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ABSTRACT

When two molecular species with mutual affinity are mixed together, various self-assembled phases can arise at low temperature, depending
on the shape of like and unlike interactions. Among them, stripes—where layers of one type are regularly alternated with layers of another
type—hold a prominent place in materials science, occurring, for example, in the structure of superconductive doped antiferromagnets. Stripe
patterns are relevant for the design of functional materials, with applications in optoelectronics, sensing, and biomedicine. In a purely classical
setting, an open question pertains to the features that spherically symmetric particle interactions must have to foster stripe order. Here, we
address this challenge for a lattice-gas mixture of two particle species, whose equilibrium properties are exactly determined by Monte Carlo
simulations with Wang-Landau sampling, in both planar and spherical geometry and for equal chemical potentials of the species. Somewhat
surprisingly, stripes can emerge from largely different off-core interactions, featuring various combinations of repulsive-like interactions with
a predominantly attractive unlike interaction. In addition to stripes, our survey also unveils crystals and crystal-like structures, cluster crystals,
and networks, which considerably broaden the catalog of possible patterns. Overall, our study demonstrates that stripes are more widespread
than generally thought, as they can be generated by several distinct mechanisms, thereby explaining why stripe patterns are observed in
systems as diverse as cuprate materials, biomaterials, and nanoparticle films.
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I. INTRODUCTION

In the field of condensed matter physics, the interplay between
microscopic interactions and spatial constraints can lead to com-
plex patterns across multiple scales. ” Among them, stripes (i.e., a
regular alternation of two kinds of layers) stand out as one of the
most notable arrangements and the central motif in a wide variety
of material systems, with applications in areas such as optoelec-
tronics and sensing. Stripe patterns are found in systems as diverse
as nickelates,* cuprate superconductors,” and ultracold gases.® In
these strongly correlated materials, stripe formation is grounded on
the existence of competing interactions, which drive electrons/atoms
toward states with spontaneously broken spatial symmetry.

Self-assembly into spatially modulated structures—usually
referred to as microphases—is a recurrent phenomenon and a
key area of study also in soft matter”'’ and is as well governed
by counteracting forces: a short-range attraction (SA), often aris-
ing from depletion forces, which promotes aggregation, and a

long-ranged repulsion (LR), due to screened electrostatic forces,
which inhibits macroscopic phase separation. SALR systems can
exhibit several microphases, depending on the interaction para-
meters and thermodynamic conditions:'"'* clusters and reverse
clusters, lamellae/stripes, and gyroid phases (to name just the promi-
nent ones). Microphases are found in protein solutions,’* diblock
copolymers, ' and colloidal dispersions.'”'® Given the relevance
of stripes to both fundamental science and technology, a key ques-
tion is how peculiar microscopic interactions should be to favor
stripe ordering. Addressing this issue is of the utmost importance for
achieving better control over the onset of stripes, and this is where
theoretical modeling and numerical simulations can play a crucial
role.

In one-component systems of classical particles, the require-
ments for observing stripes are relatively well understood. Notably,
aside from fluids with competing interactions,”” *' stripes are also
found in systems governed by a purely repulsive potential.”” '
However, other situations possibly exist that are propitious to the
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appearance of stripes. For example, we have recently demonstrated
for systems of particles on a spherical grid that even Lennard-
Jones-type interactions can stabilize worm-like arrangements at low
temperature.”” Stable stripe phases have been reported even on a
quasicrystalline lattice.”®

In recent years, the investigation of stripes in binary mixtures
of classical particles has been attracting growing attention. Due to a
vast number of possible combinations, binary mixtures are still rel-
atively little explored and only scattered results are available;””
therefore, it is fair to say that the question about the origin and
variety of stripe order in mixtures is so far unanswered in full
generality.

Clearly, the addition of a second species significantly alters
self-assembly. For example, a mixture of hard spheres and SALR
particles, interacting through a square-well (SW) cross attraction,
has been shown to exhibit clusters under thermodynamic condi-
tions that would not allow for their existence in the pure SALR
fluid.”’ Species asymmetry is not even necessary for the emergence of
microphases. Indeed, a non-trivial self-assembly (including stripes)
has been observed in mixtures of two equivalent species character-
ized by a repulsive (i.e., hard-sphere plus shoulder) like interaction
and a SW unlike attraction.”””" In Refs. 34-36, like interactions
are even simpler, i.e., of purely hard-core type, and yet the phase
behavior still features various kinds of stripes. These findings suggest
that the occurrence of stripes is essentially governed by the range
of cross attraction, rather than by the details of like interactions.
A model mixture involving a SALR potential between like parti-
cles and an exactly opposite potential between particles of a different
species has been investigated both in the continuum®” and in a lattice
framework;*® " these studies revealed that the emergence and stabi-
lization of ordered patterns, including stripes and clusters, are highly
sensitive to the repulsion-to-attraction ratio in the SALR potential,
regardless of the nature of the hosting space.

In two recent papers,””’' we have investigated several one-
component lattice gases defined on spherical grids constructed from
the vertices of a geodesic icosahedron*’ (i.e., a semiregular polyhe-
dron with triangular faces and the least possible number of fivefold
vertices), finding, despite geometric frustration, a wide variety of
low-temperature “phases”, including regular polyhedra, cluster crys-
tals, and worm-like patterns. In the present paper, the same inves-
tigation is extended to binary mixtures, now choosing as ambient
space the grid formed by the vertices of a hexakis—pentakis cham-
fered dodecahedron (HPCD, see Fig. 1). The HPCD is a geodesic
icosahedron with sufficiently many vertices (122) to produce an
emergent (i.e., thermodynamic) behavior. Clearly, the geometry of
the grid impacts the nature of the emergent structures, since it affects
particle coordination and, consequently, the energy of individual
configurations. However, for a comparison with the triangular lat-
tice, the most natural choice is by far a geodesic grid, since it
allows us to keep the contact with the planar model as close as
possible.

Even though a curved grid is generally detrimental to the onset
of stripe order, the tendency to forming stripes would be apparent,
e.g., in the alternation of rows/ribbons of particles of same species,
wrapped around the sphere (as found, e.g., in Ref. 43). In another
respect, a spherical grid might accommodate stripe-like structures
of a type unknown to a planar lattice. To assess the influence of
curvature, we will compare the lowest-energy arrangements on the
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FIG. 1. The polyhedron depicted in the figure is the HPCD. It is a geodesic icosa-
hedron with 240 triangular faces and 122 vertices, of which 12 only are fivefold
vertices; the other vertices are sixfold coordinated. Different colors are used for
different types of triangles.

spherical grid with the structures promoted by the same interac-
tion on the triangular lattice. Clearly, a comprehensive study of
self-assembly involving several different interactions can only be
accomplished if we could rely on a fast and accurate method to
extract the system “phases” from the Hamiltonian. To this end, we
will employ Wang-Landau sampling,”* ** which already has proved
effective in the study of one-component systems.””"!

Investigations of particles confined to a spherical surface
are not a novelty: many studies have addressed self-assembly
on a sphere, both in one-component fluids>*' and in binary
mixtures.””* " In particular, particle arrangements with icosahe-
dral symmetry have been observed in several cases,” " including
the proteins making up a virus capsid.””*’ However, as far as we
know, no previous study has examined the equilibrium behavior of
binary mixtures on a spherical grid. More importantly, in none of
the aforementioned papers, a broad range of like and unlike interac-
tions has been explored for a systematic search of stripe patterns. We
believe that neither a lower dimensionality nor space discretization
would sensibly affect the generality of our considerations about the
nature of the interactions responsible for the emergence of stripes in
realistic mixtures.

This paper is organized as follows. In Sec. II, we introduce the
model system and describe the method used to extract its statistical
properties. The results obtained are presented and commented in
Secs. I11-V. Section V1 is devoted to conclusions and outlook.

Il. MODEL AND METHOD

We investigate binary mixtures of non-overlapping particles,
living on a finite grid of M sites. Particles interact through a Hamil-
tonian H[c], where ¢ = {c1,1,¢12, . - - €M1, €m,2 } is the generic system
microstate, labeled by the occupation numbers (0 or 1) of the sites
(for example, c;1 = 1 if the i-th site is occupied by a particle of species
1; in this case, c;» = 0). Single site occupancy prevents the possibil-
ity of a Ruelle-type instability.’ The general framework adopted in
the present paper is thus similar to Ref. 25, but only one curved grid
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is considered here, namely, the spherical grid obtained by project-
ing the vertices of the HPCD polyhedron onto a reference sphere
(M =122). The same mixtures are also examined on a 12 x 12
triangular-lattice grid, which is periodically replicated in every
direction in order to reduce finite-size effects.

To simplify our study, the sites of the spherical grid are gathered
in coordination shells, and all sites in the same shell are assigned
the same interaction energy with the central site;”” furthermore,

no interaction occurs beyond the third shell. Denoting u(") (with

n=1,2,3and a, f = 1,2) as the strength of the interaction between
two particles of species a and f that are the nth neighbor of each
other, the Hamiltonian of the mixture reads

= Z “aﬁcmclﬁ + Z Z ”aﬁcmcjﬁ

INP a8

+ 2 ulcacip, 1)

3NP

where the first sum runs over all distinct first-neighbor pairs (INP)

of sites, and so on. For each n, we distinguish two like inter-

actions (uf 1) and u; 2)) and one unlike interaction (u12 =, 1))

A lattice-gas mixture is then characterized by a total of nine coupling

parameters; only if the species are of the same nature (“symmetric

mixture”), then ug 1) = u§ 2) Since particles occupy discrete positions

on the sphere, interactions of range shorter than the minimum sep-
aration between two grid points cannot be considered in our setup.
By an appropriate choice of couplings, it is possible to mimic vari-
ous combinations of like and unlike interactions in two dimensions,
including core-corona, Lennard-Jones, and SALR, allowing us to
compare their thermal properties and structural motifs. Specifically,
any repulsive interaction characterized by non-negative couplings
of decreasing strength is of core-corona-type, while we designate
Lennard-Jones-type any interaction exhibiting an attractive “well,”
possibly preceded by a repulsive “shoulder.” Finally, the interac-
tion is classified SALR when a short-range attraction is followed by
a longer-range repulsion. Hereafter, all couplings are expressed in
units of a positive energy €. Accordingly, the temperature T is given
in units of ¢/kg, where kg is Boltzmann’s constant.

Once the couplings have been chosen, the statistical properties
of the mixture are evaluated in the grand-canonical ensemble using
the Monte Carlo (MC) method with Wang-Landau (WL) sampling.
The MCWL method is particularly suited for discrete systems with
not too many degrees of freedom and is especially effective at low
temperatures where conventional sampling techniques often fail due
to the presence of multiple free-energy minima separated by high
barriers. The MCWL method virtually enables computing the exact
density of states g s 4, & where /#1 and ./, are the number of type-
1 and type-2 particles, respectively, and & is the total energy. The
reader is referred to our previous paper” for a description of the
algorithm. In practice, in order to reduce the computational burden,
we arbitrarily decide to study only mixtures of two species with the
same chemical potential y. By this choice, which gives easy access to
the total number density as a function of temperature and chemical
potential, the patterns developed by a symmetric mixture would all
be near-equimolar, at least unless the unlike interaction is repulsive.

We ensure a thorough exploration of the mixture state space
by considering three types of MC moves: besides the usual creation

ARTICLE pubs.aip.org/aipl/jcp

and annihilation moves, other moves are attempted that change the
particle species (from 1 to 2, or vice versa). We also study equimolar
mixtures (A1 = A4>). Then, depending on the occupancies of two
randomly chosen sites, we either create/destroy two unlike particles
or swap the species of the particles; if none of these cases apply, two
new sites are chosen and a new move is attempted. Trial moves are
accepted with the MCWL acceptance criterion, involving the cur-
rent density of states at old and new particle-number and energy
values.” "

Given the density of states, the grand-canonical partition
function for y; = u, = u immediately follows as

B(Tu)=Y, Gye Pl g hE (2)
NE

-1 (@) .

where 8= (ksT)™" and ¥ o= Xy Ly 84,46 The latter sum is
over all (A1, /) pairs such that 41 + 45 = 4. In the equimo-
lar case, the partition function is similarly expressed by Eq. (2)
with y = (4, +u,)/2, but & now runs over even numbers only and
Cye= 84 s The grand potential is Q = —kgT'In E, and the pres-

sure is P(T p) = —Q/M = (kgT/M) In E. Finally, the thermody-
namic values of the total number of particles and total energy are,
respectively, computed as

NG o PN B
N= (= BLETTLEE C

. (3)
EC o P e PE
E:((g;): Z/V,é’ NE € )

=

From the expressions of P and N, it easily follows that

OP| _N _ @
oul, M
where p is the number density.

At fixed temperature, N () is a monotonically increasing func-
tion, which for T « 1 exhibits a number of regions where N is nearly
constant (“plateaus,” associated with distinct “phases”), with steep
crossovers between adjacent regions (“phase transitions”). Related
plateaus and crossovers are found in E(y) too. While true phase
transitions are forbidden in finite systems, a plateau in N(y) indi-
cates that the system is structurally robust against small changes
in the chemical potential. Therefore, each plateau corresponds to
a specific self-assembled structure or pattern. Since the organizing
principle at fixed T and g is the minimization of the generalized
grand potential,” a strict plateau at T = 0 implies that in an inter-
val of y, the stable structure is provided by the single configuration
(up to rotations and reflections, and unless accidental degeneracy
occurs) that minimizes the total energy for the given N. However,
it is clear that well-defined patterns are exclusive of low T only; as
thermal fluctuations grow stronger, finite-size effects eventually take
over and the density/energy function becomes increasingly smooth.

lll. RESULTS: SYMMETRIC MIXTURES

In this section, we provide an overview of the patterns emerg-
ing in symmetric lattice-gas mixtures with 4, = y, when combining,
in many possible ways, like and unlike interactions of the three
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TABLE |. For each symmetric interaction (columns 2 and 3), we shortly describe the self-assembled structures of the mixture on a 12 x 12 triangular grid (column 4). For
convenience, the various cases are marked with a progressive number (column 1). An asterisk beside the label indicates that stripes are among the stable phases.

Case Uy =Up Ui, Low-temperature structures
1 (0,0,0) (1,0,0) Small N: Polydisperse cluster fluid. Large N: One species only
2 (0,0,0) (1,1,0) Small N: Polydisperse cluster fluid. Large N: One species only
3 (1,0,0) (0,0,0) Moderately large N: Compositionally ordered crystal. N = 144: Linear arrangements of like particles
™ (1,1,0) (0,0,0) Intermediate N: Two-color stripes. N = 144: Stripes
5% (1,1, 1) (0,0,0) Moderately small N: Polydisperse cluster fluid. Intermediate N: Mix of clusters and curved stripes
Moderately large N: Coexistence of different stripes. N = 144: Stripes
6 0,0,0) (-1,0,0) Vapor coexisting with a compositionally disordered solid
7% 0,0,0) (-1,-1,0) Vapor coexisting with a stripe solid
8 0,0,0) (-1,-1,-1) Vapor coexisting with a stripe solid
9 (0,0,0) (1,-1,0) Moderately small N: Compositionally disordered crystal
Moderately large N: Stripes with ordered voids. N = 144: Stripes
10« (0,0,0) (1,0,-1) Intermediate N: Stripes of alternating “color.” N = 144: Irregular stripes
11+ (0,0,0) (-1,2,1) Intermediate N: Stripes. N = 144: Triangular crystal
12 (0,0,0) (-1,1,0) Vapor coexisting with a triangular crystal
13+ (0,0,0) (-1,0,1) Vapor coexisting with a stripe solid
14 (1,0,0)  (-1,0,0) Moderately large N: Compositionally ordered crystal. N = 144: Linear arrangements of like particles
15+ (1,0,0) (-1,-1,0) Vapor coexisting with a stripe solid
16+« (1,0,0) (-1,-1,-1) Vapor coexisting with a solid of irregular stripes
17 (1,0,0) (1,-1,0) Moderately small N: Compositionally disordered solid
Moderately large N: Disordered fluid with ordered voids. Large N: Compositionally disordered solid
18+ (1,0,0)  (1,0,-1) Moderately small N: Compositionally disordered crystal. Intermediate N: Compositionally disordered stripes
Moderately large N: Linear arrangements of like particles with ordered voids. Large N: Defective stripe solid
19+« (1,0,0) (-1,2,1) Moderately small N: Compositionally ordered network. Intermediate N: Stripes. N = 144: Triangular crystal
20 (1,0,0)  (-1,1,0) Moderately large N: Compositionally ordered crystal. N = 144: Triangular crystal
21 (1,0,0) (-1,0,1) Moderately small N: Compositionally ordered network. N = 144: Stripes
22+ (1,1,0) (-1,0,0) Intermediate N: Stripes of alternating “color.” N = 144: Stripes
23%  (1,1,0) (-1,-1,0) Vapor coexisting with a stripe solid
24« (1,1,0)  (1,-1,0) Small N: Compositionally ordered crystal. Moderately small N: Compositionally disordered crystal
Intermediate N: Stripes. N = 144: Compositionally disordered crystal
25%  (1,1,0)  (1,0,-1) Small N: Compositionally disordered crystal. Intermediate N: Compositionally disordered stripes
Moderately large N: Linear arrangements of like particles with ordered voids. N = 144: Irregular stripes
26« (1,1,0) (-1,2,1) Small N: Two-color stripes. Intermediate and moderately large N: Stripes
N = 144: Stripes and triangular crystal
27+ (1,1,1)  (-1,0,0) Small N: Cluster crystal. Intermediate N: Irregular stripes. N = 144: Irregular stripes
28+ (1,1,1) (-1,-1,0) Small N: Compositionally ordered crystal. Intermediate N: Two-color stripes
N = 144: Stripes
29 (1,1,1)  (-1,2,1) Small N: Cluster crystal. Moderately small N: Irregular stripes
Intermediate N: Stripes. N = 144: Triangular crystal
30 (-1,0,0) (-1,0,0) Vapor coexisting with a compositionally disordered solid
31 (-1,0,0) (-1,2,1) Vapor coexisting with a one-species solid
32 (1,-1,0) (-1,0,0) Moderately large N: Compositionally ordered crystal. N = 144: Triangular crystal
33+ (1,0,-1) (-1,0,0) Vapor coexisting with a stripe solid. The nature of the stripes depends on N
34x  (-1,2,1)  (1,0,0) Moderately small and intermediate N: Cluster crystal. N = 144: Stripes
35%  (-1,2,1) (1,1,0) Small N: Cluster fluid. Moderately small N: Cluster crystal
Intermediate and moderately large N: Two-color stripes. N = 144: Stripes
36+ (-1,2,1) (1,1,1) Small N: Cluster fluid. Moderately small N: Cluster crystal. Intermediate and moderately large N: Stripes
N = 144: Stripes
37+ (-1,2,1) (-1,0,0) Moderately large N: Coexistence of different stripes. N = 144: Irregular stripes
38« (-1,2,1) (1,-1,0) Small N: Cluster fluid. Intermediate and moderately large N: Stripes
N = 144: Stripes
39« (-1,1,0) (1,-1,0) Vapor coexisting with a stripe solid. The nature of two-phase states depends on N
40+ (-1,0,1) (1,0,-1) Moderately large N: Stripes with ordered voids. N = 144: Irregular stripes
J. Chem. Phys. 163, 174904 (2025); doi: 10.1063/5.0300333 163, 174904-4
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aforementioned categories (obviously, the considered instances are
necessarily limited in number). Our results are outlined in Table I
for the mixture defined on the triangular grid; the patterns described
in words in Table I are illustrated graphically in the supplementary
material, and they are compared with the self-assembly structures
observed, under the same conditions, on the spherical grid. We will
make evident that most structures on the triangular grid look locally
similar on the spherical grid, but the latter grid remains unique in
allowing the formation of patterns exhibiting rotation symmetries
that could fruitfully be exploited for nanomaterials technology. In
the following, our attention will be focused on stripe patterns, while
other kinds of self-assembly structures are touched upon only briefly
at the end of this section.

We start considering two cases with uf"l) = 0 and non-negative

ufz) (cases 1 and 2 in Table I). With two species unwilling to mix

#1 (4,7,13,15,21,22,23,33) #2(9,34,35,38,39)

#13 (24) #14 (26)

ARTICLE pubs.aip.org/aipl/jcp

together, the low-density aggregates are irregular clusters of either
“color.” At larger densities, the only way to keep the energy lowest
(i.e., zero) is by expelling one species from the grid.

Cases 3-5 are also special somehow and thus discussed sep-
arately from the other. Here, like particles are mutually repelling,
while no (off-core) interaction exists between unlike particles. As the
density grows at low T, keeping particles of the same species spatially
separate from each other becomes increasingly difficult until, above
a certain density, the energy is minimized by forming stripes, at
least provided that like repulsion extends beyond nearest neighbors.
Stripes are preferred to other arrangements because they ensure the
least content of total repulsive energy. This concept is easily grasped
in case 4 by looking at the completely filled grid (N = 144): sitting
on an arbitrary particle, the number of first- or second-neighbor par-
ticles of the same species is two in case of one-row stripes, while
being three on average when the environment is compositionally

"N
A
X e

[ )
< P4 rd 4 Bd

#15 (35,38)

#16 (26)

FIG. 2. Catalog of regular stripes on the triangular grid (in this and the following figures, red and yellow symbols represent “particles” of species 1 and 2, respectively;
blue symbols: empty sites). Below each panel, we report within parentheses the respective case(s) in Table |. The panels have been organized according to the number of
components present in a single stripe: one species (from No. 1 to No. 7) or two species (from No. 8 to No. 16).
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disordered. However, this is not enough in case 3, where many dis-
tinct linear arrangements of like particles have the same energy of
stripes (see the supplementary material). On the other hand, in case
5, several kinds of stripes are possible. In particular, the stripes for
N = 144 are thicker than in case 4, while two different stripe patterns
coexist for N = 96. Clearly, this rich self-assembly behavior could
hardly have been anticipated from the shape of interaction, whereas
it comes about automatically from the MCWL analysis.

The interactions giving rise to stable stripe order in lattice-gas
mixtures are actually many: A non-exhaustive list of possibilities can
be found in Table I (for the triangular grid) and in the supplementary
material. By scrolling through this file, one immediately realizes that
stripes occur in many shapes and, moreover, that the same typology
of stripes can arise from several interactions.

ARTICLE pubs.aip.org/aipl/jcp

FIG. 3. Instances of irregular stripes. Each of them is a
particular state of a “stripe liquid” phase (see text).

We have prepared a few pictures to help the reader follow
our discussion by assembling graphical material taken from the
supplementary material. In particular, Fig. 2 shows a gallery of regu-
lar stripe patterns on the triangular grid, together with the indication
of the interaction(s) having these configurations as unique ground
states (up to symmetry operations) in a y interval; any such state will
thus correspond to a stripe phase in the thermodynamic limit. We
clarify that the list of patterns in Fig. 2 is necessarily incomplete,
since stripes incommensurate with a 12 x 12 grid cannot appear.
For each pattern in Fig. 2, we can recognize a similar texture of
the spherical grid that is inevitably less regular (these patterns are
shown in the supplementary material). In a separate figure (Fig. 3),
we show instances of irregular planar stripes that are intrinsically
degenerate at zero temperature, since they are characterized by many

FIG. 4. This picture shows cases (within
parentheses) where microstates of a dif-
ferent nature coexist (see text). First
row: ground states for case 26 (i.e.,
U =(1,1,0) and Uz = (-1,2,1) for
N = 144, E = 576) and for case 5 (i.e.,
Un =(1,1,1) and Uy, = (0,0,0) for
N = 96, E = 168). Rows 2 and 3: ground
states for case 5 for N =60,E = 36
and N =72,E =72, respectively. Bot-
tom row: ground states for case 9 [i.e.,
Uy = (0,0,0) and Uq, = (1,-1,0) for
N =96, E = —144].
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similar, not symmetry-related, disordered microstates. While the
cases shown in Fig. 2 would be representative of stripe “solids,” each
pattern in Fig. 3 is paradigmatic of a stripe liquid, i.e., a stripe phase
characterized by residual entropy at T = 0. Finally, in Fig. 4, we see
configurations relative to “phases” with zero-point entropy due to
the joint presence of patterns of a different nature.

With Figs. 2 and 4, we have still been limited to a taxonomy
of stripes, without entering into the motivations behind the stabi-
lization of the various structures. Indeed, this is a daunting task;
what will be attempted below is to identify—in selected cases—the
interaction features favorable to the occurrence of stripes. Far more
complicated, if not even impossible, would be to prove analyti-
cally, in each specific case where stripes are expected to occur at
low temperature, that all alternative structures are indeed far from
optimal.

Let us first analyze the regular stripe patterns in Fig. 2. As a
first remark, we note that these patterns can be classified according
to the number of components making a single layer. In mixtures of
distinct molecular species, the periodic alternation of one-color and
two-color layers would indeed correspond to qualitatively different
phases. However, also in symmetric mixtures, a distinction can be
made between the two types of stripe phases by saying that only in a
two-color layer, the symmetry between the species is not broken.

Let us first analyze, for instance, the case of stripes No. 1 (in
the classification proposed in Fig. 2). We have already discussed
the origin of these stripes in case 4. Since the energy per particle
is uill) + uf,zl) + 3ufi) + Z(ug,lz) + ufz) ), stripes No. 1 are also favored
when a short-range like repulsion is more than compensated by
a longer-range like attraction and/or a short-range unlike attrac-
tion. In detail, stripes No. 1 are present when the like repulsion is
extended to second neighbors and the unlike interaction is zero or
attractive (cases 4, 22, and 23). We also have cases where the like
repulsion is zero or short range, e.g., U1 = (1,0,0), but the unlike
attraction should then be extended to at least second neighbors
(cases 7, 8, and 15). In particular, cases 7 and 8 concern two distinct
species of hard-core particles interacting through a SW attraction
of relatively long range. In these cases, the phase diagram features
a single, first-order-like transition between vapor and stripe solid.*
The thickness of stripes grows with the range of the attraction. In
the intermediate “coexistence region,” the shape of the solid droplet
changes upon compression according to the same universal pathway
identified for one-component fluids.”” " If the unlike attraction is
purely first-neighbor, stripes only occur in the presence of an unlike
repulsion between third neighbors (cases 13 and 21)—actually irrel-
evant for stripes, but harmful to competing configurations where
pairs of unlike third neighbors are present. For example, stripes
No. 1 are stable for Uy = (1,0,0) and Uiz = (-1,0,1), but not
for Ui1 = (1,0,0) and Ui, = (-1,0,0); similarly, the mixture with
Uii = (0,0,0) and Uy, = (-1,0,1) has stable stripes, in contrast to
the one with Uy; = (0,0,0) and Ujz = (-1,0,0). Furthermore, if
we take Uy; = (1,0,0) and Uiz = (-1,0,0), where stripes are not
present and add a like attraction between third neighbors, then the
interaction becomes stripe-forming (case 33). Another enlightening
example is U1y = (1,1,0) and Ujz = (-1,0,1), which is so inclined
to making stripes that the latter are also promoted when we include
a strong repulsion between unlike second neighbors—as in case 26,
where U1y = (1,1,0) and Uy, = (-1,2,1), although here stripes are
degenerate with a crystalline state.

ARTICLE pubs.aip.org/aipl/jcp

When stripes No. 2 are considered instead, the energy per parti-
cle is 2uf’11) + ugi) + “5,31) + uf,lz) + 2(u$’22) + uf’z)), meaning that these
stripes are particularly favored either by a short-range like attraction
or by a longer-range unlike attraction, as indeed observed in cases 9,
34,35, 38, and 39.

For stripes No. 8, which is a paradigmatic example of two-
component stripes, the energy per particle is 3u$i) + uf’lz) + ufi). In
this expression, first- and second-shell-like particle interactions are
not present. Therefore, if uﬁ) is zero or negative, a repulsion at
shorter distances inevitably suppresses many configurations com-
peting against stripes, which are thus encouraged to appear. Indeed,
stripes No. 8 are observed for Uy; = (1,1,0) and U, = (-1,0,0)
(case 22). They are also present as N = 72 minimum-energy con-
figurations for the interactions U1y = (1,1,0), Uiz = (-1,-1,0) and
Ui =(1,0,-1), Us2 = (-1,0,0) (cases 23 and 33), even though in
both cases, stripes lack sufficient stability to produce a plateau in
N(p).

The previous ones are just a few examples where the emergence
of stripes can be accounted for based on the interaction features. We
note that stripes are even promoted in cases, like case 33, where a
Lennard-Jones-type interaction between like particles is combined
with a SW interaction (hence, Lennard-Jones-type too) between par-
ticles of different species. The same arguments used above also serve
to explain the onset of curved stripes akin to No. 1-No. 3 on the
spherical grid. Actually, a more or less similar reasoning applies
for all stripe patterns in Fig. 2, although it is clear that in a two-
dimensional continuum model of binary mixture the interactions
cannot be exactly programmed a priori to yield a particular stripe
pattern, and a further element of uncertainty remains, related to the
possible promotion of non-stripe structures that are only slightly
suboptimal on the lattice. For instance, a close alternation of colors
within the same stripe would be a likely eventuality when the interac-
tion between unlike particles is attractive at first-neighbor distance,
asin cases 22 and 26. However, case 4 indicates that two-color stripes
may also appear when the unlike interaction is purely hard-core.
Another example is case 18, where two-color stripes are instead
promoted by a third-neighbor attraction between unlike particles.

We have previously mentioned that in binary mixtures, the
notion of stripes extends even beyond the paradigm of transla-
tionally invariant modulated structures. Examples of stripe patterns
holding some degree of irregularity at T = 0 are shown in Fig. 3.
In the thermodynamic limit, these structures correspond to low-
temperature phases that can rightfully be dubbed “stripe liquids.”
It is worth noting that the interactions giving rise to irregular
stripes are anything but few; furthermore, for case 27, we observe
(at different chemical potentials) two distinct kinds of irregular
stripes.

As illustrated in Fig. 4, the level of complexity may actually
be higher. On each row of the figure, we show ground-state con-
figurations (either regular or irregular) sharing the same density
and energy; all these structures are coexisting at T = 0 in that the
mixture can switch from one to the other at zero free-energy cost.
Among these patterns, some are stripes, while in others, worm-like
structures occur together with clusters.

Finally, we discuss the peculiarities of self-assembly in mixtures
of lattice gases on a spherical grid. We remark that any polyhe-
dral grid can, in principle, be fabricated by DNA origami®® and
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#15(26)

#13(11) #14(36)

then used as a template for the adsorption of two species of parti-
cles. The spherical topology heavily affects the order exhibited by
the mixture at low temperature, inducing frustration and ruling
out the possibility of proper crystalline or stripe structures. How-
ever, these arrangements are not completely washed out on the
sphere, but just “deformed”: for each crystalline or stripe structure
on the triangular lattice, a similar pattern exists on the spherical grid
(see many examples in the supplementary material). In addition to
these patterns, other curved patterns exist, having no counterpart
on the triangular lattice, which could not simply have been pre-
dicted from an inspection of the Hamiltonian. We have collected in
Fig. 5 a few notable cases, chosen among those showing some built-
in symmetry that might be exploited to create synthetic “particles”
with specific functionalities. Besides the practical interest, what is
worth noting in Fig. 5 is the extreme complexity and variability of
the self-assembly behavior induced, on a geodesic grid, by very basic
interaction rules.

For example, in pattern No. 1, particles form pentagonal rings
that are overall arranged in a rigid network, with holes at the vertices
of a regular icosahedron. While a similar structure exists on the tri-
angular grid, see cases 19 and 21 in the supplementary material, it is

FIG. 5. Patterns of a lattice-gas mixture
on the spherical grid. Some of these
patterns are commented on in the text.

#8 (36)

#12(11)

#16 (26)

only on the spherical grid that this decoration can be used to coor-
dinate 12 larger particles (in the network holes), alternately bonded
along each ring with species-1 and species-2 particles. More numer-
ous adsorbing centers are seen in patterns No. 3 and No. 6, placed
at the vertices of a geodesic polyhedron (the pentakis icosidodecahe-
dron and the pentakis dodecahedron, respectively). In pattern No. 4,
particles are arranged in a ring dividing the sphere into two regions
of different sizes. The (center of the) smaller hole can serve as an
adsorbing site for a foreign particle of suitable diameter, this way
producing an asymmetric dimer. In patterns No. 5 and No. 10, par-
ticles of alternating species are arranged in three parallel rings; we
can imagine filling the voids between the rings with particles of a
third species so as to form a thick ribbon wrapped around the sphere.
A similar ribbon could be formed, starting from pattern No. 12 or
No. 13, with foreign particles adsorbed in the empty channel along
the equator. As a last example, pattern No. 9 represents a concrete
realization of a Janus particle®® (with a slight preponderance of one
“color” over the other).

In closing this Section, we briefly mention the existence, in
addition to stripe patterns, of a wide variety of spontaneously self-
assembled orderly structures akin to crystals and cluster crystals,
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TABLE Il. Self-assembled structures of non-symmetric mixtures on the spherical grid. In all the listed cases, species-1 particles have zero off-core interaction, i.e., Uyy = (0,0,0).

Case Uz Uz Low-temperature structures

41% (-1,0,0) (-1,0,0) N = 122: Isolated hard spheres in a sea of L]-type particles

42 (-1,0,0) (-1,-1,0) Worms and clusters of hard spheres in a sea of L]-particles

43 (1,-1,0) (-1,0,0) N = 122: Crystal-like structure

44+ (1,-1,0) (-1,-1,0) N = 122: Stripes

45% (1,0,-1) (-1,0,0) Small N: Crystal of L]-type particles. N = 122: Stripes

463 (1,0,-1) (-1,-1,0) Large N: Stripes

47+ (-1,2,1) (-1,0,0) N =122: Cluster crystal of SALR particles in a sea of hard spheres
48+ (-1,2,1) (-1,-1,0) N = 122: Worms and clusters of SALR particles in a sea of hard spheres
49 (-1,0,1) (-1,0,0) N = 122: Defective crystal-like pattern

50 (-1,0,1) (-1,-1,0) N = 122: Stripe-like pattern

both on the triangular and on the spherical grid. However, a thor-
ough examination of these arrangements is beyond the scope of
this paper; the interested reader can find a catalog of them in the
supplementary material.

IV. RESULTS: NON-SYMMETRIC MIXTURES

Next, we consider a few cases of mixtures of two non-equivalent
species on the spherical grid, while still keeping y, = u,. In particu-
lar, species-1 particles are assumed to be purely hard-core. We allow
for a SW interaction between the species, U1, of two possible ranges.
The results are briefly summarized in Table II, while the patterns are
illustrated graphically in the supplementary material (hard particles
in red).

When the species are different, the constraint y, =y, is not
necessarily synonym of near-equimolarity. For example, when
Uz = (-1,0,0), the N = 122 microstates of minimum energy are
rich in species-2 particles, while species 1 is only marginally present
and its structure is disordered. The compositional disequilibrium is
reduced when the range Uy, is longer. Notably, in the latter case,
we observe the formation of clusters of particles that are otherwise
non-interacting.

When Uz, = (1,-1,0) (cases No. 43 and No. 44), the N = 122
pattern depends on the range of U»: crystal-like for U, = (-1,0,0)
and stripe-like for Ui, = (=1,-1,0). In the former case, species-2
particles form a pentakis icosidodecahedron, while the other parti-
cles sit at the vertices of a chamfered dodecahedron. By shifting the
Uy, well to third-neighbor distance (cases No. 45 and No. 46), the
N =122 pattern is stripe-like for both instances of Uy».

The N =122 pattern of a mixture of hard-core particles and
SALR particles depends on the height of the repulsive barrier
(cases No. 47-No. 50): cluster-crystalline for a higher barrier and
stripe-like for a lower barrier—but only if U, = (-1,-1,0).

V. RESULTS: EQUIMOLAR MIXTURES

Finally, we have considered a few cases of symmetric mixtures
on the spherical grid where the only admissible microstates are those
with an equal number of species-1 and species-2 particles. The most
relevant patterns of these strictly-equimolar mixtures are shown in
the supplementary material. With the obvious exception of the first

two cases, where the equimolarity constraint prevents the expulsion
of one species from the grid, only marginal differences are detected
with the cases where y; = u,—a sign that the latter condition actually
results in near-equimolarity.

VI. CONCLUSIONS

The self-assembly of impenetrable classical particles on a finite
grid retains the richness and complexity of pattern formation in
continuous space. This is vividly demonstrated by the behavior of
near-equimolar mixtures of two particle species on the triangular
grid and on a geodesic grid of 122 sites. Given any particle interac-
tion up to third-shell sites, the exact equilibrium states of the mixture
can be worked out, with moderate effort, using Wang-Landau sam-
pling. By this method, the interaction space of the model can be
swept very efficiently and general self-assembly trends can be found
out.

As a hosting space for particles, a grid composed of a 100
sites is large enough to expect that the mixture behaves like a
thermodynamic system. Indeed, the average number N of particles
(i.e., occupied sites) exhibits, as a function of the chemical poten-
tial y, a series of plateaus at low temperature (“patterns”), akin to
those observed in a many-body system undergoing a sequence of
first-order phase transitions. By reviewing dozens of interaction pro-
files, we have identified a wide variety of patterns that are robust
at low temperature to heating—since the relative plateaus in N(y)
are almost unaffected by a raise of temperature, e.g., from 0.05 to
0.5 (see, for instance, cases 9, 18, 25, and 26 in the supplementary
material). Furthermore, self-assembled structures on the spherical
grid look locally similar to those emerging on the plane.

Among the emergent structures, special attention is paid to
stripe patterns, occurring in many shapes and for many differ-
ent combinations of like and unlike interactions. We have found
instances of both one-component and two-component stripes, and
cases where stripes stay irregular even at zero temperature. More-
over, in some phases, stripes are not straight but wavy, although we
were not able to find any straightforward relationship between the
shape of interactions and that of stripes. The only correlation we
have devised concerns the thickness of stripes: the more extended
the attraction between unlike particles, the thicker the stripes. How-
ever, some other considerations have nonetheless emerged from
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our study. For example, stripes are energetically favored over more
symmetric (or disordered) configurations whenever a short-range
repulsion between particles of same species is accompanied by a
longer-range attraction between unlike particles—the longer the
range of attraction, the thicker the stripes. When like interactions
are longer-range repulsive, stripes even occur with no attraction
between unlike particles (since all competitor configurations have
a higher free-energy cost). We document the existence of stripes in
several other situations, involving either a Lennard-Jones-type or a
SALR interaction between like particles, combined with an attrac-
tion between unlike particles (a comprehensive list of stripe-forming
interactions is reported in Tables I and II and in the supplementary
material). The takeaway message is that the emergence of stripe
order at low temperature does not require an extremely fine tuning
of interactions; as a result, stripes will be more easily developed in
binary mixtures than imagined so far.

If the cooperative behavior is already rich on the triangular lat-
tice, the degree of structural complexity exhibited by a lattice-gas
mixture on the spherical grid is even higher. Far from being an exotic
construct, polyhedral grids can be fabricated, on a submicron scale,
by DNA origami.”” Regular polyhedral templates can also be real-
ized with block copolymers, as witnessed by, e.g., TEM images of
PS-b-PI nanoparticles.”” When exposed to a gaseous mixture of two
distinct chemical substances (e.g., two species of colloidal particles),
the template can be “decorated” by just letting the system attain ther-
modynamic equilibrium at low temperature. By this way, patchy
particles of various types can be engineered. Clearly, the type and
regularity of the embellishment depend on the effective interaction
between the particles adsorbed over the template. Despite control
of the mutual forces between the latter particles being in practice
limited, the relative abundance of stripe-forming interactions sug-
gests that at least some of these surface ornaments will be stripe
patterns. More generally speaking, knowing in advance the inter-
actions producing the desired self-assembly of adsorbed particles
can be useful in the design of functional materials with customized
surface properties.

SUPPLEMENTARY MATERIAL

See the supplementary material for graphical information
relative to all lattice-gas mixtures analyzed in our paper.
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Supplementary Information for

Onset of Stripe Order in Classical Fluids: Lessons from
Lattice-Gas Mixtures

by Gabriele Costa and Santi Prestipino

In this document, we collect graphical information relative to all the particular lattice-gas
mixtures analyzed in our paper (red and yellow symbols represent species-1 and species-2
particles, respectively; blue symbols are empty sites). While most cases concern symmetric
mixtures under the constraint (1 = 9, we have also examined a few non-symmetric mixtures
(still for p; = po) and examples of equimolar mixtures.

The cases are numbered progressively, as in Tables I and II of the main text.

In addition to the equation of state N(u), computed for a couple of temperatures, for
each case we show a few representative low-temperature patterns and, occasionally, some
two-phase coexistence states.
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2. Asymmetric Mixtures
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3. Equimolar Mixtures
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