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ABSTRACT
We investigate the phase diagram of a model hard-sphere mixture consisting of two species of equal diameter, featuring a square-well cross
attraction. The study is carried out using density-functional theory (DFT) in the mean-field approximation and extends to arbitrary species
concentrations a former DFT study at equimolar composition [Prestipino et al., J. Chem. Phys. 159, 204902 (2023)]. In addition to the stripe
phases found in the equimolar case, cylinder and cluster phases are also observed. While at high temperatures, the inhomogeneous domains
can be accessed only from the high-density liquid; at low temperatures, these phases coexist with the low-density vapor, resulting in a notably
rich phase diagram. The predictions of an analytic implementation of the theory—based on the Landau expansion of the free energy in powers
of the density modulation amplitude—are compared with numerical DFT minimization. The Landau approach shows qualitative agreement,
although it overestimates the extent of the stripe region at high density, where local concentration values may exceed their physical bounds.
Differences and similarities between DFT and simulation results for narrow attractive wells are briefly discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0291013

I. INTRODUCTION

The appearance of complex supramolecular aggregates origi-
nated by the self-assembly of simpler building blocks is a distinc-
tive feature of soft matter.1,2 In this field, computationally based
approaches are largely implemented to model such building blocks
toward a desired structure.3,4 Mesophases, like, for instance, lamel-
lar, cylindrical, gyroidal, or cluster phases,5,6 spontaneously arise in
a large variety of soft-matter systems, including block copolymers,7,8

colloids,9,10 and amphiphilic systems.11,12

These non-trivial structures may occur even in the presence of
purely spherically symmetric forces between their components. A
simple instance is represented by hard-core particles that feature a
short-range attraction and a longer-range repulsion (SALR).13–16 In
SALR fluids, by properly tuning the repulsion range, it is possible to

“switch” from a simple liquid to a cluster fluid17–20 which, for suffi-
ciently strong repulsion, at low temperature arranges into periodic
structures, superseding the usual vapor–liquid phase separation.

Another example consists of the so-called core–corona inter-
actions, where a hard-core repulsion is followed by a square-well
shoulder or a similar bounded repulsion at a larger distance.21–27 In
this case, mesophases are favored by the fact that the energy that
two particles have to pay to come close to each other is indepen-
dent of the degree of overlap of their soft repulsive shells, or nearly
so. Therefore, particles may find it energetically convenient to form
dense, separate aggregates in such a way that the repulsive interac-
tion between particles belonging to distinct aggregates is weak or
absent.

Spontaneous pattern formation is observed not only in
monodisperse systems but also in binary mixtures in which the
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potential between particles of the same species is again of SALR28–32

or core–corona type,33,34 whereas the sign of the potential is reversed
for particles of different species. In the cross interaction, the SALR
and the repulsive corona are then replaced, respectively, by a short-
range repulsion followed by a longer-range attraction and by an
attractive well.

Interestingly, even interactions that, in pure fluids, do not
form mesophases may do so when one moves to mixtures. One
such instance, which we have recently investigated,35,36 concerns the
occurrence of stripe patterns in a binary mixture of hard spheres of
the same size at equal concentration, mutually interacting through
a square-well attraction. Stripes have been observed in a large vari-
ety of different systems, including photonic crystals,37 amphiphilic
surfaces,38 and colloidal particles,39 as well as in living matter.40,41 In
Ref. 36, stripes consist of periodic modulations of the local densities
of both species along a given direction, in such a way that the total
density remains nearly uniform, and the modulations affect the local
concentration mostly. While in core–corona fluids, the vapor–liquid
transition never occurs, and in SALR fluids, vapor–liquid phase sep-
aration and mesophase formation are mutually exclusive; this model
mixture, instead, displays both transitions so that stripes can be
accessed from both the liquid and the vapor phases.

The purpose of the present study is to generalize our former
investigation36 to concentrations other than equimolar. To this end,
we employ the same mean-field density-functional theory (DFT)
already implemented there. DFT-based approaches have been exten-
sively adopted in the literature to describe mesophases, including
cylindrical and lamellar structures, as well as clusters and percolated
phases.6,17,19,42–44

When moving away from equimolarity, in addition to the stripe
phases, we now predict the existence of doubly and triply peri-
odic mesophases, whereby the less abundant species arrange into
periodic arrays of aggregates with cylindrical or spherical shapes,
and the more abundant species fills the region left available. As in
the equimolar case, both liquid-mesophase and vapor-mesophase
transitions are possible, resulting in a considerably rich phase
diagram.

The present paper follows a recent investigation of the same
system based on numerical simulation,45 aimed at the characteriza-
tion of the crystal structures for narrow attractive wells. Since the
DFT used here is not suited to tackle this problem, the two stud-
ies should be regarded as complementary; although an attempt to
compare some of their predictions is presented below.

This study is organized as follows: in Sec. II, details con-
cerning the model potential and the calculation of spinodal and
λ-surfaces are provided. Critical lines are discussed in Sec. III,
while the equations describing vapor–liquid phase equilibrium are
presented in Sec. IV. In Sec. V, an analytic treatment of the inhomo-
geneous phases based on the Landau expansion of the free energy is
described. The phase diagram is addressed in Sec. VI: in Sec. VI A,
the outcome of the Landau theory is discussed, while in Sec. VI B, it
is compared to the predictions of the numerical minimization of the
free-energy functional. The comparison with the aforementioned
simulation study of the same mixture45 is addressed in Sec. VI C.
Finally, in Sec. VII, we present our conclusions and perspectives. The
detailed derivation of the results of the Landau theory presented in
Sec. V is reported in the Appendix.

II. SPINODAL AND λ-SURFACES
We consider the same hard-sphere mixture of two species 1

and 2 investigated at equimolar concentration in Refs. 35 and 36.
The two species have the same diameter σ, and the off-core part of
the interaction wij(r) between particles of the same species vanishes,
whereas for particles of different species it consists of a square-well
attraction of depth ε and range ξ = (1 + γ)σ, where ξ is measured
from r = 0, and γ is the well width in units of σ. We then have
w11(r) = w22(r) ≡ 0 and

w12(r) = w21(r) ≡ w(r) =
⎧⎪⎪
⎨
⎪⎪⎩

−ε, r ≤ ξ,

0, r > ξ.
(1)

In the following, we shall denote by ρi the average density N i/V
of species i—where N i is the number of particles of species i and V is
the volume—and by ρi(r) the local density of species i at r. We also
introduce the total density ρ = ρ1 + ρ2, the concentration x = ρ2/ρ,
and the rescaled concentration y = 1 − 2x. Clearly, one has 0 ≤ x ≤ 1
and −1 ≤ y ≤ 1, the equimolar concentration corresponding to y = 0.

The present investigation is based on the same mean-field
Helmholtz free-energy functional already adopted in the equimolar
case,36

βA[ρ1(r), ρ2(r)] = ∫d3r
βAmix

ID

V
(ρ1(r), ρ2(r))

+ ∫d3r
βAex, mix

HS
V

(ρ1(r), ρ2(r))

+
β
2

2

∑
i,j=1
∫d3r∫d3r′wij(r − r′)ρi(r)ρj(r′), (2)

where β = 1/(kBT) is the inverse temperature, Amix
ID is the Helmholtz

free energy of a binary mixture of ideal gases given by

βAmix
ID

V
=

2

∑
i=1
ρi [ln (ρiΛ3

) − 1], (3)

Λ being the thermal wavelength, and Aex, mix
HS is the excess Helmholtz

free energy of a binary mixture of hard spheres. While the ideal-gas
term of Eq. (3) is, of course exact, the hard-sphere contribution is
taken into account in the local density approximation (LDA). In the
present case, in which the two species have the same diameter, one
has

Aex, mix
HS (ρ1(r), ρ2(r)) = Aex

HS(ρ1(r) + ρ2(r)), (4)

where Aex
HS is the excess Helmholtz free energy of a one-component

hard-sphere fluid, for which we have adopted the Carnahan–Starling
expression

βAex
HS

V
=
η2
(4 − 3η)

v0(1 − η)2 , (5)

where η = ρv0 is the total packing fraction and v0 = πσ3
/6 is the

hard-sphere volume.
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The condition of stability of the homogeneous phase ρi(r) ≡ ρi
against small density perturbations δρi(r), i = 1, 2, reads

2

∑
i,j=1
∫d3r∫d3r′Cij(r − r′)δρi(r)δρj(r′) < 0, (6)

where Cij(r − r′) is the direct correlation function of the homoge-
neous fluid,

Cij(r − r′) ≡
δ2
(−βA)

δρi(r)δρj(r′)
∣

ρi ,ρj

. (7)

We remark that here, at variance with the more widely adopted
definition, the direct correlation function Cij(r) includes the
ideal-gas contribution and, therefore, is related to the usual
Ornstein–Zernike direct correlation function cij(r) by

Cij(r) = −δ(r)
δij

ρi
+ cij(r), (8)

or

C̃ij(k) = −
δij

ρi
+ c̃ij(k), (9)

where δ(r) is the Dirac delta, δij is the Kronecker delta, r is the mod-
ulus of r, k is the modulus of the wave vector k, and the tilde denotes
the Fourier transform,

c̃ij(k) = ∫d3re−ik⋅rcij(r). (10)

Equation (6) is equivalent to requiring that the matrix ∥C̃ij(k)∥
be negative definite for every k. By substituting Eq. (2) into Eq. (7),
we obtain

C̃ij(k) = −
δij

ρi
+ c̃ HS

ij (0) − βw̃ij(k), (11)

where c̃ HS
ij (0) is the Fourier transform of the Ornstein–Zernike

direct correlation function of the hard-sphere mixture at k = 0. For
the system at hand, for which the two species have the same diameter
σ, cHS

ij (r) is actually independent of the indices i, j and coincides with
the direct correlation function cHS(r) of a one-component hard-
sphere fluid of diameter σ at density ρ, equal to the total density of
the mixture. According to Eq. (5), one has

c̃HS(0) = −
d2

dρ2 (
βAex

HS

V
) = −2v0

4 − η
(1 − η)4 . (12)

Hereafter, we shall set c0 ≡ c̃HS(0). We then obtain from Eq. (11),

∥C̃ij(k)∥ =
⎛
⎜
⎜
⎜
⎝

−
1
ρ1
+ c0 c0 − βw̃(k)

c0 − βw̃(k) −
1
ρ2
+ c0

⎞
⎟
⎟
⎟
⎠

, (13)

where the Fourier transform w̃(k) of the square-well potential is
given by

w̃(k) = −
4πε
k3 [sin (kξ) − kξ cos (kξ)]. (14)

The quantity C̃11 is always negative, so ∥C̃ij(k)∥ is negative definite if
and only if its determinant det ∥C̃ij(k)∥ is positive for every k. Since
C̃22 is also negative, the product C̃11C̃22 is positive, and we may set

B2
= (−

1
ρ1
+ c0)(−

1
ρ2
+ c0), (15)

which gives

det ∥C̃ij(k)∥ = [B − c0 + βw̃(k)][B + c0 − βw̃(k)]. (16)

Let us consider the first factor in the rhs of Eq. (16) at k = 0.
Since B − c0 is positive at all densities and concentrations and w̃(0)
is negative, this factor changes sign from positive to negative as β
is increased. Moreover, since w̃(k) takes its absolute minimum at
k = 0, the first wave vector at which the sign of the first factor changes
is indeed k = 0, leading to an instability at β0 = B − c0, where we have
introduced the quantity β0 ≡ β∣w̃(0)∣. This is the spinodal instabil-
ity, whereby the homogeneous fluid becomes unstable by developing
long-wavelength fluctuations that give rise to vapor–liquid phase
separation. By solving the equation β0 = B − c0 with respect to the
concentration, we find the expression of the rescaled concentration
along the spinodal surface ys(ρ,β),

ys = ±

¿
Á
ÁÀ1 −

4(1 − ρc0)

ρ2β0(β0 + 2c0)
. (17)

The condition that the expression under the radical be non-negative
requires

β0 ≥
2
ρ
(1 − ρc0) =

2
ρ
+

4v0(4 − η)
(1 − η)4 , (18)

where the equality holds at y = 0 and yields the spinodal curve in
the temperature-density plane at equimolar concentration. Hence,
at fixed density, the highest temperature on the spinodal is always
obtained at equimolar concentration.

We now turn to the second factor in the rhs of Eq. (16). Since
B + c0 is always positive, in order for this factor to turn from positive
to negative, it must be evaluated at a wave vector k such that w̃(k)
is positive. Specifically, the first wave vector at which the second fac-
tor changes sign as β is increased is the k at which w̃(k) assumes
its (positive) maximum. For the square-well potential at hand, the
maximum is located at k0ξ ≃ 5.763. We are then in the presence of
a Kirkwood instability46 at k0 ≠ 0, whereby the homogeneous fluid
becomes unstable because of the onset of inhomogeneities modu-
lated with a wavelength of ∼2π/k0. The boundary of the domain
of instability, dubbed the λ-surface, corresponds to βλ = B + c0,
where we have set βλ = βw̃(k0). The rescaled concentration on the
λ-surface yλ(ρ,β) is then

yλ = ±

¿
Á
ÁÀ1 −

4(1 − ρc0)

ρ2βλ(βλ − 2c0)
. (19)

The condition that the expression under the radical be non-negative
gives

βλ ≥
2
ρ

, (20)

J. Chem. Phys. 163, 164905 (2025); doi: 10.1063/5.0291013 163, 164905-3

Published under an exclusive license by AIP Publishing

 23 O
ctober 2025 10:50:02

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

where the equality describes the λ-line in the temperature-density
plane at equimolar concentration. Therefore, at fixed density the
equimolar concentration corresponds to the highest temperature
not only along the spinodal but along the λ-line as well.

We remark that the above-mentioned analysis of the instabil-
ities of the homogeneous phase was already carried out in Ref. 47,
the mixture in hand corresponding to case III of Sec. 4.2 therein,
although the detailed study of the phase diagram was not pursued
there.

Figure 1 displays the curves obtained by taking a section of the
spinodal and λ-surfaces in the density-concentration plane for three
different temperatures. From now on, temperature and density will
be measured in reduced units such that β∗ = βε(1 + γ)3, T∗ = 1/β∗,
and ρ∗ = ρσ3. We remark that, since in Eqs. (17) and (19) the well
width γ is contained only in the quantities β0, βλ introduced ear-
lier, the dependence of the spinodal and λ-surfaces on γ is entirely
accounted for in the definition of T∗.

At relatively high temperature, the spinodal (black lines) is
absent, and only the λ-line (in red) appears at high density. At
lower temperatures, both the spinodal and the λ-line are present,
and the domains bounded by the two curves are disconnected. As
the temperature is further lowered, both domains grow in size and
partially overlap. On this basis, we can expect different kinds of
phase equilibria on changing the temperature, as will be discussed
in Sec. VI.

We observe that, at variance with the equimolar case, the above-
mentioned results are not strictly equivalent to those that would be
obtained by describing the direct correlation function Cij(r) by the
random phase approximation (RPA). In the RPA, one has

C̃ij(k) = −
δij

ρi
+ c̃ HS

ij (k) − βw̃ij(k), (21)

FIG. 1. Spinodal curve and λ-line in the density-concentration plane for several
reduced temperatures T∗ = kBT/[ε(1 + γ)3

] displayed in the figure, corre-
sponding to γ = 0.5 and kBT/ε = 0.65, 0.5, 0.3. Black lines: spinodal curves. Red
lines: LDA λ-lines. Blue lines: RPA λ-lines (see text). At T∗ = 0.193, the spinodal
curve is absent.

which differs from LDA Eq. (11) inasmuch as the dependence of
the direct correlation function of the hard-sphere fluid on the wave
vector k is explicitly taken into account, whereas in the LDA this
dependence is disregarded by having c̃HS(k) ≡ c0. As a consequence,
according to the RPA, in Eqs. (15) and (16), the quantity c0 should be
replaced by c̃HS(k). Since the spinodal instability does occur at k = 0,
the spinodal surface remains unchanged, but this does not apply to
the λ-surface. If we denote by B̃ 2

(k) the quantity obtained by replac-
ing c0 with c̃HS(k) in Eq. (15), the λ-surface is now identified by the
equations

B̃(k) + c̃HS(k) − βw̃(k) = 0, (22a)
∂

∂k
[B̃(k) + c̃HS(k) − βw̃(k)] = 0 k ≠ 0, (22b)

where, at variance with the LDA, the wave vector that satisfies
Eq. (22b) is state-dependent and no longer coincides with k0. How-
ever, the deviations from k0 are rather small, and the RPA λ-surface
does not differ much from the LDA one. In Fig. 1, the RPA
λ-line (blue), obtained from Eq. (22) with the Verlet–Weis repre-
sentation48 for c̃HS(k), is compared to the LDA λ-line (red). The
differences are more marked at low temperature, with the RPA
curve being slightly wider than the LDA one. As the temperature
is raised, the two curves become virtually indistinguishable from
each other. Irrespective of the temperature, at equimolar concentra-
tion, the λ-line does not contain c̃HS(k); see Eq. (20), so the LDA
and RPA curves coincide. At any rate, in the following, we shall
always consider the LDA λ-surface, consistent with the adoption of
the free-energy functional (2).

III. CRITICAL LINES
On the spinodal and λ-surfaces, the determinant of the matrix

∥C̃ij(k)∥ vanishes at k = 0 and k = k0, respectively. Hence, one of
its eigenvalues must vanish. Since ∥C̃ij(k)∥ is symmetrical, it is
diagonalized by a rotation, and its eigenvalues λ+, λ− are given by

λ± =
1
2
(C̃11 + C̃22) ±

1
2

√

(C̃ 11 − C̃ 22)
2
+ 4C̃2

12, (23)

where the plus sign corresponds to λ+ and the minus sign to λ−,
and it is understood that C̃ij(k) is evaluated at k = 0 on the spinodal
and at k = k0 on the λ-surface. Since C̃11 and C̃22 are both negative,
the vanishing eigenvalue is λ+ in both cases, with C̃12 = [C̃ 11C̃ 22]

1/2

on the spinodal and C̃12 = −[C̃ 11C̃ 22]
1/2 on the λ-surface. From

Eqs. (13) and (23), we find for k = 0

λ± = −
1
2
(

1
ρ1
+

1
ρ2
) + c0 ±

1
2

¿
Á
ÁÀ
(

1
ρ1
−

1
ρ2
)

2

+ 4(c0 + β0)
2, (24)

and the same expression with β0 replaced by −βλ for k = k0.
The eigenvectors u+ and u−, corresponding, respectively, to λ+

and λ−, identify two orthogonal axes. A point in the ρ1–ρ2 plane can
be expressed in terms of its coordinates ψ+ and ψ− along these axes
as49

ρ1 = cosϑ ψ+ − sinϑ ψ−, (25a)

ρ2 = sinϑ ψ+ + cosϑ ψ−, (25b)
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where ϑ is the angle of the rotation that casts ∥C̃ij(k)∥ into diagonal
form. One has

cosϑ =

√
1
2
+

y
Δ

, (26a)

sinϑ = ±

√
1
2
−

y
Δ

, (26b)

where in Eq. (26b) the plus and minus signs hold, respectively, for
k = 0 and k = k0, and Δ is given by

Δ =
√

[ρ(1 − y2
)(c0 + β0)]

2
+ 4y2, (27)

for k = 0, and by

Δ =
√

[ρ(1 − y2
)(c0 − βλ)]

2
+ 4y2, (28)

for k = k0. The quantities ψ+ and ψ− identify, respectively, the
strongly and the weakly fluctuating fields in the ρ1–ρ2 plane.49 In
particular, for k = 0, it holds

λ+ =
∂2

∂ψ2
+
(−

βA
V
), (29a)

λ− =
∂2

∂ψ2
−
(−

βA
V
). (29b)

Hence, on the spinodal surface, the second derivative of the free
energy along the strongly fluctuating field ∂2A/∂ψ2

+ vanishes. This
generalizes to mixtures the condition ∂2A/∂ρ2

= 0 defining the spin-
odal curve in a one-component fluid. Similarly, the critical line(s)
are the loci of the spinodal surface such that both the second and the
third derivatives of A along ψ+ vanish,49 i.e.,

λ+ = 0, (30a)
∂λ+
∂ψ+

= 0. (30b)

From Eq. (25), we immediately obtain

∂λ+
∂ψ+

= cosϑ
∂λ+
∂ρ1
+ sinϑ

∂λ+
∂ρ2

. (31)

Equations (30) and (31) also give the critical line(s) on the λ-surface,
provided that in Eq. (24), β0 is replaced by −βλ, and Eq. (28) is used
for Δ instead of Eq. (27).

From the direction of strong fluctuation u+ ≡ (cos ϑ, sin ϑ) in
the ρ1–ρ2 plane, we can obtain the direction of strong fluctuation in
the ρ–x plane. We introduce an angle φ such that tanφ = ρ δx/δρ.
From δρ = δρ1 + δρ2 and ρ δx = −xδρ1 + (1 − x)δρ2, we find

tanφ = 1 − x −
1

1 + tanϑ
. (32)

For a purely vapor–liquid transition, φ = 0, whereas for a purely
mixing-demixing transition, φ = π/2.

Figures 2 and 3 show the critical lines in the ρ–x and ρ–T planes.
The blue line is the critical locus of the spinodal instability at k = 0,

FIG. 2. Critical lines in the density-concentration plane. Blue line: Vapor–liquid
critical line. Red line: Liquid-stripes critical line. The arrows indicate the direction
of strong fluctuation (see text).

FIG. 3. Critical lines in the density-temperature plane. Lines as in Fig. 2.

whereas the red line is the critical locus of the Kirkwood instabil-
ity at k = k0. The arrows drawn along the lines in Fig. 2 display the
direction of strong fluctuation according to Eq. (32).

Along the blue line, x = 1/2 corresponds to an azeotropic crit-
ical point, where the critical temperature reaches its maximum, T∗a
= 0.189, and the critical density reaches its minimum, ρ∗a = 0.249.
For T∗ > T∗a , the vapor–liquid transition and the related spinodal
curve are absent, as observed in Sec. II. At x = 1/2, the transition is
purely vapor–liquid and takes a partially mixing–demixing character
as one moves toward x = 0 or x = 1. The line has been truncated at
high density so as to discard its part lying inside the region bounded
by the λ-surface, where macroscopic fluid–fluid phase separation
becomes unstable.
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Along the red line, the transition always involves purely con-
centration fluctuations. In fact, this line is nothing but the λ-line
at equimolar concentration already studied in our former paper.36

As discussed there, upon crossing it, the homogeneous fluid under-
goes a second-order transition to a stripe phase, characterized by
alternating domains richer in either component. The line meets the
vapor–liquid coexistence curve of the equimolar mixture at the crit-
ical endpoint36 T∗e = 0.128 and ρ∗e = 0.706. At lower temperatures,
criticality is preempted by a first-order transition.

The overall topology of the critical lines resembles one of the
three types displayed by another class of symmetric mixtures where,
at variance with the present case, attractive interactions also act
between particles of the same species.50–52 Nevertheless, there are
two main differences in phase behavior between the two models:
first, the mixtures considered in Refs. 50–52 do not exhibit inhomo-
geneous phases. They do feature a critical line at constant concentra-
tion x = 1/2, but that line corresponds to a mixing–demixing transi-
tion involving two macroscopic phases, rather than the formation of
mesoscopic domains. Second, in that model, the pure components
exhibit a vapor–liquid transition due to the intra-species attraction,
and the vapor–liquid critical line connects their critical points at
x = 0 and x = 1. Instead, in the present case, the vapor–liquid tran-
sition of the pure components is absent. As one moves away from
the vapor–liquid transition at x = 1/2 by increasing or decreasing
the concentration, the critical density rapidly increases and reaches
values ρ∗ ≳ 1, such that vapor–liquid phase separation will be most
likely preempted by freezing. At the same time, the critical temper-
ature decreases and goes to zero for x → 0 or x → 1, although this
is prevented by the critical line eventually hitting the λ-surface at a
density near the close-packing value.

IV. VAPOR–LIQUID TRANSITION
For the homogeneous mixture such that ρi(r) ≡ ρi, Eq. (2)

gives the standard mean-field approximation for the Helmholtz free
energy,

βAh

V
=

2

∑
i=1
ρi(ln ρi − 1) +

βAex
HS

V
− β0ρ1ρ2, (33)

where the subscript “h” refers to the homogeneous phase and the
thermal wavelength Λ has been dropped, since it does not affect
phase equilibria. In terms of the total density ρ and the rescaled
concentration y, Eq. (33) reads

βAh

V
= ρ ln

ρ
2
− ρ +

ρ
2
[(1 + y) ln (1 + y) + (1 − y) ln (1 − y)]

+
ρη(4 − 3η)
(1 − η)2 −

1
4
β0ρ2
(1 − y2

), (34)

where Eq. (5) for Aex
HS has been used. From Eq. (34), the pressure P

and the chemical potentials μ1 and μ2 of the two species are obtained.
For ease of computation, we introduce the total chemical poten-
tial μ ≡ μ1 + μ2 and the relative chemical potential Δμ ≡ μ1 − μ2. The
following relations hold:

βP = −
βA
V
+ ρ

∂

∂ρ
(
βA
V
), (35a)

βμ = 2
∂

∂ρ
(
βA
V
) −

2y
ρ

∂

∂y
(
βA
V
), (35b)

βΔμ =
2
ρ
∂

∂y
(
βA
V
), (35c)

from which we obtain

βPh = ρ
1 + η + η2

− η3

(1 − η)3 −
1
4
β0ρ2
(1 − y2

), (36a)

βμh = 2 ln
ρ
2
+ 2[

3 − η
(1 − η)3 − 3] + ln (1 − y2

) − β0ρ, (36b)

βΔμh = ln(
1 + y
1 − y

) + β0ρy. (36c)

The coexistence region is obtained as usual by equating the pressure
and chemical potentials of the coexisting phases, i.e., PA = PB, μ1,A
= μ1,B, and μ2,A = μ2,B, where A and B are the two phases. Clearly,
the equality of chemical potentials is equivalent to the conditions
μA = μB and ΔμA = ΔμB.

Hereafter, we shall always refer to the coexisting phase of lower
density as “vapor” and to that of higher density as “liquid,” although
the critical lines displayed in Sec. III imply that, for the mixture con-
sidered here, the density of the “vapor” can be much higher than the
density of the vapor phase of, say, one-component Lennard-Jones-
like fluids; moreover, at those high densities the transition will not
be purely liquid–vapor in character.

V. LANDAU THEORY OF INHOMOGENEOUS PHASES
To describe the inhomogeneous phases, we consider the

strongly and weakly fluctuating fields ψ+ and ψ− introduced in
Sec. III. For an inhomogeneous phase, ψ+ and ψ− are in gen-
eral functions of r. Here, we assume that the inhomogeneity is
brought into the system only by the strongly fluctuating field ψ+ and,
therefore, make the following ansatz for ψ+ and ψ−,

ψ+(r) = ψ+ +
ρ
2
Aϕ(r), (37a)

ψ−(r) = ψ−, (37b)

where ψ+ and ψ− are uniform quantities, ϕ(r) is a periodic func-
tion of r with Fourier components only for k = k0, and A gives the
amplitude of the modulation. From ρi = ∫ d3rρi(r)/V and Eq. (25),
we obtain

ψ+ = cosϑ ρ1 + sinϑ ρ2, (38a)

ψ− = − sinϑ ρ1 + cosϑ ρ2, (38b)

which, plugged into Eq. (25), finally give

ρ1(r) =
ρ
2
[1 + y + cosϑAϕ(r)], (39a)

ρ2(r) =
ρ
2
[1 − y + sinϑAϕ(r)]. (39b)

In the latter equations, it is understood that the angle ϑ is that
pertaining to k = k0; see Eqs. (26) and (28).
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For a periodic function, it holds

ϕ(r) =∑
k

eik⋅rϕ̂k, (40)

where the sum runs over the vectors of the reciprocal lattice and ϕ̂k
is the Fourier transform of ϕ(r) defined as

ϕ̂k =
1
v∫ C

d3re−ik⋅rϕ(r), (41)

where C denotes the primitive cell of volume v and, at variance with
Eq. (10), the integral is not extended to the whole space but only to
the primitive cell.

Following our ansatz for ϕ(r), we set

ϕ̂k =
1
q∑k0

δkk0 , (42)

where the sum runs over the nearest-neighbor shell of the reciprocal
lattice with coordination number q.

We now substitute Eq. (39) into the free-energy functional (2).
We first focus on the interaction term. By going to Fourier space and
taking Eq. (42) into account, this can be rewritten as

β
2V

2

∑
i,j=1
∫d3r∫d3r′wij(r − r′)ρi(r)ρj(r′)

= β∑
k
ρ̂k,1ρ̂−k,2w̃(k)

= −
1
4
β0ρ2
(1 − y2

) +
1
4
βλρ

2 sinϑ cosϑ
A2

q
. (43)

To make further progress, we follow former investigations
on SALR fluids53–55 and expand the ideal-gas and the hard-sphere
contributions in Eq. (2) in powers of A up to fourth order to obtain

βA
V
=
βAh

V
+
Δ(βA)

V
, (44)

where Ah is the Helmholtz free energy of the homogeneous mixture
given by Eq. (34), and Δ(βA) is given by the Landau expression

Δ(βA)
V

= CA2
+DA3

+ EA4, (45)

whose actual value is determined by minimization with respect
to the amplitude A, which plays the role of the order parameter
of the transition from the homogeneous to the inhomogeneous
fluid. The expressions of the expansion coefficients C, D, and E
are given in the Appendix. In the following, we shall consider the
usual candidates53,54 for ϕ(r), namely, one-dimensional modula-
tions (stripes), two-dimensional modulations on a triangular lattice
(cylinders), and three-dimensional modulations (clusters) either on
a body-centered cubic (bcc) or on a face-centered cubic (fcc) direct
lattice. The corresponding expressions of ϕ(r) are also reported in
the Appendix.

Let us first consider the coefficient C of the quadratic term of
Eq. (45). By substituting into Eq. (A1) the explicit expressions of
cos ϑ and sin ϑ given by Eq. (26), we find

C =
ρ

8q(1 − y2
)
[2 − ρc0(1 − y2

) − Δ], (46)

with Δ given by Eq. (28). From Eq. (46), it is readily found that
C is positive for ∣y∣ > ∣yλ∣, negative for ∣y∣ < ∣yλ∣, and vanishes for
∣y∣ = ∣yλ∣, where yλ is the concentration on the λ-surface given by
Eq. (19). Hence, upon entering the region bounded by the λ-surface,
the uniform phase at A = 0 turns from a minimum to a maximum
of the free energy and becomes unstable. This shows that the ansatz
of Eq. (39) for the density profile is consistent with the analysis
developed in Sec. II.

The coefficient E of the quartic term of Eq. (45) is always posi-
tive, whereas the coefficient D of the cubic term is always zero for
the stripe and fcc phases. Moreover, at the equimolar concentra-
tion (y = 0), it also vanishes for the cylinder and bcc phases; see
Eq. (A2). For D = 0, Eq. (45) describes a second-order transition
that takes place at C = 0, i.e., on the λ-surface. It is shown in the
Appendix that at equimolar concentration the stripe phase is always
the inhomogeneous phase of lowest free energy, and at the λ-surface
a second-order transition from the homogeneous fluid to the stripe
phase occurs, as already established in our former study.36 More-
over, the fcc phase is never found, because its free energy is always
higher than that of the stripe phase, irrespective of the concentra-
tion. The latter result hinges on the assumption (42) for ϕ̂k and
on the expansion (45) of the Helmholtz free energy: in principle,
other functional forms of the modulation or higher-order terms in
A might favor the fcc phase in some domain of the phase diagram.
However, as we shall discuss in Sec. VI B, we do not find this to be
the case for the system at hand.

At non-equimolar concentration, the cubic term D of Eq. (45)
for the cylinder and bcc cluster phases is non-vanishing and may
stabilize them with respect to stripes. In fact, for a given modulation
amplitude A, stripes are energetically favored over cylinders and, a
fortiori, over clusters. However, when the difference in species con-
centration is sufficiently large, cylinders and clusters have to pay a
smaller entropic penalty for domain formation because, compared
to stripes, they offer a larger volume available to the more abundant
species; see also Sec. VI B.

The presence of the cubic term D implies that the transition
from the homogeneous to the inhomogeneous fluid at concentra-
tions different from equimolar becomes first-order: before reaching
the λ-surface at C = 0, the order parameter A jumps discontinuously
from A = 0 to A ≠ 0. As shown in the Appendix, the transition from
the homogeneous fluid to the bcc cluster phase preempts that from
the homogeneous fluid to the cylinder phase. Hence, as the λ-surface
is approached from the homogeneous region at non-equimolar con-
centration, the fluid undergoes a first-order transition to the bcc
phase.

Inside the inhomogeneous region, the free energies of the
stripe, cylinder, and bcc phases must be compared with one another
to determine the domain of each phase; see the Appendix. As the
difference in the concentrations of the two species becomes smaller,
it is found that the bcc phase soon gives way to the cylinder phase,
which is in turn replaced by the stripe phase at concentrations closer
to equimolar. The domains of stability of each phase in the ρ–x plane
will be graphically displayed in Sec. VI.

Neighboring phases are separated by a coexistence region to
be determined by equating their pressures and chemical potentials
obtained from Eq. (35), with A given by Eqs. (44) and (45). The
determination of P, μ, and Δμ is straightforward, although tedious.
At variance with the vapor–liquid equilibrium discussed in Sec. IV,
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in the present case, the coexistence regions in the ρ–x plane turn
out to be very narrow, to the point of being hardly distinguishable
from the loci of equal free energy. Nevertheless, in the following, we
shall display the coexistence regions, consistent with what we have
performed for the vapor–liquid transition.

We note that in the free energy (44), the dependence on the well
width γ comes about only via the quantities β0 and βλ introduced
in Sec. II. Specifically, β0 appears in Eq. (34) for the free energy Ah
of the homogeneous mixture, and βλ appears in the coefficients C,
D, and E of the Landau free energy (45), given in Eqs. (A1)–(A3).
Therefore, as already observed for the spinodal and λ-surfaces,
within the present treatment, the dependence of the phase diagram
on γ is completely accounted for by T∗.

Finally, we remark that the second-order character of the tran-
sition from the homogeneous fluid to the stripe phase at equimolar
concentration discussed earlier is actually a shortcoming of the
mean-field approximation. It has long been pointed out that tran-
sitions from a disordered to a periodic phase, such as those consid-
ered here, become first-order upon the inclusion of fluctuations.56

On the theoretical side, this has been discussed in detail both for
one-component SALR fluids53,57 and for binary mixtures.28,47 For
SALR fluids, further evidence of the fluctuation-induced first-order
nature of this kind of transition has been provided by numerical
simulations.18,19 We shall return to possible effects of fluctuations
on the qualitative features of the phase diagram in Sec. VI C.

VI. PHASE DIAGRAM
A. Results from Landau theory

The mean-field phase diagrams in the ρ–x plane obtained by
combining the results for the vapor–liquid transition with those
of Landau theory for the transitions involving inhomogeneous
phases are displayed for T∗ = 0.148, T∗ = 0.119, and T∗ = 0.0889 in
Figs. 4–6, respectively. These reduced temperatures correspond to
γ = 0.5 and kBT/ε = 0.5, 0.4, 0.3.

At such temperatures, both kinds of transitions are present. As
discussed in Sec. III, for temperatures larger than the azeotropic crit-
ical temperature T∗a = 0.189, the spinodal instability and the related
vapor–liquid transition disappear, and only the transitions from
the homogeneous fluid to the inhomogeneous mesophases survive.
However, in this temperature regime, these transitions are predicted
to occur at very high density, where they might be preempted by
crystallization.

Figure 4 shows that for T∗ = 0.148 the liquid–vapor coexistence
curve and the λ-line are disconnected, implying that the domain
of the inhomogeneous mesophases can be accessed only from the
high-density liquid. This is the scenario to be expected for temper-
atures smaller than T∗a and larger than the endpoint temperature
T∗e = 0.128 (see Sec. III). As the temperature is decreased below T∗e ,
the two curves intersect, and the domain bounded by their intersec-
tion becomes larger and larger, as shown in Figs. 5 and 6. In this
regime, the vapor–liquid transition is partially preempted by a tran-
sition from the vapor to the inhomogeneous mesophases, whether
they are clusters, cylinders, or stripes. At low temperatures, vapor-
mesophase equilibrium occupies most of the coexistence region (see
Fig. 6).

If A and B denote two phases at coexistence, all the states inside
the coexistence region obtained by changing the relative abundance

FIG. 4. Phase diagram for reduced temperature T∗ = 0.148 in the density-
concentration plane according to the mean-field theory described in Secs. IV and
V. Black dashed line: spinodal curve. Blue solid line: vapor–liquid coexistence
curve. Blue dashed lines: tie lines connecting the vapor and liquid phases at
coexistence. Blue diamonds: vapor–liquid critical points. Red dashed line: λ-line.
Black solid lines: stripes–cylinders, cylinders–clusters, and clusters–fluid coexis-
tence curves. On the scale of the figure, the corresponding coexistence regions
are hardly distinguishable from a single curve. Red diamond: fluid–stripes critical
point. The open symbols refer to the phase boundaries obtained from the numeri-
cal minimization of the free-energy functional (2), with no a priori assumptions on
the form of the density profiles ρi(r) (see Sec. VI B). Squares: stripes–cylinders.
Triangles: cylinders–clusters. Circles: clusters–fluid. The width of the coexistence
regions is always much smaller than the symbol size. For ease of readability, only
the points for x > 0.5 have been shown.

FIG. 5. Same as Fig. 4 for T∗ = 0.119. The red solid lines mark the bound-
aries of the three-phase regions. On the scale of the figure, these regions are
undistinguishable from a single curve.
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FIG. 6. Same as Fig. 5 for T∗ = 0.0889. Only the results of Landau theory are
shown. Here, the finite size of the vapor–stripes–cylinders three-phase region can
be appreciated.

of A and B are at coexistence with one another. These states are con-
nected by a tie line joining A to B. We denote by ρA and ρB the
densities of the two phases at coexistence, by xA and xB their concen-
trations, and by NA and NB the number of particles in each phase,
irrespective of their species. The relative abundance x = NA/(NA
+NB) of phase A is given by the lever rule,

x =
v − vB

vA − vB
, (47)

where v = 1/ρ is the specific volume of a generic state at equilibrium
with A and B, and vA and vB are the specific volumes of A and B.
The concentration x of such a state is

x = xA x + xB (1 − x) = xA
v − vB

vA − vB
+ xB

vA − v

vA − vB
, (48)

i.e.,

x =
ρAρB

ρB − ρA
(xA − xB)

1
ρ
+
ρBxB − ρAxA

ρB − ρA
. (49)

Equation (49) gives the tie lines in the ρ–x plane, except in the
case of a purely mixing–demixing transition such that ρA = ρB, for
which one has ρ = ρA = ρB for every x. Some tie lines are shown as
blue dashed lines in Figs. 4–6. We remark that they are not straight
lines, except for the azeotropic mixture at x = 0.5, for which the tie
line is horizontal, since the same concentration x = 0.5 is shared by
all the states at coexistence. As a consequence, a line at constant
x ≠ 0.5 inside the coexistence region intersects different tie lines as
ρ changes. This implies that, at variance with one-component fluids,
the densities at coexistence ρA and ρB (as well as xA and xB) depend
on ρ.

We also observe that at low temperatures, as soon as the con-
centration gets slightly above or below x = 0.5, the vapor phase at
coexistence consists almost entirely of the more abundant species

(see Fig. 6). The reason for this is that the phase at higher density
takes more advantage of the attractive interaction, because the inter-
nal energy per particle scales as ∼ ρ. Since in the mixture at hand
the attraction acts only between particles of different species, the
system finds it energetically convenient to keep the concentration
of the phase at higher density closer to equimolar than the average
concentration. As a consequence, the excess particles of the more
abundant species are expelled to the phase of lower density. This
behavior agrees with the results of numerical simulations.45

The points at which the vapor–liquid coexistence curve touches
the spinodal curve are the critical points of the vapor–liquid tran-
sition, which lie on the vapor–liquid critical line of Fig. 2. When
approaching those points, the densities and concentrations of the
coexisting phases become the same, as shown by the behavior of the
tie lines.

In the low-temperature regime displayed in Figs. 5 and 6, the
vapor can coexist not only with the liquid but also with different
mesophases. If we consider two neighboring coexistence regions
such that the vapor coexists with some phase A in one region and
with another phase B in the other, then the boundary between the
two regions consists of a triple point, at which the vapor, phase
A, and phase B coexist together. In the ρ–x plane, this triple point
appears as a three-phase domain bounded by three tie lines con-
necting the vapor with A, the vapor with B, and A with B, which
have been drawn in red in Figs. 5 and 6. These three-phase domains,
although very narrow, are clearly distinguishable at the boundary
between the vapor–stripes and vapor–cylinders coexistence regions
at the lowest temperature considered (see Fig. 6). In other cases,
they appear as lines on the scale of the figures because of the very
small differences in the densities and concentrations of phases A
and B.

B. Comparison with numerical minimization
The previous analysis is based on three additional assumptions

in addition to the mean-field approximation, namely, Eq. (39) for
the density profiles, the ansatz (42) for the function ϕ(r) describing
their modulations, and the Landau expansion (45) of the free energy
in powers of the modulation amplitude A. As discussed in Sec. V,
the description of the inhomogeneous phases that results from those
assumptions appears to be reasonable in the neighborhood of the λ-
line. However, it may become inaccurate as one moves away from it,
entering more deeply into the inhomogeneous domain.

We have then considered the grand potential functional Ω
= A −∑2

i=1 μiNi with A given by Eq. (2) and performed some min-
imization runs of Ω using the purely numerical algorithm already
adopted in former investigations.36,43,44 Unlike the Landau theory
discussed in Sec. V, this algorithm does not make any assumptions
about the functional form of the density profiles ρi(r), except for
their periodicity. The unit cell was sampled on a grid consisting of
1283

= 2 097 152 points, and the minimization was carried out with
respect to both the values taken by ρi(r) at those points and to the
cell axes.

In Sec. V, it was pointed out that, within the Landau the-
ory described there, the dependence of the phase diagram on the
well width γ is accounted for by incorporating γ in the definition
of reduced temperature, T∗ = 1/β∗, with β∗ = βε(1 + γ)3. Here, we
remark that, under the assumption of periodicity, this property is
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intrinsic to the mean-field treatment based on the free-energy func-
tional (2), irrespective of whether ρi(r) is parameterized analytically
or not. If we denote by A the matrix of the primitive vectors of the
lattice, we may set

ρi(r) = ρi(A⋅ s) ≡ fi(s), (50)

where s is a vector that varies in a cube Q of unit edge. The free
energy functional then assumes the form

βA[ρ1(r), ρ2(r)]
V

= ∫
Q
d3s

βAmix
ID

V
( f1(s), f2(s))

+ ∫
Q
d3s

βAex, mix
HS
V

( f1(s), f2(s))

+ β∑
n

f̂ 1(n) f̂ 2(−n)w̃(kn), (51)

where n ≡ (n1, n2, n3) is a vector with integer components and f̂ i(n)
is given by

f̂ i(n) = ∫
Q
d3se−2πin⋅s fi(s). (52)

Hence, fi(s) and f̂ i(n) depend solely on the values taken by the
density profiles inside the cell, irrespective of the lattice. The infor-
mation on the lattice is conveyed only via the kn at which w̃(k) is
evaluated. By virtue of Eq. (14), if we rescale the lattice by intro-
ducing the dimensionless wave vectors knξ, then the dependence on
the interaction range in Eq. (51) is entirely contained in the inverse
reduced temperature β∗. The density profiles corresponding to the
same values of β∗, ρ∗, and x coincide, provided they are plotted in
terms of the rescaled position r/ξ. This holds not only for the square-
well interaction (1) but also for any tail interaction w(r) described
by a generic function u, an energy scale ε, and a range ξ such that
w(r) = ε u(r/ξ).

In Figs. 4 and 5, the results of the numerical minimization are
compared with the phase diagram predicted by the Landau the-
ory at reduced temperatures T∗ = 0.148 and T∗ = 0.119. On purely
qualitative grounds, the inhomogeneous mesophases are the same
as those described in Sec. VI A: as the concentration departs from
x = 0.5, we find first a stripe phase on a one-dimensional lattice, then
a cylinder phase on a triangular lattice, and finally a cluster phase on
a bcc lattice. In order to investigate the possible occurrence of other
mesophases, we performed several runs at T∗ = 0.148 starting from
an ad hoc trial density profile describing either an fcc cluster phase
or a gyroid bicontinuous phase. While those phases were found to
describe local minima of Ω for some densities and concentrations,
they were always superseded by either the stripe, the cylinder, or
the bcc phase, which provided a lower Ω for the same chemical
potentials.

This behavior is different from that previously observed in
SALR fluids44 and binary mixtures of particles interacting via soft-
core Gaussian potentials,43 whose phase portrait also features more
exotic structures, including the gyroid and, in the SALR case, non-
bcc cluster phases. In fact, the stability of those mesophases rests on
the Fourier spectrum of the potential beyond the nearest-neighbor
shell and, therefore, depends on the specific interaction considered.

A pictorial representation of the stripe, cylinder, and bcc clus-
ter phases obtained from the numerical minimization is given in

Figs. 7–9, which were produced by the VESTA software.58 They
correspond to the same temperature T∗ = 0.148 and ρ∗ = 0.953,
x = 0.451 for the stripes, ρ∗ = 0.953, x = 0.401 for the cylinders, and
ρ∗ = 0.951, x = 0.301 for the bcc clusters.

It is worth pointing out that, according to both the numer-
ical minimization of the grand potential discussed here and the
analytic representation of the density profiles presented in Sec. V,
the cylinder and bcc cluster phases do not consist of alternating
arrays of localized cylinders or clusters of the two species. Actu-
ally, these structures are formed only by the less abundant species,
whereas the more abundant species percolates into the space left
available by the less abundant species. When the difference in species
concentration is sufficiently large, this makes cylinders entropically
favored over stripes, and clusters entropically favored over cylin-
ders. In the double-periodic cylinder phase, the density peaks of
the more abundant species are located at the sites of a honey-
comb lattice. In the triply periodic bcc phase, the more abundant
species arranges into a bicontinuous phase sometimes referred to
as “plumber’s nightmare.”59 The same behavior was observed in
the cylinder and bcc phases of the Gaussian mixture considered in
Ref. 43.

Despite qualitative similarities, Figs. 4 and 5 show that the ana-
lytic and numerical treatments of the inhomogeneous phases display
significant quantitative differences: while the boundary between the
homogeneous fluid and the bcc cluster phase is similar in the two
approaches, according to the numerical minimization, the inner

FIG. 7. Section of the density profiles of the stripe phase at T∗ = 0.148,
ρ∗ = 0.953, and x = 0.451. Yellow to red shades refer to the density profile ρ1(r)
of the more abundant species 1, and light to dark blue shades refer to the density
profile ρ2(r) of the less abundant species 2.
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FIG. 8. Same as Fig. 7 for the cylinder phase at T∗ = 0.148, ρ∗ = 0.953, and
x = 0.401.

FIG. 9. Same as Fig. 7 for the bcc cluster phase at T∗ = 0.148, ρ∗ = 0.951, and
x = 0.301.

boundary of the bcc domain at high density is moved to concen-
trations closer to equimolar. As a consequence, the cylinder region
is also shifted toward equimolar concentration, thereby squeez-
ing the stripe region. The result is a considerable widening of the
bcc domain at the expense of the stripes, whose domain is much
narrower than predicted by the Landau approach.

Figure 5 does not display the equilibrium curves between the
vapor and the inhomogeneous phases given by the numerical min-
imization, but we expect them to be very similar to those of the
Landau theory already shown. In fact, at the temperature considered

in the figure, the densities of the inhomogeneous phases at coexis-
tence with the vapor are relatively low so the analytic and numerical
approaches do not differ much. We anticipate that this will no
longer be the case at lower temperature, such as that in Fig. 6, at
which the densities of the inhomogeneous phases at coexistence are
higher.

In light of the quantitative discrepancies between the phase
behavior of the two approaches, it is natural to ask how their
respective density profiles compare. This comparison is presented
in Figs. 10 and 11. Each figure displays, for three states, the concen-
tration profiles x(r) = ρ2(r)/ρ(r) (blue lines) and the total density
ρ(r) (red lines) along a line connecting nearest-neighbor peaks of
the less abundant species 2, according to both the Landau theory and
the numerical minimization. The figures refer to the same reduced
temperature T∗ = 0.125, intermediate between those of Figs. 4 and
5, and two different densities ρ∗ ≃ 0.8 and ρ∗ ≃ 1.15 (in the panels
of each figure, the densities are not exactly the same, since they were
obtained a posteriori by minimization in the grand canonical ensem-
ble). The concentrations were chosen in such a way that, for each T∗

FIG. 10. Concentration profiles x(r) (blue curves) and total density profiles ρ∗(r)
(red curves) at T∗ = 0.125, ρ∗ ≃ 0.8, and different concentrations x for the clus-
ter, cylinder, and stripe phases along the direction connecting nearest-neighbor
peaks of the minority species 2. Solid and dashed curves refer, respectively, to
the numerical minimization of the grand potential functional and to the analytical
results of the Landau theory described in Sec. V. Panel (a): ρ∗ = 0.804, x = 0.312,
bcc clusters. Panel (b): ρ∗ = 0.806, x = 0.353, cylinders. Panel (c): ρ∗ = 0.809,
x = 0.452, stripes.
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FIG. 11. Same as Fig. 10 at T∗ = 0.125 and ρ∗ ≃ 1.15. Panel (a): ρ∗ = 1.152,
x = 0.187, bcc clusters. Panel (b): ρ∗ = 1.154, x = 0.306, cylinders. Panel (c):
ρ∗ = 1.155, x = 0.453, stripes. Note the unphysical values of x(r) predicted by
the analytical theory in panels (b) and (c).

and ρ∗, the analytic and numerical approaches predict the same kind
of phase, either stripes, cylinders, or bcc clusters.

We first observe that, for all the states considered, the period of
the concentration profiles obtained via the numerical minimization
(blue solid curves) agrees almost perfectly with that of the ana-
lytic theory (blue dashed curves) which, according to Eq. (42), is
determined solely by the wave vector k0 of the maximum of w̃(k).
However, as displayed in panel (a) of both Figs. 10 and 11, in the
cluster phase, the analytic theory strongly underestimates the ampli-
tude of the oscillations. Specifically, while the minima of x(r) are in
good agreement with the numerical results, its maxima are under-
estimated. As a consequence, the tendency toward segregation into
domains where one of the species is much more abundant than
the other is weaker than predicted by the numerical minimization.
Indeed, according to the analytic results, in panel (a) of Fig. 11, x(r)
is always smaller than 0.5, thereby implying that the local concentra-
tion 1 − x(r) of the more abundant species 1 is always larger than
that of species 2. Even in panel (a) of Fig. 10, where the analytic
x(r) reaches values above 0.5, the peaks of 1 − x(r) are still larger
than those of x(r). Instead, according to the numerical results, the
converse is true: the higher concentration peaks actually pertain to
the less abundant species 2. This does not imply any contradiction
because, as pointed out earlier, the less abundant species is localized

in the neighborhood of the lattice sites, whereas the more abundant
species percolates through all the remaining space.

Turning to the concentration profiles of the cylinder and stripe
phases displayed in panels (b) and (c), at the lower density ρ∗ ≃ 0.8 of
Fig. 10, the analytic theory slightly underestimates the amplitude of
the oscillations for the cylinders and slightly overestimates it for the
stripes. Nevertheless, overall the analytic and numerical concentra-
tion profiles are in fair agreement, as the latter do not deviate much
from a sine-like wave.

However, at the higher density ρ∗ ≃ 1.15 of Fig. 11, there is
a marked change in the behavior of the numerical predictions: as
already observed for SALR fluids44 as well as for the mixture at hand
at equimolar concentration,36 the maxima and the minima of x(r)
become flatter, with the minima nearly vanishing. This situation cor-
responds to a sequence of alternating domains populated almost
exclusively by either species, separated by rather sharp interfaces.
Such a strong-segregation regime cannot be satisfactorily described
by the sine-like modulations of the analytic theory. In fact, the
growth of the modulation amplitude A can even lead to unphysi-
cal values of x(r), either negative or larger than unity, as displayed
in panels (b) and (c) of Fig. 11. In the free-energy functional (2), this
occurrence is forbidden by the ideal-gas term (3), whereas this is not
the case for its expansion (45), which formally exists for every value
of A. However, as A grows, the expansion itself is bound to become
inaccurate.

We are then led to conclude that the permanence of the cylin-
der and, even more, of the stripe phases in the regime where the
difference between the concentrations of the two species is large is
an artifact of the analytic theory, which fails to reproduce the actual
shapes of the density profiles at high density.

As for the total density profiles ρ(r) (red curves in Figs. 10 and
11), they also display oscillations. The period of the analytic and
numerical ρ(r) (dashed and solid curves, respectively) is the same,
and in both cases, it is the same as that of x(r). However, the numer-
ical ρ(r) has a richer structure: specifically, it features modulations
that alternate oscillations of larger and smaller amplitude, so that
the distance between neighboring peaks is actually half of that of the
analytic ρ(r). Moreover, the analytic theory always underestimates
the amplitude of the oscillations compared to the numerical results.
That said, the most relevant feature of ρ(r) is that, unlike the local
concentration x(r), its oscillations are always very small: for all the
cases displayed in Figs. 10 and 11, the relative amplitude ∣ρ(r) − ρ∣/ρ
is well below 1%. Hence, in the inhomogeneous phases, concen-
tration fluctuations always dominate over density fluctuations, with
the latter rigorously vanishing along the fluid–stripes critical line at
x = 0.5 displayed in Fig. 2.

C. Comparison with simulation results
In recent investigations,35,36,45 the phase behavior of the mix-

ture considered here was addressed by numerical simulation. Here,
we discuss how the present results compare to those obtained there.

In Fig. 12, the liquid–vapor coexistence curves predicted by
the free-energy functional (2) are compared to those obtained by
Gibbs Ensemble Monte Carlo (GEMC) simulations at concentra-
tions x = 0.535,36 and x = 0.345 in panels (a) and (b), respectively. We
recall that the description of the liquid–vapor transition resulting
from functional (2) is that of standard mean-field theory.
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FIG. 12. Liquid–vapor coexistence curves in the density-temperature plane at
x = 0.5 (panel (a)) and x = 0.3, ρ∗ = 0.25 (panel (b)). Black solid curve: theory.
Blue circles: simulation, γ = 1. Red squares: simulation, γ = 0.5. The dashed lines
are the best fits of the simulation data based on the law of rectilinear diameters and
the scaling law for the density difference between liquid and vapor. The crosses
indicate the position of the critical point.

As observed in Sec. VI A, for x ≠ 0.5, the densities at coexis-
tence depend on the total density ρ. The curves for x = 0.3 displayed
in panel (b) correspond to the isochore ρ∗ = 0.25. Since this value
is somewhat smaller than the critical density ρ∗c = 0.276 predicted
by the theory for x = 0.3, the vapor and liquid branches of the
theoretical curve do not join at the critical point but end at a temper-
ature slightly higher than the critical value, leaving a small gap that
includes the critical density. Similar considerations would also hold
for the simulation results, even though in that case the highest tem-
peratures investigated are still below the endpoint of the transition.
However, according to the theoretical results, the isochore at hand
is rather close to the critical one, and we expect that this will also
be the case for the simulations. Therefore, we reckon that a sensible
estimate of the simulation critical points for x = 0.3 can be obtained
by the standard procedure of fitting the simulation data to the scal-
ing law for the density difference between liquid and vapor and the
law of rectilinear diameters, as performed for x = 0.5.

The behavior for x = 0.3 is similar to that observed for x = 0.5.
As noted earlier, in mean-field theory, the effect of the well width γ
is already taken into account by the present definition of the reduced
temperature T∗ = kBT/[ε(1 + γ)3

], so the coexistence curves corre-
sponding to different values of γ are predicted to collapse on the
same curve, provided the temperature is rescaled accordingly. How-
ever, the simulation results show that this is not the case, since

the curves for γ = 1 and γ = 0.5 differ markedly from each other,
and both of them differ from the mean-field curve. In fact, the
mean-field theory overestimates the critical temperature Tc for γ = 1
and underestimates it for γ = 0.5. The discrepancies are larger for
γ = 0.5, whose simulation coexistence curves are much flatter than
the mean-field ones.

These findings qualitatively agree with the behavior of one-
component square-well fluids for which, as γ decreases, kBTc/εmust
obviously decrease and eventually vanish for γ→ 0. In this limit, Tc
follows Noro and Frenkel’s extended law of corresponding states,60

which assumes a constant value for the second virial coefficient at
the critical temperature B2(Tc)

61 and yields a dependence of Tc on
γ different from that of mean-field theory. By contrast, for γ = 2,
the mean-field coexistence curve was found to agree closely with
simulation,36 and we expect that this will be the case a fortiori for
wider wells such that γ > 2. In this regime, the mean-field scaling
kBTc/ε ∼ (1 + γ)3 will most likely be fulfilled.

The study of the inhomogeneous phases at x ≠ 0.5 by numeri-
cal simulations was addressed in Ref. 45. An extended comparison
between the present results and those obtained there is hindered
by the fact that Ref. 45 focuses mostly on the description of the
crystal structures into which the particles arrange at high density,
whereas the LDA used here for the hard-sphere contribution to
the free-energy functional (2) is unable to describe freezing on an
atomic scale. A tentative comparison is presented in Fig. 13, where
two sections at constant concentration x = 0.3 of the phase dia-
grams obtained by Landau theory for T∗ = 0.0625 and T∗ = 0.125
are shown together with the simulation results for γ = 1 at the same

FIG. 13. Phase diagram at concentration x = 0.3. Panel (a): T∗ = 0.0625. Panel
(b): T∗ = 0.125. Red boxes: Landau theory. Blue boxes: simulation results for
γ = 1.45
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x and T∗, corresponding to the values kBT/ε = 0.5 and kBT/ε = 1
displayed in Fig. 11(c) of Ref. 45.

At T∗ = 0.0625 [see panel (a)], simulation and theory agree at
least qualitatively, as they both predict a vapor phase at low density
and a stripe phase at high density, separated by a wide vapor–stripe
coexistence region. According to the simulation, particles within the
stripes form an fcc solid,45 which is not surprising given their rather
high density, while theory is silent as to the short-range arrangement
of the particles, since it is unable to distinguish a stripe fluid from a
stripe solid.

At the higher temperature T∗ = 0.125 [see panel (b)], both sim-
ulation and theory predict the occurrence of a liquid phase at inter-
mediate densities, which was absent at T∗ = 0.0625. At low density,
the liquid coexists with the vapor, while at high density it coex-
ists with the inhomogeneous phases. The liquid and vapor–liquid
coexistence regions predicted by theory are in reasonable agreement
with the simulation results. However, simulation and theory dif-
fer considerably when one turns to inhomogeneous phases. Indeed,
according to simulation, the only inhomogeneous phase is the stripe
solid already found at T∗ = 0.0625, while theory yields not only
stripes but also cluster and cylinder phases. At low density, these
phases coexist with the vapor and give rise to a narrow sequence of
coexistence regions located between the vapor and the vapor–liquid
domains, which would probably be hard to detect by simulation.
Nevertheless, at high density, the cylinder phase is predicted to occur
in a wide domain and should be easily detectable.

The above-mentioned results pertain to the analytic description
of the inhomogeneous phases based on Landau theory, but treat-
ment based on the purely numerical minimization of the free-energy
functional (2) would most likely lead to even larger discrepancies
between simulation and theory because, as discussed in Sec. VI B,
the numerical minimization predicts a narrower stripe domain
compared to Landau theory.

A possible reason for these discrepancies is that the present the-
ory hinges on the mean-field approximation that, as such, disregards
fluctuations. As recalled in Sec. V, upon inclusion of fluctuations, the
transition from the homogeneous fluid to the periodic mesophases
becomes first-order also for x = 0.5. However, fluctuations are likely
to affect the phase diagram also in other respects. In the mean-field
description, an isothermal section of the phase diagram always dis-
plays all kinds of mesophases, be they stripes, cylinders, or clusters
(see Figs. 4–6). A similar behavior is found in monodisperse SALR
fluids, where all inhomogeneous phases coalesce at the top of the
λ-line in the ρ–T plane.44,53

However, simulation results for SALR fluids18,19 show that fluc-
tuations change the topology of the phase diagram in such a way that
cylinders appear at a lower temperature than stripes, and clusters
also appear at a lower temperature than cylinders. As a consequence,
in a certain temperature interval, the only mesophase that survives
is the stripe phase. This scenario is also supported by theoretical cal-
culations beyond the mean-field level.57 We are not in a position to
state that a similar effect takes place for sure in the present system,
but if it does, then this could explain why the cylinder and cluster
phases predicted by the theory are not found in the simulations.

In addition, we should bear in mind the insensitivity of func-
tional (2) to the interaction range. As observed in Sec. VI B, the
reduced density profiles ρ∗1 (r) and ρ∗2 (r) at different γ, but at the
same ρ∗, x, and T∗, coincide, provided they are regarded as functions

of r/ξ. This law of corresponding states might provide a sensible
description of the system for relatively wide wells but is bound to
fail for narrow wells. In fact, for γ ≲ 0.5, which is the smaller γ con-
sidered in Ref. 45, the distance between neighboring density peaks of
different species would become less than the hard-sphere diameter σ,
which is clearly unphysical. Even for the value γ = 1 to which Fig. 13
refers, this distance is just on the order of σ. In such a regime, stripes
actually consist of layers of atomic thickness, cylinders of rows of
particles piled on top of each other, and the very notion of a spher-
ical cluster becomes questionable since it would reduce to a single
particle. Clearly, these structures cannot be regarded as a contin-
uum on an atomic scale and might compete with those favored by
steric hindrance, leading to new crystal phases.45 The description of
these arrangements requires a realistic treatment of inhomogeneity
on length scales ∼ σ, which is beyond the LDA used here.

VII. CONCLUSIONS
We have presented an investigation of the phase diagram of a

model hard-sphere mixture consisting of two species of particles of
equal diameter σ, with a square-well attraction acting only between
different species. The study was carried out by DFT in the mean-
field approximation and generalizes to generic species concentration
x a former DFT study of the same mixture at equimolar concen-
tration x = 0.5.36 A particularly interesting feature of this model,
which had already been established in the equimolar case35,36 is that,
unlike one-component SALR fluids, where mesophase formation
preempts liquid–vapor phase separation, its phase diagram displays
both transitions. Hence, depending on the temperature, mesophases
can coexist with both the liquid and the vapor. This behavior does
not occur in any model mixture leading to spontaneous pattern
formation. In such mixtures, the phase diagram is generally more
sensitive to the details of the interactions than in the one-component
SALR or similar models. For example, in the equimolar mixture
with SALR and inverse-SALR interactions considered in Ref. 28, the
liquid–vapor transition is preempted by the onset of the mesophases,
as in monodisperse SALR fluids.

Considering concentrations other than equimolar considerably
enriches the phase portrait of the mixture. In fact, the equimo-
lar concentration corresponds to the special case of an azeotropic
mixture, such that the coexisting phases also have the same concen-
tration, x = 0.5. In this respect, the equimolar mixture behaves as
a one-component fluid, whose phase diagram can be described in
terms of density and temperature alone. This is no longer true for
x ≠ 0.5, because then the coexisting phases differ not only in density
but also in concentration and, unlike in the azeotropic case, those
densities and concentrations depend on the overall density and con-
centration of the mixture. Here, in particular, as soon as the overall
concentration deviates from x = 0.5, the concentrations of the coex-
isting liquid and vapor phases become very different, with the vapor
phase being much richer in the more abundant species than the
liquid.

The spectrum of the inhomogeneous mesophases is also wider
than in the equimolar case. While at x = 0.5 only stripe-like density
modulations are observed,35,36 here we find that moving off x = 0.5
stabilizes doubly periodic and, at larger or smaller x, triply periodic
modulations, consisting, respectively, of cylinders arranged on a
triangular lattice and spherical clusters arranged on a bcc lattice.
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These domains are populated mainly by the less abundant species,
while the more abundant species fill the region between them, sim-
ilarly to what is observed in binary mixtures of particles interacting
via soft-core Gaussian potentials.43

Stripe, cylinder, and cluster phases are commonly found
in mesophase-forming fluids,6,44,53,54 as their occurrence rests on
rather general properties of the Fourier spectrum of the inter-
action. Even though we should recall that, according to both
simulation18,19 and theoretical studies,57 in SALR fluids, fluctuations
shift the cylinder and cluster domains to lower temperatures com-
pared to stripes. Other, more exotic structures, such as, e.g., the
gyroid19,44,53,54 or the double diamond,43 were not observed here.
At low temperatures, the above mesophases can coexist with the
vapor, so that the phase diagram contains not only vapor–liquid
but also vapor–stripes, vapor–cylinders, and vapor–clusters coex-
istence regions, with neighboring regions separated by three-phase
domains.

The above-mentioned scenario is obtained both by an analytic
implementation of the DFT based on its Landau expansion in pow-
ers of the amplitude of the density modulations and by minimization
of the full grand potential on purely numerical grounds; however,
the two approaches differ appreciably at high density. Specifically,
the analytic theory fails to reproduce the strong-segregation regime,
where it may even predict unphysical values of the local concen-
tration. Moreover, compared to the numerical results, it strongly
underestimates the size of the bcc cluster domain and overestimates
that of the stripe domain.

Regardless of its analytic or numerical implementation, accord-
ing to the mean-field DFT considered here, the width γ of the
attractive well, or equivalently, its range ξ = (1 + γ)σ, is entirely
taken into account by incorporating it into the reduced temperature
T∗. Therefore, mixtures corresponding to different values of γ at the
same T∗ display the same phase diagram in the ρ∗–x plane, and the
topology of the phase diagram is not affected by γ. For sufficiently
wide wells, say γ ≳ 2, these predictions are probably realistic, but we
expect them to fail for narrow wells such that ξ is comparable to the
hard-sphere diameter σ.

Moreover, the use of the local density approximation (LDA) in
the hard-sphere part of the free-energy functional makes it unsuited
to describe freezing on an atomic scale. This is the reason why
we have refrained from discussing freezing, even though we expect
it to be relevant to this study, considering the rather high densi-
ties at which the mesophases are predicted to occur. For relatively
wide attractions, it might well happen that mesophases similar to
those discussed here are found both in the fluid and in the crys-
tal, and that mesophase formation and freezing are, to some extent,
independent of each other. This corresponds to the assumption
that we made in Ref. 36 in the equimolar case, to draw a tentative
phase diagram for γ = 2, including both a stripe fluid and a stripe
crystal.

The situation will again be different for short-ranged attrac-
tions such that the period of the modulations becomes comparable
to particle size. In fact, this is the situation considered in our former
simulation study45 at x ≠ 0. In light of this, it would be interesting to
reconsider the phase diagram of the system by a free-energy func-
tional able to describe density modulations at small length scales
beyond the LDA. Within the mean-field approximation considered
here, a natural way to do so would consist in replacing the LDA

description of the hard-sphere term by that provided by the more
accurate weighted-density approximation or fundamental-measure
theory.62–65
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APPENDIX: STABILITY OF INHOMOGENEOUS PHASES
IN LANDAU THEORY

Here, we derive in some detail the results of the Landau theory
for the stability of the inhomogeneous phases presented in Sec. V.

The coefficients C, D, and E of the Landau free energy (45) are
given by

C =
ρ
4
α2[

cos2ϑ
1 + y

+
sin2ϑ
1 − y

−
ρ
2

c0(cos ϑ + sin ϑ)2
+ βλρ sin ϑ cos ϑ],

(A1)

D = −
ρ

12
α3[

cos3ϑ
(1 + y)2 +

sin3ϑ
(1 − y)2 +

ρ2

4
dc0

dρ
(cos ϑ + sin ϑ)3

], (A2)

E =
ρ

24
α4[

cos4ϑ
(1 + y)3 +

sin4ϑ
(1 − y)3 −

ρ3

16
d2c0

dρ2 (cos ϑ + sinϑ)4
], (A3)

with cos ϑ and sin ϑ expressed by Eqs. (26a), (26b), and (28).
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From the Carnahan–Starling expression (12) of c0, we obtain

dc0

dρ
= −6v2

0
5 − η
(1 − η)5 , (A4)

d2c0

dρ2 = −24v3
0

6 − η
(1 − η)6 . (A5)

The quantities α2, α3, and α4 are lattice-dependent constants
related to the periodic modulation ϕ(r) introduced in Eq. (37a)
by

αn =
1
v∫ C

d3rϕn
(r). (A6)

For α2, Parseval’s identity gives

α2 =∑
k
ϕ̂2

k =
1
q

, (A7)

where Eq. (42) for ϕ̂k has been taken into account.
For the stripe, cylinder, bcc, and fcc cluster phases considered

in Sec. V, the expressions of ϕ(r) and the constants αn are
Stripes

ϕ(r) = cos (k0x), (A8)

α2 =
1
2

, α3 = 0, α4 =
3
8

. (A9)

Cylinders

ϕ(r) =
1
3
[cos (k0x) + 2 cos(

k0x
2
)cos(

√
3k0y
2
)], (A10)

α2 =
1
6

, α3 =
1

18
, α4 =

5
72

. (A11)

BCC clusters

ϕ(r) =
1
3
[cos(

k0x
√

2
) cos(

k0y
√

2
) + cos(

k0x
√

2
) cos(

k0z
√

2
)

+ cos(
k0y
√

2
) cos(

k0z
√

2
)], (A12)

α2 =
1

12
, α3 =

1
36

, α4 =
5

192
. (A13)

FCC clusters

ϕ(r) = cos(
k0x
√

3
) cos(

k0y
√

3
) cos(

k0z
√

3
), (A14)

α2 =
1
8

, α3 = 0, α4 =
27

512
. (A15)

Equations (A9) and (A15) imply that the coefficient D of the
cubic term of Eq. (45) is always zero for the stripe and fcc phases.
Moreover, at the equimolar concentration y = 0, Eq. (26) implies
cosϑ =

√
2/2 = − sinϑ so that D vanishes also for the cylinder and bcc

phases [see Eq. (A2)]. For D = 0, Eq. (45) describes a second-order

transition that takes place at C = 0, i.e., on the λ-surface. Inside the
region bounded by the λ-surface, minimization with respect to A
for D = 0 gives

A = ±( ∣C∣
2E
)

1/2
, (A16)

Δ(βA)
V

= −
C2

4E
= −

α2
2

α4

C′ 2

4E′
, (A17)

where we have introduced the lattice-independent quantities
C′ = C/α2, D′ = D/α3, and E′ = E/α4. From the values of αn listed
in Eqs. (A9), (A11), (A13), and (A15), we obtain

(
α2

2

α4
)

stripes
=

2
3
> (

α2
2

α4
)

cylinders
=

2
5
> (

α2
2

α4
)

fcc
=

8
27
> (

α2
2

α4
)

bcc
=

4
15

.

(A18)
Hence, at equimolar concentration, the stripe phase is always

the inhomogeneous phase of the lowest free energy, in agreement
with numerical simulation.35,36 The fcc phase will not be considered
in the following because, according to Eq. (A18), its free energy is
higher than that of the stripe phase at all concentrations.

At non-equimolar concentration, the coefficient D of the cylin-
der and bcc phases is non-vanishing, thereby making the transition
from the homogeneous to the inhomogeneous fluid first-order:
before reaching the λ-surface at C = 0, for C = D2

/4E, the order
parameter A jumps discontinuously from A = 0 to A = −D/(2E).
In terms of the lattice-independent quantities C′, D′, and E′, the
transition takes place at

C′ = ζ
D′ 2

4E′
, (A19)

where ζ is the lattice-dependent constant given by

ζ =
α2

3

α2α4
, (A20)

with

ζbcc =
16
45
> ζcylinders =

4
15

, (A21)

showing that the transition from the homogeneous fluid to the bcc
cluster phase preempts that from the homogeneous fluid to the
cylinder phase.

Inside the inhomogeneous region, minimization of Eq. (45) for
D ≠ 0 gives

A = −3D ± (9D2
− 32CE)1/2

8E
, (A22)

where the plus sign holds for D < 0 and the minus sign for D > 0. In
both cases, by inserting Eq. (A22) into Eq. (45), we obtain

Δ(βA)
V

=
C′2

6E′
f (z)
z2 , (A23)

where z is the lattice-independent variable defined as

z = −
4C′E′

D′2
, (A24)
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and the function f(z) is given by

f (z) = −δ[27 +
36
ζ

z +
8
ζ2 z2

+ (9 +
8
ζ

z)
3/2
]. (A25)

The lattice-dependent constant δ is expressed as

δ =
3

16
α4

3

α3
4

, (A26)

with

δbcc =
64

10125
> δcylinders =

2
375

. (A27)

For the stripe phase, for which α3 = 0, both ζ and δ vanish. In
this limit, Eq. (A25) gives f(z) = −z2 which, when substituted into
Eq. (A23), gives back the free energy of the stripes.

Figure 14 displays f(z) for the stripe, cylinder, and bcc clus-
ter phases for z > −ζ, which corresponds to the inhomogeneous
domain. The bcc phase is that of lowest free energy for z < 0.22,
whereas the cylinder phase prevails for 0.22 < z < 8.61, and the stripe
phase for z > 8.61.

At fixed density and temperature, z decreases as the concentra-
tion x moves from x = 0.5 to higher or smaller values. Therefore, if

FIG. 14. Function f(z) defined in Eq. (A25) for the cluster, cylinder, and stripe
phases at large z [panel (a)] and small z [panel (b)]. Black line: stripes. Red line:
cylinders. Blue line: clusters. At each z, the most stable phase is that with the
lowest f(z) [see Eq. (A23)].

one starts from the equimolar mixture inside the inhomogeneous
region and departs from equimolarity, one sweeps the sequence
stripes–cylinders–bcc clusters–homogeneous fluid.
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