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ABSTRACT
In a binary mixture, stripes refer to a one-dimensional periodicity of the composition, namely, a regular alternation of layers filled with par-
ticles of mostly one species. We have recently introduced [Munaò et al., Phys. Chem. Chem. Phys. 25, 16227 (2023)] a model that possibly
provides the simplest binary mixture endowed with stripe order. The model consists of two species of identical hard spheres with equal
concentration, which mutually interact through a square-well potential. In that paper, we have numerically shown that stripes are present
in both liquid and solid phases when the attraction range is rather long. Here, we study the phase behavior of the model in terms of a
density functional theory capable to account for the existence of stripes in the dense mixture. Our theory is accurate in reproducing the
phases of the model, at least insofar as the composition inhomogeneities occur on length scales quite larger than the particle size. Then,
using Monte Carlo simulations, we prove the existence of solid stripes even when the square well is much thinner than the particle dia-
meter, making our model more similar to a real colloidal mixture. Finally, when the width of the attractive well is equal to the particle
diameter, we observe a different and more complex form of compositional order in the solid, where each species of particle forms a reg-
ular porous matrix holding in its holes the other species, witnessing a surprising variety of emergent behaviors for a very basic model of
interaction.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0177209

I. INTRODUCTION

The emergence of complex motifs from simple interaction rules
is a recurring issue—actually, one of paramount importance—in
soft-matter physics.1–4 A non-exhaustive list of materials where
the formation of supramolecular structures occurs spontaneously
at equilibrium includes colloids,5–7 polymers,8–10 amphiphilic
systems,11,12 liquid crystals,13,14 and protein solutions.15,16 During
the last decades, much effort has been devoted to identify simple par-
ticle models where specific examples of self-assembly are realized,
most notably the appearance of stripe patterns in multi-component
systems, in which blocks of different chemical compositions and/or
experiencing different intermolecular interactions alternate along a
given direction. Stripes are experimentally observed, among others,
in photonic crystals,17 in Langmuir and lipid monolayers,18,19 and in
polymer nanocomposites.20,21

Due to the increasing importance of stripes for techno-
logical applications, a proper understanding of the microscopic

mechanisms underlying their occurrence in systems of soft parti-
cles is crucial. A first possibility is to use a short-range interpar-
ticle attraction and a longer-range anisotropic repulsion, like in
the venerable axial next-nearest neighbor Ising (ANNNI) model.22

However, anisotropic forces are by no means necessary for gener-
ating stripes, since curved stripes are observed in systems of parti-
cles interacting through a fully isotropic core-corona potential.23–26

Here, under suitable thermodynamic conditions, particles organize
themselves into “lanes,” ultimately arising as a trade-off between
the two competing requirements of entropy maximization (which
prompts the particles to pack efficiently) and energy minimiza-
tion (which, rather, would keep them apart). Still different is the
mechanism underlying the onset of stripes in SALR fluids, charac-
terized by the simultaneous presence of isotropic short-range attrac-
tion (SA) and long-range repulsion (LR) between the particles.27–31

While the SA promotes aggregation, a sufficiently strong LR rules
out the possibility of liquid–vapor separation, encouraging the for-
mation of separate aggregates of finite size. At sufficiently low
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temperatures, such aggregates—which at low density are in the form
of spheroidal clusters—can be arranged in a variety of different
structures, including lamellar phases.32–37

Stripes have been investigated, though less extensively, also
in binary mixtures, where they have been reported both in
experiments38,39 and in theoretical studies.40–45 In a recent paper,46

we introduced a model system that is admittedly the minimal binary
mixture with stripe order, namely, an equimolar mixture of iden-
tical hard spheres endowed with a cross attraction of square-well
(SW) type. For wells widths γσ wider than the sphere diameter σ,
we have documented by Monte Carlo simulations the existence of
planar stripes in the solid phase, finding that their thickness grows
linearly with the attraction range. We have also seen stripes in the
dense liquid as long as γ is large enough.

Rather counterintuitively, we have shown that in our mixture,
stripe order arises when “like” interactions (i.e., between particles
of the same species) are repulsive, whereas the cross (or “unlike”)
interaction is attractive beyond the core. As puzzling as the forma-
tion of extended domains of like particles due to a strong unlike
attraction may seem, it is not difficult to realize how this can hap-
pen at high density using the following simple reasoning. When γ
is sufficiently small, the SW attraction reaches only the first neigh-
bors. In a fcc crystal with single-layer stripes oriented along [001],
each particle has eight unlike neighbors (over a total of 12), while in
the substitutionally disordered crystal, the average number of unlike
neighbors is six. Therefore, the energy (and also the enthalpy) of the
striped crystal is more negative. In other words, the formation of
stripes is an emergent phenomenon driven by energy: planar stripes
succeed in maximizing the number of attracting unlike spheres,
making the striped configuration more stable than its composition-
ally disordered counterpart. Strangely enough, the above argument
indicates that stripes are energetically preferred even when γ is close
to zero, insofar as the temperature is low enough and the density is
high.

In this paper, we highlight the significance and extent of stripe
order in our mixture, again focusing on the equimolar case. First,
we show that stripes can be predicted by a statistical theory rather
than accounted for by numerical simulations alone. To this end, we
provide a mean-field treatment of the mixture behavior expressed in
the language of density functional theory (DFT). Within this frame-
work, we offer a full justification for the existence of stripes in the
dense mixture, predicting a phase diagram that is overall consistent
with that obtained from simulation.46 We also test the accuracy of
two different analytic approximations: the first one is based on a
sinusoidal ansatz for the density profile, which is suited to describe
the striped fluid near the boundary with the homogeneous fluid.
The second approximation, more appropriate in the high-density
regime, schematizes the stripes as one-component layers separated
by sharp interfaces. Then, we carry out extensive Monte Carlo (MC)
simulations of the solid to probe the existence and nature of compo-
sitional order in mixtures with γ ≤ 1, a range of values where our
DFT is inadequate since the inhomogeneities in the composition
occur on length scales comparable to the particle size. In particu-
lar, we confirm the existence of stripes for γ as small as 0.1, i.e.,
for conditions making our simplistic model more akin to a real col-
loidal mixture. Clearly, stripes can exist in the solid phase only when
the temperature is not too high. By employing a suitably designed
order parameter, we find that when the mixture is heated up, stripes

disappear abruptly for γ = 0.1 and more smoothly for the other γ
values examined. After a careful analysis, the case γ = 1 turns out
to be special. At very high density, the most stable low-temperature
solid is a hcp crystal with a compositional order different from stripe
order, characterized by narrow bands of particles of one species
intercalated with bands of the other species. By heating this system
gradually at constant density, we observe a smooth transition to a
striped hcp crystal until the latter order is washed out.

Our paper is organized as follows: in Sec. II, we present our
DFT study of the mixture, discussing the relative stability of the var-
ious phases. In Sec. III, after describing the numerical tools needed
to investigate liquid–vapor coexistence in simulation as well as the
structural and compositional orders at high density, we discuss the
results obtained for a few small values of γ. Conclusions and per-
spectives are outlined in Sec. IV. To facilitate reading, more technical
considerations have been confined to two appendices.

II. DENSITY FUNCTIONAL THEORY
A. Grand-potential functional

We consider an equimolar mixture of two species of hard
spheres (labeled 1 and 2) with equal diameter σ, which mutually
interact through a SW potential u12 of range (1 + γ)σ,

u12(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

+∞, if r < σ,

−ε, if σ ≤ r < σ + γσ,

0, otherwise,

(1)

where r is the interparticle distance. In the following, all quantities
are expressed in reduced units such that σ is the length unit and
ε is the energy unit. In Ref. 46, the phase behavior of this model
was investigated by Monte Carlo simulations. We found that planar
stripes are present in the cold solid for γ ≥ 1. A zero-temperature
analysis showed that, near close packing, the thickness of stripes
grows linearly with γ. When γ is 2 or larger, blurred stripes are also
present in the bulk liquid.

To obtain an independent, fully theoretical understanding of
the mixture behavior, we resort to a DFT approximation that is as
simple as possible. In the same spirit of the mean-field or Van der
Waals approximation, we express the excess free-energy functional
Fexc—depending on the number-density fields of the two species,
ρ1(x) and ρ2(x)—as the sum of a repulsive term, Frep, and an
attractive term, Fattr.

As for Frep, this functional is taken to be of the local-density
form

Frep = ∫ d3x (ρ1(x) + ρ2(x)) fHS(ρ1(x) + ρ2(x)), (2)

where the integral is extended over the macroscopic volume V of
the system and fHS(ρ) is the excess free energy per particle of
a one-component fluid of hard spheres in the Carnahan–Starling
approximation,

β fHS(ρ) =
η(4 − 3η)
(1 − η)2 with η =

π
6

ρσ3. (3)

As usual, β = (kBT)−1 denotes the inverse temperature in units of
the Boltzmann constant. The rationale behind Eqs. (2) and (3) is
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clear: in the absence of any attraction between the spheres [ε = 0
in Eq. (1)], the mixture becomes a fluid of indistinguishable hard
spheres.

As for Fattr, we set

Fattr =
1
2

2

∑
i,j=1
∫ d3x∫ d3x′ wi,j(∣x − x′∣)ρi(x)ρj(x′), (4)

where wi,i = 0 and

w12(r) = w21(r) =
⎧⎪⎪
⎨
⎪⎪⎩

−ε, if r < ξ,

0, otherwise,
(5)

with ξ = (1 + γ)σ. Equation (4) is equivalent to treating the cross
attraction in the random phase approximation. Upon comparing
w12 with u12, we see that, at variance with Eq. (1), the attraction range
in (5) has been extended down to zero distance.34,47 Given that the
potential u12 is infinitely repulsive inside the core, there is no com-
pelling reason to prefer a different prescription for w12 in such a
region. We chose the form in Eq. (5) since it offers the advantage
of simplifying the formulas.

The grand-potential functional of the mixture is finally

Ω = Ωid
+ Fexc, (6)

with

Ωid
= kBT

2

∑
i=1
∫ d3x ρi(x)[ln (ρi(x)Λ3

) − 1 − βμi]. (7)

In the above-mentioned equation, Λ is the thermal wavelength and
μi is the chemical potential of the ith species. For a symmetric mix-
ture under equimolarity, the two chemical potentials must be equal.
According to the DFT variational principle, the absolute minimum
of Eq. (6) is the actual grand potential of the system, whereas the
fields providing the minimum value of Ω are the density fields at
equilibrium.

In the following Secs. II B–II F, the predictive content of our
theory will be illustrated in the case ξ = 3, where many simulation
results are available from Ref. 46.

B. Homogeneous fluid
For the homogeneous fluid mixture with N1 type-1 parti-

cles and N2 = N −N1 type-2 particles, the Helmholtz free energy
F obtained from the present DFT is given by the standard mean-field
approximation,

βF
V
=

βFHS(N1 +N2)

V
− β

N1N2

V2 ∣w̃12(0)∣, (8)

where FHS = Nf HS(N/V) and ∣w̃12(0)∣ = 4πεξ3
/3 (from now on, the

tilde denotes Fourier transformation). For the case of our inter-
est, N1 = N2 = N/2, and we denote by ρ = N/V the overall number
density. From Eq. (8), the pressure and chemical potentials are
obtained as

βP = βPHS −
π
3

βερ2ξ3,

βμ1 = βμ2 = βμHS −
2π
3

βερξ3,
(9)

with

βPHS = ρ
1 + η + η2

− η3

(1 − η)3 ,

βμHS = ln(
ρ
2

Λ3
) +

3 − η
(1 − η)3 − 3.

(10)

Below the critical temperature, Eqs. (9) are non-monotonic func-
tions of the density, and the liquid–vapor coexistence curve is
obtained as usual by equating the pressure and chemical potentials
of the two phases.

In order for the homogeneous fluid to be stable (or, at least,
metastable against some other phase), any departure of the densities
from ρ/2 must result in an increase of Eq. (6). A necessary condition
for stability is then

2

∑
i,j=1
∫ d3x∫ d3x′

δ2βΩ
δρi(x)δρj(x′)

∣

ρ1,2= ρ
2

δρi(x)δρj(x′) > 0, (11)

for arbitrary deviations δρ1(x) and δρ2(x). To simplify Eq. (11), we
look at the matrix

Ci,j(x − x′) ≡ −
δ2βΩ

δρi(x)δρj(x′)
∣

ρ1,2= ρ
2

, (12)

whose Fourier transform reads as

C̃i,j(k) = −
2δi,j

ρ
− [2β f ′HS(ρ) + ρβ f ′′HS(ρ)] − βw̃i,j(k), (13)

with

w̃12(k) = w̃21(k) = −4πε
sin (kξ) − kξ cos (kξ)

k3 . (14)

The inequality (11) is tantamount to requiring that

C̃11(k) < 0 and det [C̃i,j(k)] > 0, (15)

for all k. While the first condition is always met, given that

C̃11(k) = −
2
ρ

1 + 5η2
− 4η3

+ η4

(1 − η)4 < 0, (16)

the second one is more tricky, and we defer to Appendix A for a
thorough discussion of it.

It turns out that the homogeneous fluid can lose stability in
two ways: either by developing long-wavelength density fluctuations
that give rise to the aforementioned liquid–vapor phase separation
(“spinodal instability”) or by the onset of inhomogeneities modu-
lated with a wavelength of 2π/k0 ≃ 1.09ξ, where k0 is the wave vector
at which w̃12(k) takes its maximum value. As illustrated in Fig. 1,
these instabilities occur at specific loci in the ρ–T plane, respec-
tively, the spinodal line [see Eq. (A7)] and the λ-line [Eq. (A8)].
We anticipate that the spinodal line is well correlated with the
liquid–vapor binodal curve obtained from the simulation,46 while
the λ-line marks the upcoming instability of the homogeneous fluid
against the formation of stripes of width ≈ξ/2.
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FIG. 1. DFT spinodal line and λ-line for ξ = 3 (γ = 2). Upon cooling the sys-
tem at constant density, the locus that is encountered first is the one establishing
the nature of the instability experienced by the fluid at the given density. For this
specific value of ξ, the crossover between the two regimes falls at ρ ≃ 0.61.

It is worth noting that the study of stability carried out here
corresponds to one of the cases described in Ref. 41, although in
that paper, the stability analysis was not supplemented with the
determination of the phase diagram of the mixture.

C. Numerical minimization
Turning to inhomogeneous phases, a thorough assessment of

the theory, which avoids specifying in advance the nature of the
inhomogeneity exhibited by the mixture at high density, relies on
the numerical minimization of the grand-potential functional. We
have accomplished this task using the same algorithm adopted in
previous investigations35,48 and described there in full detail. It turns
out that when one enters the region lying to the right of the λ-line in
Fig. 1, by either increasing the density or lowering the temperature,
phases with a non-uniform density profile become stable. We have
verified that minimization runs starting from different trial density
profiles always yield stripe-like phases, such that ρi(x) varies only
along one direction, hence representing a plane density wave.

As illustrated in Fig. 2, for states close below the λ-line, the den-
sity profile resembles a sine-like wave superimposed on a uniform
background (see, e.g., blue, red, and black lines in the top panel).
However, as one plunges more deeply inside the non-homogeneous
region (bottom panel), the shape changes markedly, featuring sharp
interfaces between regions almost entirely occupied by particles of
one species only. The wavelength of the density profile is strongly
correlated with 2π/k0 ≃ 1.09ξ = 3.27: for sine-like modulations, the
agreement is to within two significant figures and shows very small
deviations even in the sharp-interface limit, where it approximately
amounts to 3.26. Figure 2 also indicates that ρ(x) = ρ1(x) + ρ2(x)
deviates very little from the average density ρ. This difference is plot-
ted in Fig. 3 for T = 5. Clearly, ρ(x) is not strictly constant except

FIG. 2. Density profiles ρ1(x) and ρ2(x) at T = 3.5 (top) and T = 2.5 (bottom)
for ξ = 3 and several densities reported in the legend, plotted as a function of
the coordinate z along the direction of the modulation. Each horizontal dotted line
represents the average density ρ/2 of both species. Notice how, far away from
the λ-line, the density profile clearly differs from a sinusoidal wave and alternates
domains almost entirely filled by particles of one species only.

FIG. 3. Deviations of the overall density profile from the average density at T = 5
and several ρ values displayed in the legend for ξ = 3. Notice the order of mag-
nitude change with respect to the oscillations of the individual density profiles in
Fig. 2.
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FIG. 4. DFT phase diagram for ξ = 3. The green circles are GEMC results from
Ref. 46. The critical-point coordinates are ρc = 0.26, Tc = 4.89, as estimated from
MC data, while being ρc = 0.249, Tc = 5.094 according to our DFT.

on the λ-line, but its oscillations are much smaller than those of the
individual density profiles ρi(x).

As the λ-line is approached from within the non-homogeneous
region, the amplitude of the density modulation becomes smaller
and smaller until it vanishes continuously on the λ-line itself, where
the stripe phase merges with the homogeneous fluid. We are then
in the presence of a second-order phase transition. This marks an
important difference with respect to the phase behavior of Q± flu-
ids,49 where the λ-line has the same shape as found here, but the
transition to the inhomogeneous phase—a cluster crystal in that
case—is first-order.

Figure 4 displays the phase diagram predicted by the present
mean-field DFT approach for ξ = 3. The estimated liquid–vapor
coexistence is in very good agreement with the Gibbs Ensemble
Monte Carlo (GEMC) data points from Ref. 46, reported as cir-
cles in the figure. The λ-line meets the liquid–vapor coexistence
curve at a critical endpoint. Above the endpoint temperature, the
transition from the homogeneous to the striped fluid is second-
order. Below the endpoint temperature, the stripe phase coexists
with the vapor phase. This phase diagram is akin to one of the
three sub-classes exhibited at equimolar conditions by another sym-
metric mixture, which differs from the one considered here in that
attractive interactions also act between particles of the same species
and are actually stronger than those between particles of different
species.50,51 However, in that case, the model does not exhibit inho-
mogeneous phases, and the transition related to the λ-line is rather
of the mixing-demixing type.

D. Landau approximation
The evidence provided by numerical minimization is supported

near the λ-line (but outside the liquid–vapor coexistence region) by
an analytic treatment based on the Landau expansion of the free
energy in powers of the amplitude A of the density modulation,

along the same lines pursued in Ref. 52. Let us make the following
variational ansatz for the density profile:

ρ1(x) =
ρ
2
[1 +A sin (kz)],

ρ2(x) =
ρ
2
[1 −A sin (kz)],

(17)

where k determines the period of the density modulation. Clearly,
Eq. (17) implies ρ1(x) + ρ2(x) = ρ everywhere, which, albeit not
strictly true, is still a sensible approximation, as discussed earlier.
We rewrite the Helmholtz free energy F = Fid

+ Fexc in Eq. (6) as

βF
V
=

1
v

2

∑
i=1
∫

v
d3x ρi(x)[ln (ρi(x)Λ3

) − 1]

+
β
v∫v

d3x (ρ1(x) + ρ2(x)) fHS(ρ1(x) + ρ2(x))

+
β
v2∑

k
ρ̃1,kρ̃2,−k w̃12(k), (18)

where v is the volume of the primitive cell, and the interaction term
has been written in Fourier space. By inserting Eq. (17) into Eq. (18),
we obtain

βF
V
= ρ ln(

ρ
2

Λ3
) − ρ + ρβ fHS(ρ) −

π
3

βερ2ξ3
+

Δ(βF)
V

, (19)

with

Δ(βF)
V

=
ρ

4π∫
2π

0
dt [(1 +A sin t) ln (1 +A sin t)

+ (1 −A sin t) ln (1 −A sin t)] −
1
8

w̃12(k)βρ2
A

2.

(20)

The first four terms on the right-hand side of Eq. (19) are
just the mean-field free energy of the homogeneous fluid mixture,
whereas Δ(βF)/V describes the effect of the density modulation and
vanishes for A = 0. We note that, within the present approximation,
the excess hard-sphere free energy does not contribute to that term.
By minimizing Eq. (20) with respect to k, one finds immediately that
k has to coincide with the wave vector k0 at which w̃12(k) assumes
its maximum. We then get

Δ(βF)
V

=
ρ

4π∫
2π

0
dt [(1 +A sin t) ln (1 +A sin t)

+ (1 −A sin t) ln (1 −A sin t)] −
π
6
∣g(x0)∣βερ2ξ3

A
2,

(21)

where g(x0) ≃ −0.086 17 is the minimum of the function g(x)
defined in Eq. (A5). The amplitude A is determined by minimizing
Eq. (21).

In the neighborhood of the λ-line, we expect A to be small so
that the integrand can be expanded in powers of A to give
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(1 +A sin t) ln (1 +A sin t) + (1 −A sin t) ln (1 −A sin t)

= A
2 sin2 t +

A 4

6
sin4 t + ⋅ ⋅ ⋅ . (22)

Upon plugging Eq. (22) into Eq. (21) and performing the integration
over t, we obtain

Δ(βF)
V

=
ρ
4

αA
2
+

ρ
32

A
4, (23)

with

α = 1 −
2
3

π∣g(x0)∣βερξ3
= 1 − 4(

ξ
σ
)

3

∣g(x0)∣βεη. (24)

By comparing Eq. (24) with Eq. (A8), we see that α changes from
positive to negative as one crosses the λ-line from left to right in
Fig. 1. The minimization of Eq. (23) then follows closely the behavior
of the Landau free energy in the Ising model: for α > 0, the minimum
falls at A = 0, Δ(βF) = 0, whereas for α < 0, it is found at

A = 2∣α∣1/2,
Δ(βF)

V
= −

ρ
2

α2, (25)

so that the free energy of the striped fluid is indeed lower than that
of the homogeneous fluid.

Suppose that the λ-line is approached at a constant temperature
from within the non-homogeneous region. Since α vanishes on the
λ-line, T can be expressed in terms of the density ρλ on the λ-line as
[see Eq. (A8)]

kBT
ε
=

2
3

π∣g(x0)∣ρλξ3. (26)

By substituting Eq. (26) into Eq. (24), the expression of A in Eq. (25)
becomes

A = 2(
ρ − ρλ

ρλ
)

1/2
. (27)

Within the analytic parametrization of the density profile in Eq. (17),
this behavior only holds close to the λ-line, where the expansion (22)
is justified. Indeed, the use of Eq. (27) in Eq. (17) for states far away
from the λ-line might even lead to unphysically negative density val-
ues. We have actually verified that for T ≈ 3 and densities larger than
≈1.2, the free energy of a fluid with sharply defined stripes is slightly
lower than that of a sine-wave, in line with the indication coming
from numerical minimization (see more in Sec. II E).

The above-mentioned considerations are illustrated in Fig. 5,
where the square of the amplitude of the density modulation
obtained from the numerical minimization of (6) is plotted against
the distance ρ − ρλ from the λ-line at two temperatures and com-
pared with the prediction of the Landau approach given by Eq. (27),
as well as with the result of the minimization of Eq. (21) without per-
forming the expansion in powers of A . As the λ-line is approached,
A 2 displays the linear behavior predicted by Eq. (27), although, on
increasing ρ − ρλ, deviations from linearity appear soon.

In principle, the analytic picture just illustrated may still be
compatible with a first-order transition at high density between the

FIG. 5. A 2 vs ρ − ρλ at T = 3.5 and T = 5, for ξ = 3. The figure shows the pre-
dictions based on the fully numerical minimization of Eq. (6) with no ansatz on the
density profile, on the numerical minimization with the sine-like parametrization of
the density profile [Eq. (21)], and on Landau theory [Eq. (25)].

homogeneous fluid and the striped fluid, as found for a different
system in Ref. 52. However, this alternative scenario does not apply
here because, at a temperature higher than those at which this hypo-
thetical first-order transition would take place, the λ-line hits the
high-density branch of the liquid–vapor coexistence curve. Below
that temperature, the phase equilibrium involves the striped fluid at
high density and the vapor phase at low density, and the correspond-
ing coexistence region supersedes other possible transitions between
the striped fluid and the liquid phase.

E. Well within the stripe region
As noted in Sec. II C, well within the region where the stripes

are stable (bounded above by the λ-line), a good approximation is
to view the striped fluid as a sequence of layers hosting particles of
one species only, i.e., 1 and 2 in alternating order. In the following,
we show that this modelization allows an analytic expression for the
Helmholtz free energy of the striped fluid.

Let us consider an elementary model of striped mixture where
the system volume V = L3 is divided into 2M horizontal layers Bk
(the stripes) of width Δ = L/(2M) in the z direction, which are
alternately populated with type-1 and type-2 spheres,

ρ1(x) =
⎧⎪⎪
⎨
⎪⎪⎩

ρ, if x ∈ Bk with k odd,

0, otherwise,

ρ2(x) =
⎧⎪⎪
⎨
⎪⎪⎩

ρ, if x ∈ Bk with k even,

0, otherwise,

(28)

where ρ is the overall system density and periodic boundary condi-
tions are implied. In the spirit of Landau’s theory, we compare the
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free energy of (28) with that of a homogeneous fluid of the same den-
sity and temperature. By a trivial calculation, the difference in Fid

/V
between the striped fluid and the homogeneous fluid is kBTρ ln 2.
While Frep is the same for the two fluids, the calculation of Fattr/V
yields −(π/3)ξ3ερ2 for the homogeneous fluid and

Fattr

V
= −

ερ2

2Δ∫
Δ

0
dz V (z), (29)

for the striped fluid, where V (z) is the volume that the sphere of
radius ξ and center x = (0, 0, z) ∈ B1 has in common with one or
more stripes Bk with k even.

The integral in Eq. (29) must be performed differently for vari-
ous intervals of the stripe thickness Δ. This calculation is carried out
in Appendix B. In Fig. 6, the ensuing difference in Fattr/V between
the striped and the homogeneous fluid is plotted as a function of Δ
for a few values of ξ. We see that the free-energy gap is minimum
and negative for a value of Δ slightly larger than ξ/2. This Δ sets the
preferred width of the stripes. Calling y the quantity ΔFattr/(ερ2σ3V)
plotted in Fig. 6 and ymin < 0 its minimum value, we conclude that
the striped fluid overcomes in stability the homogeneous fluid when

kBT
ε
<
∣ymin∣

ln 2
ρσ3, (30)

with, e.g., ∣ymin∣/ln 2 ≃ 2.85 for ξ = 3 and 6.75 for ξ = 4. Upon com-
paring these values with the slope of the λ-line in (A8), we see that
the locus where the striped fluid (28) first overcomes in stability the
homogeneous fluid lies below the λ-line, i.e., within the ρ–T region
where the homogeneous fluid is unstable. This means that the phase
superseding the homogeneous fluid just beyond the λ-line cannot be
the one in Eq. (28). This outcome is actually expected: a modeliza-
tion in which stripes have sharp boundaries cannot hold everywhere
in the unstable region since (as shown in Sec. II C) close to the λ-line,
the striped fluid of lowest free energy is characterized by a smooth
periodic modulation of the density.

FIG. 6. Difference in the reduced value of Fattr between the striped fluid and the
homogeneous fluid for a number of ξ values and Δ ≥ ξ/2.

F. Freezing

At sufficiently high density, freezing is expected to occur
because of the hard-sphere contribution to the free energy of the
mixture. Moreover, since the λ-line intersects the solid–fluid coex-
istence region of hard spheres, freezing will occur both in the
absence and in the presence of stripe-like density modulations. In
this respect, the phase diagram displayed in Fig. 4 is incomplete
because it does not take freezing into account. On the other hand,
the local-density approximation (LDA) adopted for the hard-sphere
term in (6) is intrinsically unable to describe freezing on the
atomic scale. A way to overcome this limitation consists in going
beyond LDA, for instance, by employing in the hard-sphere term
the weighted-density approximation or the fundamental-measure
theory.53–56 Here, we have considered a rougher and, admittedly,
somewhat ad hoc approximation to include freezing into the picture,
inspired by Eq. (19). According to that expression, which stems from
the ansatz in Eq. (17) for the density profile, the contribution Δ(βF)
to the free energy due to the density modulation does not contain the
hard-sphere term. The present approximation then consists in keep-
ing Δ(βF) unchanged, irrespective of whether the system is fluid or
solid, and in replacing the excess free energy per particle of the hard-
sphere fluid fHS(ρ) with that of the hard-sphere crystal f crystal

HS (ρ).
For the latter, we have followed Ref. 57 and adopted the expres-
sion deriving from the Hall equation of state.58 Clearly, in doing
so, one assumes that, aside from other approximations, the crystal
structure of the system is the same as that of the hard-sphere crystal
(i.e., fcc).

A conceptually identical approximation may also be considered
in the case where the analytic parametrization of the density profile
is not adopted and the numerical minimization of Eq. (6) is taken
instead. In that case, we still assume that the attraction-dependent
contribution Fattr to Eq. (6) is the same for both phases and replace
the hard-sphere free energy of the fluid with the hard-sphere free
energy of the crystal.

The ensuing phase diagram, inclusive of the crystal phase, is
displayed in Fig. 7. In the same figure, we report as full squares
some points on the melting and freezing lines taken from Ref. 46.
The green lines refer to the analytic parametrization of the density
profile, whereas the open squares refer to the unconstrained min-
imization. In both cases, most of the stripe region is predicted to
be in the crystal phase. Below the critical endpoint, a triple point is
present, where the vapor, the striped fluid, and the striped crystal
coexist.

At low temperatures, the unconstrained minimization deviates
appreciably from the analytic parametrization. Indeed, as observed
earlier, the latter approximation becomes inaccurate in this regime.
According to unconstrained minimization, solid–fluid coexistence
takes place at lower densities. As a result, the triple-point is located
at a higher temperature: according to the analytic ansatz, the triple
temperature falls at T = 2.48, whereas unconstrained minimization
locates it somewhere near T = 3. This is in agreement with the
simulation estimate, although we point out that, because of the
approximate character of the recipe employed to include freezing,
we have failed to obtain solid–fluid coexistence at T = 3 within the
unconstrained minimization procedure.

As ξ is progressively decreased, no topological change will
occur in the phase diagram of Fig. 7, since in both the fluid and
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FIG. 7. DFT phase diagram for ξ = 3, including the solid phases. The green circles
and blue squares, respectively, indicate GEMC liquid–vapor coexistence points
and MC estimates of the freezing and melting points.46

solid free energies, the values of T and ξ exclusively enter through
the combination kBT/ξ3. This is both an effect of the approximation
considered for the solid and an intrinsic limitation of the mean-field
treatment of the interaction. However, the same does not hold for
the actual system where, upon progressively reducing ξ, the λ-line
will eventually end up buried in the solid–fluid and bulk-solid
regions, with the result that stripes only appear in the solid phase.
Therefore, for small enough values of ξ, the predictions of the theory
deviate from simulation. Based on our previous work,46 the agree-
ment is expected to be good for ξ = 4 or larger, whereas for ξ = 3,
stripes are found only in the solid.

III. SIMULATION
A. General remarks

We address in Monte Carlo (MC) simulations two complemen-
tary questions concerning the formation and stability of stripes in
our mixture. On one side, the theory presented in Sec. II gives a key
to understand the origin of stripes in the liquid phase of the mixture.
With the stratagem discussed in Sec. II F, stripes are also predicted
to occur in the solid phase. In this case, the transition between the
solids with and without the stripes is continuous. However, this is
simply the consequence of introducing the solid phase a posteriori
in a thermodynamically inconsistent way: if we aim to monitor the
actual structure and composition of the dense mixture as a function
of density and temperature (i.e., beyond the mean-field or any other
more sophisticated theory) we cannot manage without numerical
simulation.

As for the second question, MC simulations have already been
employed in Ref. 46 to compute the liquid and vapor coexistence
densities, to estimate the location of the solid–liquid transition for

γ = 2, and to check, in selected cases, the results of total-energy cal-
culations at T = 0. In the present study, we use simulation to probe
the existence of stripes for γ ≤ 1 since we suspect—by the argument
given in Sec. I—that stripes occur in the solid for any γ, no matter
how small. In this respect, even an analysis of the dilute system at low
temperatures can inform us of the existence of stripes in the solid
since, in this case, they will also be seen in the (solid-like) droplet
coexistent with vapor. Finally, we also wish to know how stripe order
decays with temperature since stripes may either break up abruptly
or be disrupted progressively.

B. Method
We carry out canonical Monte Carlo (MC) simulations of sam-

ples consisting of a few thousand particles enclosed in a cuboidal
box with periodic boundary conditions. After equilibration, we typ-
ically generate 105–106 MC cycles in the bulk liquid or solid, one
cycle corresponding to N elementary moves (i.e., displacements of
one particle at a time). In the liquid–vapor region, about 5 × 106 MC
cycles are needed to bring the system to equilibrium, and as many
cycles are needed to obtain accurate statistical averages. To speed up
relaxation to equilibrium, we implement swapping moves, where the
positions of two randomly chosen unlike particles are interchanged.
All moves are accepted according to the Metropolis criterion. It is
worth emphasizing that swapping moves are extremely effective in
our system: irrespective of the composition set in the initial con-
figuration, the spatial distribution of types evolves to a stationary
(equilibrium) distribution in no more than 104–105 cycles.

Liquid–vapor equilibria are determined by GEMC simula-
tions59 using 1728 particles that are initially distributed evenly
between two boxes of equal volume. We typically carry out runs of
106 cycles, where one cycle corresponds to (an average of) N dis-
placement moves plus one volume exchange plus a few hundred
particle exchanges (i.e., swaps of particles in different boxes) plus
a few dozen swapping moves.

As in Ref. 46, the amount of crystalline order in a given con-
figuration of the system is assessed by computing the Steinhardt
bond-angle parameters q4 and q6 of every particle.60–62 Both quan-
tities are nearly zero for a particle having a liquid-like environment,
whereas they are significantly non-zero for a solid-like particle. In
particular, the values of q4 and q6 as averaged over all particles (q̄4
and q̄6) can be used to distinguish a liquid-like from a solid-like
droplet in vapor. When combined with visual inspection of the sys-
tem, the density evolution of the mean Steinhardt parameters gives
an effective method to approximately locate the melting point.

We also use another indicator of the overall structure of the
mixture, namely, the pair entropy per particle s2. For a fluid mixture
of two species, the latter is given by63

s2 = −
kB

2

2

∑
i,j=1

χiχjρ∫ d3 r [gi,j(r) ln gi,j(r) − gi,j(r) + 1], (31)

where χi is the concentration of the ith species (here equal to 0.5
for both particle types) and gi,j(r) are radial distribution functions.
While in a crystal, the definition of s2 is different,64 the same for-
mula (31) is employed here also for a solid mixture, which generally
results in a large negative s2 value. Conversely, ∣s2∣ ≈ kB in a fluid
configuration.
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Finally, the presence of stripes in the mixture, be it solid or
liquid, is ascertained by introducing a convenient order parameter
O. Let us first consider, for the sake of clarity, a crystalline (fcc
or hcp) configuration. For simplicity, hereafter we only foresee the
possibility of planar stripes made up of ns = 1 or 2 lattice planes,
lying perpendicularly to a high-symmetry z direction [001], [011],
or [111] for fcc, whereas in the hcp case, stripes are taken to consist
of (0001) planes. Now, let us call ci and zi the type and z position
of the ith particle (with, say, ci = 1 for a type-1 particle and −1 for
a type-2 particle). Denoting the z separation between two adjacent
horizontal planes of particles by a, we define

O = ⟨
1
N

RRRRRRRRRRR

N

∑
j=1

cjeikzj

RRRRRRRRRRR

⟩ with k =
2π
nsa

, (32)

where the normalization constant N = N for ns = 1 and N/
√

2 for
ns = 2. The order parameter (32) recalls the one employed in studies
of smectic-A order in liquid crystals, see, e.g., Ref. 65; indeed,
smectic layers are nothing but stripes perpendicular to the nematic
director.

To follow the thermal evolution of O in a specific solid, we
proceed as follows. At a certain low temperature, say T = 0.3, the
mixture is initially arranged in a crystalline configuration with
composition modulated in the z direction and then equilibrated.
Next, keeping the density ρ fixed, the temperature is increased in
small steps, taking as the initial configuration of the system at a
given temperature the last configuration generated at the previous
temperature. If, at any moment during the simulation, stripes are
still present in the sample and are oriented perpendicularly to z, then
O is non-zero; otherwise, O takes a nearly zero value.

With the (somewhat arbitrary) normalization N = N, the order
parameter (32) can also be employed for a striped liquid. For O
to be an effective indicator of stripe order, (a) the stripes must lie
perpendicularly to z, and (b) the value of a should match the mean
z difference between two adjacent stripes. In practice, a has to be
adjusted during the equilibrium run in such a way that O acquires
its maximum value.

C. Results
As mentioned earlier, our first purpose is to determine the low-

est value of γ for which stripes are present in the solid phase of
the mixture. In addition to that, we wish to investigate how stripe
order decays in the solid as the temperature is increased at a fixed
density.

We begin by providing evidence of the existence of stripes in
the solid for γ = 1. In our previous study,46 we concluded that for
this value of γ, stripes are absent in the liquid phase. For T = 1 (a
value well below the critical temperature Tc ≈ 1.48), we also verified
that the liquid–vapor interface undergoes a sequence of geometric
transitions with increasing density:66–68 for relatively low densities,
the liquid forms a spherical droplet in equilibrium with the vapor;
for higher densities, the shape of the droplet becomes cylindrical or
slab-like. The scenario changes when the temperature is reduced to
0.5, as illustrated in the system snapshots reported in Fig. 8. Between
ρ = 0.10 and ρ = 0.30, we observe the same sequence of shapes found
at T = 1, but spheres are now organized in parallel stripes of alternat-
ing type, and the structure of the droplet is more compact. Indeed,
for ρ = 0.10 [(a), where the droplet is spherical] and ρ = 0.20 [(b),
where the droplet is cylindrical], we see facets on the droplet sur-
face, whereas for ρ = 0.30 (c), the surface of the slab-like droplet is
perfectly flat. The mean Steinhardt parameters confirm that, away
from the surface, the droplets in (a)–(c) consist of solid-like parti-
cles. Therefore, for T = 0.5, the mixture for γ = 1 is below its triple
temperature. The existence of stripes in the solid system is evident
in panel (d), showing a typical snapshot of the bulk fcc crystal for
ρ = 1.10.

The observation of a well-ordered stripe pattern for γ = 1, a
value not distant from the ranges typical of colloidal interactions,
prompts us to investigate even shorter SW ranges. First, we lower γ
from 1 to 0.5. It is known from studies of pure SW systems69–71 that a
progressive shrinking of the attraction range makes the critical tem-
perature smaller and smaller until liquid–vapor coexistence becomes
metastable with respect to solid–fluid equilibrium—an event
occurring for SW widths shorter than 0.25σ. Since in our model, the
SW attraction is only exerted between unlike spheres, the metastabil-
ity threshold might, in principle, be higher. Therefore, we have first
verified that a stable liquid–vapor separation is indeed present for
γ = 0.5. For this range of attraction, we report in Fig. 9 some GEMC
data suggesting that the liquid and vapor phases truly separate below
a critical temperature of ≈0.70. At variance with the case of a wide
well (γ = 2), for γ = 0.5, the mean-field critical temperature turns
out to be appreciably smaller than the true one. This behavior is sim-
ilar to what occurs in pure SW fluids for narrow wells,71 even though,
in both cases, the situation is bound to reverse in the limit γ→ 0
when the mean-field approximation used here incorrectly predicts a
non-vanishing critical temperature because of the residual attraction
inside the repulsive core [see Eq. (5)].

To exclude the possibility that the whole binodal line in Fig. 9 is
metastable, we have investigated the behavior of the mean Steinhardt
parameters as a function of the density for various temperatures

FIG. 8. Typical equilibrium configura-
tions of the mixture with γ = 1, T = 0.5,
and a number of densities. (a) ρ = 0.10.
(b) ρ = 0.20. (c) ρ = 0.30. (d) ρ = 1.10.
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FIG. 9. Liquid–vapor equilibrium in the mixture with γ = 0.5: GEMC data points
(green circles) are compared with the coexistence line derived from DFT (blue
line). The GEMC critical-point coordinates are found to be ρc = 0.297 and
Tc = 0.700, as obtained by fitting the coexistence data to the scaling law expected
for the density difference between the phases and to the law of rectilinear
diameters.59 According to DFT, the coordinates of the critical point are instead
ρc = 0.249 and Tc = 0.637.

around 0.5. In practice, starting from the perfect fcc crystal at
ρ = 1.30, we gradually expand the mixture isothermically, equilibrat-
ing it at each step until reaching ρ = 0.40. In Fig. 10, left, we show
the results obtained for T = 0.5 and 0.6. The behavior of q̄4 and
q̄6 is similar: starting from the bulk-solid values, these quantities
begin to decrease at ρ ≃ 1.22, i.e., near the melting density. Then,
at ρ ≃ 0.90, the behaviors at the two temperatures become different.

FIG. 10. Mean Steinhardt parameters q̄4 and q̄6 (left) and two-body entropy s2
(right) for γ = 0.5, plotted as a function of the density at T = 0.5 and 0.6.

For T = 0.6, the mean Steinhardt parameters undergo a substantial
enhancement near ρ = 0.75 (probably in the vicinity of a geometric
transition) but eventually decrease again and vanish, together with
s2, at ρ = 0.70. Looking at the binodal line in Fig. 9, we argue that
the system is a bulk liquid between ρ ≃ 0.60 and ρ ≃ 0.70. Instead, for
T = 0.5, q̄4 and q̄6 remain non-zero all the way down to low densities,
meaning that part of the system remains solid (this is confirmed by
visual inspection of the system at ρ = 0.40, revealing a slab-like solid
droplet suspended in vapor). In parallel, ∣s2∣ (Fig. 10, right) acquires
larger and larger values due to the development of large-distance
oscillations in the radial distribution functions. Therefore, we con-
clude that the triple temperature for γ = 0.5 falls between 0.5 and
0.6. As for the compositions, we confirm the existence of stripes in
the solid for γ = 0.5. This will be discussed in detail below, in parallel
with the case γ = 0.1.

Let us finally consider the mixture with γ = 0.1. For this narrow
attraction range, we were not able to draw a liquid–vapor coex-
istence locus by GEMC. However, stripes still exist—see, e.g., the
snapshot in Fig. 11(a), corresponding to ρ = 1.1 and T = 0.5. Here,
each stripe consists of a single plane of particles of the same species,
with square order within the planes. However, as we see better in
Fig. 11(b), particles are fluid-like in a portion of the simulation
box corresponding to two missing planes, suggesting that the state
point under scrutiny actually falls inside the solid–fluid coexistence
region. This conclusion is confirmed by the density evolution of the
mean Steinhardt parameters and pair entropy along a few isotherms
(see Fig. 12). We see that the initially fcc-ordered system enters
the solid–fluid region at ρ ≃ 1.15, almost independently of T. As
expected, the coexistence region is much wider at T = 0.3 than at
T = 0.5 or 1. We have not explored values of γ smaller than 0.1, but
it is reasonable to think that stripes will be present at low tempera-
tures for any positive γ, at least in a range of densities close to the
maximum density

√
2.

We now turn to characterize the thermal behavior of stripes in
the solid phase of the mixture for γ = 0.1, 0.5, and 1. We initially set
T = 0.3 and prepare the mixture in a striped crystalline configura-
tion of high density. Then, we gradually increase the temperature
while keeping the density fixed, bringing the sample to equilibrium
at each T. As anticipated in Sec. III B, we explore various possibilities
for the initial structure of the mixture. Zero-temperature calcula-
tions46 for γ = 0.1 and 0.5 suggest that, in equilibrium, stripes consist
of just one lattice plane (ns = 1); hence, only this case is examined;

FIG. 11. Typical equilibrium configuration of the mixture with γ = 0.1, T = 0.50,
and ρ = 1.10 (a). To better highlight the striped nature of the crystal, one species
has been hidden in panel (b).
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FIG. 12. q̄4 and q̄6 (left) and s2 (right) for γ = 0.1, at T = 0.3, 0.5, and 1.

for γ = 1, we instead consider both ns = 1 and ns = 2. Since the
two species are mixed at random in the high-temperature solid, an
isostructural “transition”—i.e., either a true phase transition or a
smooth crossover—should take place upon heating from the striped
solid to the compositionally disordered solid. To clarify this issue,
we have monitored the T dependence of the order parameter O and
the potential energy per particle U/N.

In Fig. 13, we show results for γ = 0.1 [panels (a) and (c)] and
γ = 0.5 [panels (b) and (d)], with the density fixed at ρ = 1.3. For

γ = 0.1, stripes resist thermal fluctuations only in the fcc001 and
fcc011 solids, whereas in the fcc111 solid, the initial stripes are re-
oriented by the swapping moves, already at the initial temperature
T = 0.3, along either [001] or [011]; also in the hcp solid, the ini-
tial stripes disappear rather quickly. It is worth noting that, due
to the very short range of attraction, various striped solids have
essentially the same energy, implying an effective thermodynamic
degeneracy too. That said, the important message of Fig. 13 is that,
for γ = 0.1, stripe order vanishes near T ≃ 0.88 with a seemingly first-
order transition (we have verified that the same occurs for ρ = 1.2,
where O vanishes abruptly at T = 0.73). This is to be contrasted with
the behavior at γ = 0.5, where stripes consist of single planes with
triangular order: as the solid is heated up, stripe ordering persists
up to T ≃ 1.75, where it vanishes smoothly. Hence, for γ = 0.5, we
do not see a sharp solid–solid transition but rather a progressive
rearrangement of the compositions.

We have verified that the transition from compositional order
to disorder is completely reversible, at least when a unique ground
state exists for the given crystalline structure—for instance, in the
case of γ = 0.5. For γ = 0.1, upon gradually cooling a composition-
ally disordered fcc crystal, the ordered mixture eventually formed
contains patches with fcc001 order mixed together with patches with
fcc011 order.

A separate case is γ = 1, which is illustrated in Fig. 14. Here, we
report the thermal behavior of O and U/N for two densities, ρ = 1.1
[panels (a) and (c)] and ρ = 1.3 [panels (b) and (d)]. We consider
two distinct patterns of stripes for the initial configuration of the
mixture at T = 0.3, namely, ns = 1 and ns = 2. At the lower density,

FIG. 13. Order parameter and excess energy per particle for γ = 0.1 [(a) and (c)] and γ = 0.5 [(b) and (d)]. The density is ρ = 1.3.
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FIG. 14. Order parameter and excess energy per particle for γ = 1. The density is ρ = 1.1 in panels (a) and (c), and ρ = 1.3 in panels (b) and (d).

stripes are stable in any of the four structures/orientations consid-
ered for ns = 1, and particularly so in the hcp case where stripe order
survives till rather high temperatures, T ≃ 2.5. However, at low tem-
peratures, the minimum energy (and, presumably, also free energy)
value corresponds to hcp with ns = 2, where the initial stripes are
washed out by thermal fluctuations already at T = 0.3. Indeed, visual
inspection of the system at T = 0.3 indicates that, in equilibrium, the
compositional order preferred at ρ = 1.1 is a less regular alternation
of single and double (0001) planes filled with particles of the same
species. Only at T ≈ 1.6, a smooth crossover to a striped hcp phase
with ns = 1 eventually occurs.

FIG. 15. Snapshot of the typical equilibrium configuration of the mixture with γ = 1,
for ρ = 1.3 and T = 0.3. In the two panels, type-1 and type-2 particles are hidden
in turn, so as to clearly identify the positions of each species of particles.

Moving to ρ = 1.3, we see in Fig. 14(d) that the stability of the
hcp solid is now much higher than that of any fcc competitor. How-
ever, at low temperatures, the stable mixture with γ = 1 is not a
striped solid but something different (see Fig. 15). In this picture,
which displays the typical equilibrium configuration of the system
at low temperatures, we see that the mixture is still compositionally
ordered, but the particles of each species form a (self-dual) regu-
lar porous matrix holding in its interstices the particles of the other
species. We have not further inquired into the precise disposition
of particles in the hcp lattice since we have verified that it slightly
depends on the shape of the simulation box, i.e., on the degree of
commensuration of the system.

In conclusion, the compositional order exhibited by the mix-
ture with γ = 1 is not stripe-like. This model falls somehow at the
boundary between striped mixtures with ns = 1 and ns = 2. We con-
clude that the competition between two distinct values of the stripe
thickness makes stripe order frustrated for γ = 1, opening the way to
novel ground states where the compositional order is more complex
and density-dependent.

IV. CONCLUSIONS
We have investigated a model of binary mixture, originally

introduced in Ref. 46, in which condensation is driven by a short-
range attraction between unlike particles. To keep it simple, the
particles are modeled as hard spheres of the same diameter σ and
equal concentration, while the cross attraction is taken to be a SW
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potential of range (1 + γ)σ. In our previous work, we have shown
that at sufficiently low temperatures, the solid phase of the mixture
for γ ≥ 1 is stripe-ordered, in that the two species form layers of
alternating types, running along a direction. Moreover, stripes also
appear in the liquid phase when γ is sufficiently large.

In this paper, we considerably extend the analysis in Ref. 46 by
first applying a DFT that accounts well for the behavior of the mix-
ture in the fluid sector of the phase diagram (at least provided that
γ is sufficiently large); by an ad hoc modification, the solid phase of
the mixture can be described too. Specifically, the liquid–vapor equi-
librium compares well with simulation results; in further agreement
with simulation, the homogeneous fluid becomes unstable at high
density against a striped fluid, and the expected phase transition is
second-order. Finally, the theory predicts two solid phases, i.e., with
and without the stripes, separated by a continuous transition.

We underline that the occurrence of a liquid–vapor transition,
in addition to that of inhomogeneous microphases, is a prominent
feature of the present model, which makes it particularly interesting
and different from the models investigated in Refs. 35 and 48, where
instead no liquid–vapor equilibrium occurs.

Next, using Monte Carlo simulations, we have focused on the
crystalline phases of the mixture, showing the existence of stripes
in the solid for γ as small as 0.1. For this γ, the transition from the
striped crystal to one with compositional disorder is sharp, whereas
it is a smooth crossover for γ = 0.5 or 1. In the latter case as illus-
trated in Fig. 15, the compositional order exhibited by the mixture
is actually more complex, an outcome which is imputed to the
unresolvable competition between two distinct values of the stripe
thickness.

We may easily guess that the observed behavior also occurs
at concentrations slightly away from equimolarity. At the same
time, we cannot exclude that a larger difference in concentration
between the species could lead to other kinds of orderings, such
as, e.g., those observed for a different model mixture in Ref. 48,
where the species at lower concentrations arranges itself in spher-
ical clusters or cylinders and the species at higher concentrations
percolates in the space left available. Moreover, the study carried out
in Ref. 41 shows that both the spinodal and the λ-line of the mixture
are strongly affected by changes in concentration, so the topology
of the phase diagram may change as well. Studies are currently
underway to clarify these issues. Moreover, preliminary calculations
suggest that many characteristics of the present model could be
owned by a whole class of mixtures where the like interactions
are short-range repulsive and the cross interactions are generically
attractive. In a forthcoming paper, we will provide wide evidence
of this universality of behavior. In this respect, we note that stripe
patterns have also been observed in equimolar mixtures where both
like and unlike interactions feature a repulsive and an attractive
term.43 Similarly as occurs in our mixture for large γ, in that model,
the vapor may coexist with liquid, striped-liquid, and striped-solid
phases. However, there are also differences insofar as, in the mix-
ture investigated in Ref. 43, the transition between liquid and striped
liquid is first-order.

The unexpected variety of emergent behaviors in the basic
model considered here can stimulate the search for colloidal
mixtures with similar behaviors. In particular, striped mixtures can
find immediate application in the development of photonic devices;
for this reason, the identification of a simple mechanism for the

formation of stripe patterns in binary mixtures can be of consider-
able technological interest.
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APPENDIX A: ON THE STABILITY
OF THE HOMOGENEOUS FLUID

In this appendix, we report calculations relative to the DFT
of Sec. II, which, for ease of reading, have not been included in
the main text. Specifically, we determine the instability loci of the
homogeneous fluid mixture.

Let c̃HS(ρ) be the Fourier transform of the direct correla-
tion function of a fluid of hard spheres at density ρ. Within the
local-density approximation adopted here for the excess free energy
functional Frep = ∫ d3xρ(x) fHS(ρ(x)), c̃HS(ρ) does not depend on
the wave vector k and is given by

c̃HS(ρ) = −2β f ′HS(ρ) − ρβ f ′′HS(ρ) = −
π
3

σ3 4 − η
(1 − η)4 . (A1)

Then, the elements of the matrix (13) can be written as

C̃11(k) = C̃22(k) = −
2
ρ
+ c̃HS(ρ) ;

C̃12(k) = C̃21(k) = c̃HS(ρ) − βw̃12(k),
(A2)
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and the determinant becomes

det [C̃i,j(k)] = [C̃11(k) + C̃12(k)][C̃11(k) − C̃12(k)]

= [−
2
ρ
+ 2̃cHS(ρ) − βw̃12(k)][−

2
ρ
+ βw̃12(k)], (A3)

or equivalently,

det [C̃i,j(k)] = 4v2
0[

1
η
−

c̃HS(ρ)
v0

− 4(
ξ
σ
)

3

βεg(kξ)]

× [
1
η
+ 4(

ξ
σ
)

3

βεg(kξ)]. (A4)

In the above equation, v0 = η/ρ = πσ3
/6 is the hard-sphere volume

and

g(x) =
3
x3 (sin x − x cos x) with g(0) = 1. (A5)

The first factor in Eq. (A4) is akin to minus the Fourier transform
of the (mean-field expression of the) direct correlation function of
the pure SW fluid, including the ideal-gas contribution, and behaves
in the same way. If we fix the density and set k = 0, this factor
changes sign from positive to negative as T is decreased. Moreover,
since g(x) takes its absolute maximum at x = 0 [i.e., w̃12(k) takes
its absolute minimum at k = 0], the first wave vector at which the
sign changes is indeed k = 0, corresponding to a spinodal instability.
The spinodal line in the ρ–T plane is then

βε =
1
4
(

σ
ξ
)

3
[

1
η
−

c̃HS(ρ)
v0
], (A6)

or, explicitly,

βε = (
σ
ξ
)

3
[

1
4η
+

4 − η
2(1 − η)4 ]. (A7)

In turn, the second factor in Eq. (A4) is similar to minus the
Fourier transform of the direct correlation function of a fluid of
penetrable particles interacting via the repulsive square-shoulder
potential −w12(r). This interaction belongs to the class of so-called
Q± potentials;49 indeed, the function g(x) changes sign first at
x ≃ 4.4934 and reaches its absolute minimum at x0 ≃ 5.7635. Since
this minimum is negative, the second factor in Eq. (A4) turns from
positive to negative as T is decreased at a fixed density. However,
the wave vector at which this occurs is now k0, such that k0ξ = x0.
Therefore, we are in the presence of an instability at k0 ≠ 0,
corresponding to a λ-line whose equation on the ρ–T plane is
given by

kBT
ε
= 4(

ξ
σ
)

3

∣g(x0)∣η, (A8)

with ∣g(x0)∣ ≃ 0.086 17. This instability locus has the same lin-
ear behavior as the λ-line of Q± fluids in the random-phase
approximation.

Looking at Eq. (A4), when the spinodal line is crossed by
decreasing T at constant density, the first factor evaluated at k = 0
becomes negative at the spinodal line. Similarly, when the λ-line is
crossed by decreasing T, it is the second factor evaluated at k = k0
that becomes negative. On the other hand, since g(0) is positive
and g(x0) is negative, both the second factor evaluated at k = 0
and the first factor evaluated at k = k0 are positive. Therefore, as
either the spinodal line or the λ-line is crossed, the determinant (A4)
turns negative, and the stability condition for the fluid is violated,
respectively, at k = 0 and k = k0.

Figure 1 displays the spinodal line and the λ-line for ξ = 3. The
wave vector at which the instability of the homogeneous fluid first
occurs at high density is related to the periodicity of the inhomoge-
neous phase that supersedes it. For the striped phase, this is close to
2π/k0 = 2πξ/x0 ≃ 3.27.

APPENDIX B: CALCULATION OF THE INTEGRAL
IN EQ. (29)

To evaluate the integral in Eq. (29), we should proceed differ-
ently, depending on the stripe thickness Δ. Let us first take Δ ≥ ξ. We
can make reference to Fig. 16, where we see a projection of the over-
lapping geometry onto the x–z or y–z plane. The z coordinates of
the points A, B, C, and D are z + ξ, Δ, 0, and z − ξ, respectively. The
sphere of radius ξ and center x = (0, 0, z) in B1 (i.e., 0 ≤ z ≤ Δ) can at
most intersect two even-numbered layers, namely, B2 (if z > Δ − ξ)
and B2M (if z < ξ), lying, respectively, above and below B1. Each
overlapping region has the shape of a one-base spherical segment
of height AB (top) or CD (bottom). Since the volume of a spherical
segment of height h, cut out of a sphere of radius R, is πh2

(R − h/3),
the overlapping volumes turn out to be π(z + ξ − Δ)2

(ξ − (z + ξ −
Δ)/3) (for Δ − ξ ≤ z ≤ Δ) and π(ξ − z)2

(ξ − (ξ − z)/3) (for 0 ≤ z ≤
ξ), respectively. Therefore, we obtain

∫

Δ

0
dz V (z) = π∫

Δ

Δ−ξ
dz (z + ξ − Δ)2

(ξ −
z + ξ − Δ

3
)

+ π∫
ξ

0
dz (ξ − z)2

(ξ −
ξ − z

3
) =

π
2

ξ4. (B1)

FIG. 16. Geometry of the problem for the case ξ ≤ Δ (see text).
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FIG. 17. Geometry of the problem for Δ ≤ ξ < 2Δ (see text) in the two cases of small z (left) and large z (right).

When ξ/2 ≤ Δ < ξ, the only even-numbered layers overlapping
with the sphere of radius ξ are still B2 and B2M , but now the shape
of the overlapping region may, depending on z, be either a one- or a
two-base spherical segment. Focusing first on the overlapping region
above the center of the sphere, this is a one-base spherical segment
of height z + ξ − Δ for 0 ≤ z ≤ 2Δ − ξ (see Fig. 17, left) and a two-

base spherical segment of height Δ and radii AE =
√

ξ2
− (2Δ − z)2

and BF =
√

ξ2
− (Δ − z)2 for z > 2Δ − ξ (see Fig. 17, right). Sim-

ilarly, the overlapping region below the sphere center is a two-
base spherical segment of height Δ and radii CE =

√
ξ2
− z2 and

DF =
√

ξ2
− (z + Δ)2 for z < ξ − Δ (see Fig. 17, left) and a one-

base spherical segment of height ξ − z for ξ − Δ ≤ z ≤ Δ (see Fig. 17,
right). Since the volume of a two-base spherical segment of height
h and radii r1 and r2 is πh(r2

1 + r2
2)/2 + πh3

/6, we finally obtain

∫

Δ

0
dz V (z) = π∫

2Δ−ξ

0
dz (z + ξ − Δ)2

(ξ −
z + ξ − Δ

3
)

+ π∫
Δ

2Δ−ξ
dz{

Δ
2
[2ξ2
− (Δ − z)2

− (2Δ − z)2
]

+
1
6

Δ3
} + π∫

ξ−Δ

0
dz{

Δ
2
[2ξ2
− z2
− (z + Δ)2

]

+
1
6

Δ3
} + π∫

Δ

ξ−Δ
dz (ξ − z)2

(ξ −
ξ − z

3
)

= π(−
ξ4

2
+

8
3

ξ3Δ − 2ξ2Δ2
+

1
3

Δ4
). (B2)

We have verified that the two expressions of Eq. (29) for ξ/2 ≤ Δ
< ξ and Δ ≥ ξ join smoothly (i.e., with continuous first- and second-
order derivatives) for Δ = ξ.

Finally, when Δ is smaller than ξ/2, the possible overlapping
geometries are more numerous. However, the cases already consid-
ered are sufficient for our purposes (see main text), and no other
calculation is then needed.
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