, where the
volume gap between the solid−liquid mixture and the
metastable liquid varies monotonously with undercooling.
Such a difference was traced back to the volumetric anomaly
of water. Prestipino has also studied the adiabatic freezing of a
mean-field fluid in a rigid vessel, also in the presence of a small
amount of foreign gas in the container, and found a rather
complex behavior in the properties (final temperature and
pressure, solid fraction, and entropy increase) characterizing
this type of irreversible freezing.11

The method employed in ref 11 was entropy maximization.
It assumes that at the end of recalescence the system is found in
an equilibrium mixed state. Actually, as discussed at length in ref
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11, the immediate outcome of recalescence is a uniform
distribution of fine solid grains in the form of dendrites within
the liquid (a so-called mushy zone), which is rich in interfacial
energy. The conversion of the mushy zone into a full solid
occurs by coarsening: it involves the slow assimilation of small
grains by larger ones and requires some time during which the
temperature of the system stays constant at the equilibrium
freezing value. The point is that in the mushy zone the system
is not yet at equilibrium, which implies that its state is not,
strictly speaking, the maximum-entropy state. However, the
huge (on the molecular scale) size of ice dendrites suggests that
the amount of interfacial free energy in the mushy zone is
macroscopically negligible. Hence, we reasonably expect that
the maximum-entropy method does not miss the mark too
much and that at least the general trends of the relevant system
variables can be described within a purely thermodynamic
framework.
In the present paper, the maximum-entropy method is

applied to the spontaneous freezing of water under isolated
conditions, stressing on the specificities arising from its
anomalous thermodynamics. After describing the method in
section II, we analyze the prominent features of the isochoric-
adiabatic freezing of water in section III. These results are then
exploited in section IV where we shall see to what extent the
energy penalty associated with the ice−water interface does
influence the spontaneous crystallization of water. Section V is
devoted to concluding remarks.

II. METHOD

Experimentally, the clearest imprint of recalescence in water is a
sudden increase of temperature which abruptly jumps (in a
time which can be as low as a few hundredths of a second2)
from the nucleation temperature to the equilibrium freezing
temperature. During this time no significant amount of heat can
flow to the bath and (partial) freezing then occurs adiabatically.
In Figure 1 we schematically illustrate, for the reader’s

convenience, the two steps in which a virtual experiment on
adiabatic freezing is articulated under either isochoric or
isobaric conditions, pretending that the outcome of the process
is an equilibrium state. The system under focus here is a normal
liquid, viz., the van der Waals fluid described by the theory
developed in refs 14 and 15, which was the object of the study
carried out by Prestipino in ref 11. Initially at point A, the liquid
is subsequently cooled down to B (a metastable state), at
temperature Tin. Next, heat exchange with the environment is
impeded and the solid is made to nucleate, until point C
(temperature Tfin) is reached. We see that in both the isochoric
and isobaric cases the final equilibrium state C is a two-phase
state. Under constant-volume conditions, the final temperature
Tfin is intermediate between Tin and Tm (the melting/freezing
temperature at a given pressure Pm), and the pressure is lower
than Pm. The outcome of the same experiment on water can be
anticipated on the basis of a construction analogous to that
depicted in Figure 1, which is reported in Figure 2, where due
account was taken of the change in relative position between
liquid and solid on the isotherm for T = Tm (point A now lies
on the small-volume side of the tie line). As far as the other
features of Figure 2 are concerned, we relied on the data
reported in Table 19 of ref 12. At variance with Figure 1, the
metastable liquid branch (long-dashed line) is shifted to
pressures higher than Pm; hence, when keeping the volume
fixed, the final pressure Pfin will be larger than Pm.

We now describe the setup used for studying the adiabatic
freezing of supercooled water in a rigid vessel. Consider a
number N of water molecules which completely fill a closed
rigid container of volume V. Water, initially in equilibrium at
the temperature Tm, is then slowly cooled until the temperature
Tin has been reached. At this point, if ice nucleation has not yet
occurred, the pressure and energy of water (Pin and Ein) can be
computed through the (mechanical and thermal) equations of
state of the metastable branches. Now, imagine removing the
contact with the thermostat and inducing, by any means, the
irreversible decay of the system to equilibrium. Our aim is
determining in which equilibrium state the system will

Figure 1. How adiabatic freezing occurs for the van der Waals liquid of
ref 11 (schematic). Top: the isotherm at Tm on the volume−pressure
plane (solid−liquid binodal, dashed red line; isotherm at Tin prolonged
to the metastable region, long-dashed blue line). Bottom: a
magnification of the (v,P) region involved in the process of adiabatic
freezing (left, isochoric case; right, isobaric case). While A and C are
equilibrium (respectively, homogeneous and heterogeneous) states, B
corresponds to a one-phase (i.e., homogeneous) metastable condition.

Figure 2. How adiabatic freezing occurs in water (same meaning and
notation as in Figure 1).
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eventually settle down. With the caveats made above, this
question may be answered by resorting to the maximum-
entropy principle. Envisaging that part of the original water may
remain liquid, we denote by El, Vl, and Nl the energy, volume,
and particle number of the liquid fraction. By further assuming
a weak coupling between the solid (s) and liquid (l) water
phases, and taking the overall constraints into account, the total
entropy reads

= + − − −S S E V N S E E V V N N( , , ) ( , , )tot l l l l s in l l l
(2.1)

where El, Vl, and Nl are internal variables to be determined. The
three conditions for the maximum of (2.1) are tantamount to
requiring the same temperature, pressure, and chemical
potential for both phases. Hence we see that (unless Nl = 0
or N when Stot is maximum) the final equilibrium state lies on
the solid−liquid coexistence locus, as empirically observed.
As a matter of principle, in order to characterize the

heterogeneous two-phase state resulting from the maximization
of (2.1), one would need the entropy functions (fundamental
relations) of water and ice. However, we can alternatively resort
to a different thermodynamic potential for each phase, such as
the Helmholtz or Gibbs potential, or to the knowledge of the
equations of state, if available. This is actually the type of
information provided by the IAPWS-95 formulation for the
thermal properties of water10 and by its counterpart for
hexagonal ice.12 In particular, while the IAPWS-95 formulation
provides the specific (i.e., per unit mass) Helmholtz free energy
of liquid water, f l(T,ρ), as a function of temperature T and mass
density ρ, it is the specific Gibbs free energy, gs(T,P), that is
available for ordinary ice in ref 12.
We originally explored the possibility of seeking the

maximum of eq 2.1 by the simulated-annealing method,
which was the technique employed in ref 11 to analyze the
adiabatic freezing of a mean-field fluid. However, in the present
case this method did not work essentially because of the
extreme sensitivity of water temperature and pressure to the
small uncorrelated variations of energy and volume induced by
the fake dynamics typical of the method. Hence, we
implemented a different but equivalent procedure. Rather
than maximizing the total entropy, we tried to solve the system
of equations enforcing (i) the thermodynamic coexistence of
water and ice in the final state, and (ii) the conservation laws of
volume and energy. Specifically, the set of equations
corresponding to the maximization of (2.1) reads

ρ

ρ

ρ

ρ

=

=

+ − =

+ − =

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

P T P
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( , )

( , ) ( , )

(1 ) ( , )

( , ) (1 ) ( , )

l

l s

l
l s tot

l l l s in (2.2)

where xl = Nl/N is the liquid fraction, vtot = V/M is the
(constant) specific volume, M being the total mass, and ein =
Ein/M is the specific energy of supercooled water at Tin. In
addition, Pl, gl, and el denote the pressure, specific Gibbs free
energy, and specific energy of the liquid phase, respectively,
while vs and es represent the specific volume and energy of the
solid phase. All such functions can be derived from f l(T,ρ) and
gs(T,P) in an obvious way. Clearly, the unknown quantities in
(2.2) are T, P, ρ, and xl; the existence and uniqueness of the

solution set are assured by the concavity of the entropies in
(2.1).
While leaving the analysis of this solution to section III, we

comment here on the method used to solve the nonlinear
system (2.2) numerically and on the precision of the data
extracted. The method of choice for this type of problems is the
time-honored Newton−Raphson method,13 which also works
in more than one dimension. This method makes use of an
iterative scheme which usually converges if one starts not too
far away from the target state; in our case the solution was
obtained with the highest possible precision in 10−20 iteration
steps. In fact, increasing more the number of steps does not
reduce the error further, because of computer limitations in
handling the real and complex numbers which enter the
calculation. This notwithstanding, each unknown of (2.2) was
typically obtained with 10 exact significant digits.

III. RESULTS

In this section we analyze the properties of the heterogeneous
state attained by supercooled water at the end of its isochoric−
adiabatic relaxation to equilibrium. Two different experimental
situations are discussed, depending on whether water alone fills
the given volume or there is, in addition, a fixed amount of gas
(for instance, some air) in the container. These two cases are
treated separately in the following.

A. Pure Water in a Rigid Vessel. Let us first quantitatively
analyze the situation illustrated in Figure 2, panel (a). Initially,
the water temperature and pressure are Tm and Pm, defining a
point on the ice−water coexistence locus (the red dashed line
in the figure). In this state, dubbed A in Figure 2, the specific
volume is vm ≡ ρm

−1, with ρm implicitly given by

ρ =P T P( , )l m m m (3.1)

We just note that the initial volume coincides with the total
volume, vtot, since we assumed that water completely fills the
container. This fixes the water mass M and the molecule
number N for any assigned V. After cooling water down to Tin
< Tm (state B), its pressure and specific energy become equal to

ρ ρ= =P P T e e T( , ) and ( , )in l in m in l in m (3.2)

With these starting conditions, the equilibrium state (C)
eventually reached by the system after disconnecting the bath
and inducing solid nucleation is the one yielding the maximum
of (2.1) or, which amounts to the same thing, the one obeying
the set of eqs 2.2.
We studied in detail the ambient-pressure case, Pm = 101 325

Pa (for this pressure, Tm = 273.152 519 K and vm = 1.000 157 ×
10−3 m3 kg−1). In Figure 3 the final values of the system
temperature and pressure are reported as a function of Tin (red
curves through crosses). As expected from Figure 2, we have Tin
< Tfin < Tm (i.e., water heats up during the transformation) and
Pfin > Pm. Though water does not generally recover the original
temperature after isochoric recalescence, nevertheless it should
be considered that the pressure has increased as well. In fact, for
any value of Tin, Tfin and Pfin are the coordinates of a point on
the ice−water coexistence line. If water supersaturation is low
or moderate, Tin can be hardly distinguished from Tm. The solid
fraction in the equilibrium state is plotted in Figure 4: it steadily
grows with the undercooling extent Tm − Tin, approaching 40%
near TH. Finally, Figure 5 reports the entropy increase in the
transformation, which is larger the lower Tin.
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B. Water with a Foreign Gas. Now suppose that water is
prepared at Tm and Pm by exposure to a gaseous atmosphere,
and that a small amount of gas gets trapped in the vessel. We
then have water in equilibrium with a foreign (and, for
simplicity, immiscible) gas in a container of fixed volume. To
simplify the analysis further, the gas is treated as ideal and
monatomic, and let xg be the ratio of the gas mole number to
that of water. The initial specific volume of the liquid, vm, is still

obtained by solving eq 3.1 but now we have vm < vtot. Precisely,
the ratio of the total volume to water mass is

= +v v
x RT

Ptot m
g m

m (3.3)

where R = 461.518 05 J kg−1 K−1 is the specific gas constant,
namely the ratio of the universal gas constant to water molar
mass. As before, we imagine that water and gas are cooled very
slowly until a temperature Tin is reached. At this point, the
specific volume vin of water is determined by minimizing the
total Helmholtz free energy, F/M = fl(Tin,vin

−1) + xg f id(Tin,ρg)
with ρg ≡ ng/Vg = xg/(vtot − vin) ( f id is the ideal-gas Helmholtz
free energy per mole divided by the water molar mass). This
leads immediately to the equation

=
−

−P T v
x RT

v v
( , )l in in

1 g in

tot in (3.4)

which prescribes the same pressure for water and gas. Equation
3.4 was solved by the Newton−Raphson method (for the
smallest xg considered, the bisection method proved superior
for deep undercoolings).
After removing the bath, we imagine to induce ice nucleation

by, e.g., a mechanical shock, and wait for the system to reach
equilibrium. The state eventually attained is the one that
maximizes the total entropy

= + −

+
− − − − − −⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

S
M

x s e v x s e v

x s
e x e x e

x
v x v x v

x

( , ) (1 ) ( , )

(1 )
,

(1 )

tot
l l l l l s s s

g id
in l l l s

g

tot l l l s

g

(3.5)

where ein = el(Tin,vin
−1) + (3/2)xgRTin (note that sl and ss are

entropies per unit mass, whereas sid is the ideal-gas entropy per
mole divided by the water molar mass). If one is able to find the
maximum of Stot, the ensuing values of el, vl, xl, es, vs will provide
a complete description of the equilibrium state. Upon noting
that the five conditions for the maximum of (3.5) are equivalent

Figure 3. Adiabatic freezing of water under isochoric conditions:
temperature and pressure in the final equilibrium state for Pm =
101 325 Pa, plotted as a function of the supercooling temperature Tin.
Data for a number of xg values are collected together: 10−4 (black
empty dots), 3 × 10−5 (blue squares), 10−5 (magenta triangles), and
zero (i.e., no gas is present, red crosses). Data points are joined by line
segments. The small, red full dots mark data relative to a finite system
size for xg = 0, when a cost is assumed for the ice−water interface (N =
106, dashed line; N = 108, dotted line). The vertical dotted line locates
the equilibrium freezing temperature Tm.

Figure 4. Adiabatic freezing of water under isochoric conditions: ice
fraction in the final equilibrium state for Pm = 101 325 Pa, plotted as a
function of the supercooling temperature Tin (same notation as in
Figure 3). The black curve practically coincides with that for
isenthalpic freezing.9

Figure 5. Adiabatic freezing of water under isochoric conditions:
specific-entropy increase for Pm = 101 325 Pa, plotted as a function of
the supercooling temperature Tin (same notation as in Figures 3 and
4).
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to requiring the same temperature and pressure for water, ice,
and the foreign gas at equilibrium, as well as equal chemical
potentials for the liquid and solid fractions in the ice−water
mixture, a different solution method is possible and actually
preferable (for the same reasons exposed in section II). Calling
vg the molar volume of the gas divided by the water molar mass,
the resulting set of equations analogous to (2.2) is

ρ

ρ

ρ

ρ

=

=

+ − + =

+ − +
=

=

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

P T P

g T g T P

x
x v T P x v v

x e T x e T P x RT
e

Pv RT

( , )

( , ) ( , )

(1 ) ( , )

( , ) (1 ) ( , ) (3/2)

l

l s

l
l s g g tot

l l l s g

in

g (3.6)

which is again solved by the Newton−Raphson method.
In order to characterize adiabatic freezing, useful quantities to

be monitored as a function of Tin are the following: the
temperature and pressure of the ice−water mixture at
equilibrium, Tfin and Pfin; the specific volume of the mixture,
vmix = xlvl + (1 − xl)vs, as compared to vin; and the entropy of
the mixture, in comparison with the entropy of the supercooled
liquid. We examined a few xg values in the range from 10−5 to
10−4 for Pm = 101 325 Pa. In Figure 3 we report data for Tfin
and Pfin as a function of undercooling. We see that the gas,
when present in an appreciable amount, acts as a pressure
moderator; in particular, Pfin is extremely close to Pm down to a
threshold temperature T̃, which is pushed down and down
upon increasing xg, until, beyond a certain xg value, T̃ drops
below TH. In this case, practically the same results of isobaric−
adiabatic freezing are recovered. Near T̃ we observe a change of
slope in all curves, related to an abrupt crossover in the gas
pressure at Tin (i.e., the right-hand side of eq 3.4) from small to
very large values, i.e., only above T̃ the gas volume at Tin is a
significant portion of the total volume (see Figure 6). Hence,
the gas provides a way to continuously interpolate between the
isochoric and isobaric cases of adiabatic freezing of pure water.
In Figure 4, the equilibrium ice fraction is plotted for various

values of xg. Compared to xg = 0, the amount of ice formed at
equilibrium is larger, the more so the larger xg. For the same
values of xg, Figure 5 reports the entropy difference between
the mixture and the supercooled liquid at Tin. This difference
increases with undercooling. Finally, in Figure 6 we plot the
volume of the ice−water mixture in comparison with the initial
volume of supercooled water. Upon cooling, a clear changeover
of vmix is seen to occur for T ≃ T̃. From this temperature
downward, the gas is strongly compressed and its volume
reduces more rapidly but vmix always keeps larger than vin, which
means that adiabatic freezing always occurs in water with a
system expansion. It would be interesting to see whether this
volume behavior is confirmed experimentally (by, e.g., looking
at the free-surface level before and after recalescence). This
would also offer a way to check to what extent the system state
after recalescence can be described as an equilibrium one.

IV. FINITE-SIZE EFFECTS IN THE FORMATION OF ICE
So far, our analysis of water freezing under isolated supercooled
conditions has made use of a simplifying assumption: namely,
we neglected any surface effect. We shall now see that, even

overlooking the porous structure of the mushy zone as well as
any interfacial effect at the boundary between water and its
container, just the simple consideration of a spherical ice−water
interface unveils a fundamental limitation of the adiabatic-
freezing scenario as depicted above. Indeed, this is what was
found for the van der Waals liquid,11 where, under perfect
isolation, no freezing can initiate in the bulk if undercooling is
too small. The same analysis is repeated here for supercooled
water.
Our reasoning, which is similar to a proof per absurdum,

goes as follows. Let us assume that the outcome of water
freezing below Tm is a stable mixture of water and ice. We make
the further hypothesis that homogeneous (rather than
heterogeneous) nucleation superintends the onset of freezing.
By modeling the ice fraction as a spherical (not necessarily tiny)
mass, we assign a constant free energy γ to its surface (for
instance, γ = 2.8 × 10−2 J m−2, which is the value of the ice−
water interface free energy at normal freezing conditions5).
While this scenario is certainly too simplified, since it overlooks
the dependence of the interface free energy on the droplet
radius r (see, e.g., ref 16) as well as on the surface orientation,17

it would be nonetheless sufficient to grasp the essence of the
phenomenon. With the above settings, the entropy of a mass M
of water hosting a spherical ice droplet of mass Ms is written, in
terms of the specific ice values of energy and volume, as11

= − +

S e v M E V M

M M s e v M s e v

( , , ; , , )

( ) ( , ) ( , )
tot s s s in

s l l l s s s s (4.1)

where Ein is the total energy (we note that, for a constant γ, the
entropy and the particle number attached to the interface are
both zero by the Gibbs adsorption equation11). In eq 4.1, the
specific energy and volume of the liquid fraction are
respectively given by

Figure 6. Adiabatic freezing of water under isochoric conditions: initial
(i.e., T = Tin, dotted line) and final volume (full line) for Pm = 101 325
Pa, plotted as a function of the supercooling temperature Tin (same
notation as in Figures 3, 4, and 5). Data for a number of xg values are
shown: 10−4 (black empty dots), 3 × 10−5 (blue squares), and 10−5

(magenta triangles). Data points are joined by line segments. The
horizontal dashed line marks the value of vm. The two horizontal green
full lines locate the value of vtot for xg = 3 × 10−5 (above) and 10−5

(below). The black curve is practically coincident with that for
isenthalpic freezing.9

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp403332y | J. Phys. Chem. B 2013, 117, 8189−81958193



π γ
= =

− −
−

= =
−
−

e
E
M

E M e M v
M M

v
V
M

V M v
M M

(36 ) ( )
andl

l

l

in s s
1/3

s s
2/3

s

l
l

l

s s

s (4.2)

For γ = 0, the maximum of (4.1) clearly coincides with that of
(2.1) for the same Tin.
The values of the internal variables es, vs, Ms in a stationary

(possibly unstable) equilibrium state are obtained by equating
the three partial derivatives of Stot to zero. It is then a simple
matter to show that these conditions are equivalent to
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where again r = (3Msvs/(4π))
1/3. Hence, any cluster of ice in

equilibrium with liquid water should have the same temperature
and chemical potential as the melt, while the two pressures are
different and related by the Laplace equation. In particular, eqs
4.3 would hold for the cluster of ice in the heterogeneous state
associated with the absolute maximum of Stot. In order to
determine this state, we have solved numerically a set of
equations analogous to (2.2), namely
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To be sure that the correct solution of eqs 4.4 is being picked
out, the starting point of the Newton−Raphson iteration is
chosen as the solution of (2.2) for the same Tin. The interface
free energy is then gradually switched on, and the entropy
maximum point recalculated, until γ is led back to the right
value.
However, for low enough supersaturation, the maximum of

the total entropy is invariably found for Ms = 0. In order to
clarify what is going on, we should look at the graph of the
function ΔS = Stot(es,vs,Ms;Ein,V,M) − Msl(Ein/M,V/M), which
represents the entropic advantage of the two-phase system over
the supercooled liquid. To simplify it further, ΔS is projected
onto the one-dimensional subspace where es and vs take the
same values as in the point of the absolute maximum of Stot. We
are thus left with a function of Ms only, or equivalently of the
radius r, which is reported in Figure 7 for two small values of N
(106 and 108) and a few undercooling temperatures (note that
the functional form of ΔS is not strictly needed to plot the
graph on Figure 7; in fact, the values of Tfin and Pfin for ice, as
determined by solving eqs 4.4, suffice). A glance at Figure 7
immediately reveals the existence of a positive maximum of ΔS

for a nonzero Ms value, corresponding to a two-phase
equilibrium state. However, a satellite maximum also exists at
the origin, which is separated from the former one by an
entropic “barrier” (the valley between the two peaks), and
when the extent of supercooling becomes sufficiently low, the
absolute maximum of ΔS jumps to Ms = 0. Hence, (i) ice
formation is thermally activated (i.e., the crossing of the
entropic barrier requires a favorable density fluctuation), and
(ii) for any fixed value of N, there is an undercooling threshold
(negligible for macroscopic N) that should be overcome in
order that solidification may occur. Figure 8 displays the

minimum supercooling threshold for a number of N values.
Beyond this threshold, the assumption of a rapid yet partial
solidification of water, which is at the heart of the present
calculation, should be rejectedsince no ice fraction is found
in the equilibrium stateand the onset of solidification would
necessarily occur at the surface of the system in contact with
the bath. Upon reducing the supersaturation even further, the

Figure 7. Specific entropy difference between the droplet−liquid
mixture at Tfin and the original metastable liquid at Tin, for Pm =
101 325 Pa, plotted as a function of the droplet radius r. Two values of
N are considered, 106 (red curves, left) and 108 (blue curves, right),
over a range of Tin values (reported alongside).

Figure 8. Lower supercooling threshold for partial freezing of an
isolated liquid sample in the bulk, plotted as a function of the particle
number.
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relative maximum for Ms > 0 disappears and no tiny piece of
ice, even metastable, can form. We note that a scenario similar
to the one described above has recently been reported for the
canonical-ensemble description of liquid nucleation from the
vapor.18

In Figures 3, 4, and 5, some properties of the heterogeneous
equilibrium state for a nonzero γ are reported. We first note
that, compared to a costless interface, the final equilibrium
temperature is lower by an amount which roughly scales as r−1

(Figure 3, top panel). The depression of Tfin is a clear
manifestation of the Gibbs−Thomson effect, which refers to
the observation that small crystals are in equilibrium with their
own melt at a lower temperature than large crystals. It is also
evident from the figure that the variation of r with supercooling
leads to a notable nonmonotonous dependence of the
equilibrium temperature on Tin. Similar reductions with respect
to γ = 0 values are found in the final pressure (Figure 3, bottom
panel), in the ice fraction (Figure 4), and in the entropy
increase ΔS (Figure 5). Actually, we are not aware of any
experimental or numerical-simulation studies where the above
predictions can be tested in detail.
Summing up, the aim of the above calculation was to check

whether the assumption of adiabaticity in the spontaneous
freezing of supercooled water can survive the inclusion of the
interface-energy contribution. A necessary condition for this is a
positive maximum of ΔS which, however, only appears beyond
a certain N-dependent undercooling threshold that is negligible
in the large-size limit. This implies that a small amount of water
should be cooled sufficiently deep in order that freezing may
start in the bulk; otherwise, homogeneous ice nucleation is
obstructed and freezing proceeds directly from the system
boundaries.

V. CONCLUSIONS
The spontaneous freezing of a supercooled liquid occurs
adiabatically whenever solid growth is sufficiently rapid, as in
the case of, e.g., water. In this circumstance, the energy released
during solidification does not reach the thermostat but is almost
completely used in the heating up of the system, whose
temperature raises quickly until the equilibrium freezing
temperature is attained. Only later will crystallization proceed
by heat transfer to the bath.
In this paper, we have studied the isochoric−adiabatic

freezing of supercooled water, as modeled by the IAPWS-95
formulation;10 for ice properties we employed the scheme of ref
12. We have characterized the thermodynamic state of the two-
phase equilibrium emerging from the decay of the metastable
state in two different experimental setups, i.e., in the presence
as well as in the absence of a spectator gas. We have thus found
that the spontaneous freezing of water always occurs with a
system expansion, as under constant-pressure conditions,9 and
that by tuning the amount of gas present in the container one is
able to interpolate between the isochoric and isobaric cases of
adiabatic freezing. The hidden assumption behind our
calculations is that the state of the system emerging from
recalescence is an equilibrium one. However, the outcome of
adiabatic freezing is usually a mushy zone, which only slowly
evolves to equilibrium. Anyway, considering that solid dendrites
are huge on the molecular scale, we argue that at least the
overall trends of the relevant system properties with super-
cooling should be largely insensitive to the late system
relaxation dynamics and could thus be predicted by the
maximum-entropy method.

In order to see whether surface effects can play any role in
the irreversible freezing of small water samples under isolation,
we have then included the energy cost of the ice−water
interface in the treatment, while assuming no role for
heterogeneous nucleation. We have thus shown that, under
isolated conditions, a minimum supersaturation is needed in
order that freezing may start in the bulk.
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