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We study, by using liquid-state theories and Monte Carlo simulation, the behavior of systems of
classical particles interacting through a finite pair repulsion supplemented with a longer range attrac-
tion. Any such potential can be driven Ruelle-unstable by increasing the attraction at the expense of
repulsion, until the thermodynamic limit is lost. By examining several potential forms, we find that
all systems exhibit a qualitatively similar behavior in the fluid phase as the threshold of thermody-
namic stability is approached (and possibly surpassed). The general feature underlying the approach
to Ruelle instability is a pronounced widening of the liquid-vapor binodal (and spinodal) line at
low temperatures, to such an extent that at the stability threshold a vanishing-density vapor would
coexist with a diverging-density liquid. We attempt to rationalize the universal pathway to Ruelle
instability in soft-core fluids by appealing to a heuristic argument. Published by AIP Publishing.
https://doi.org/10.1063/1.5017566

I. INTRODUCTION

Microscopic interactions prevent the atoms from over-
lapping each other, due to the strong repulsion at short dis-
tances caused by the Pauli exclusion principle. The situation
is quite different if one considers interactions between macro-
molecules. In this case, the effective forces between the centers
of mass, resulting from integrating out the internal degrees of
freedom of each molecule, may result in a bounded repulsion.
This allows such particles to even “sit on top of each other,”
as full overlap only costs a finite energy. Hence, interactions
which are unphysical for atomic systems may become mean-
ingful in the context of soft matter,1–4 e.g., for polymer chains,
dendrimers, polyelectrolytes, etc. The pair potential emerging
after coarse graining the description of a complex fluid will in
general be both temperature- and density-dependent; however,
this will not affect the usefulness of simpler bounded potentials
with fixed parameters, which remain well suited for studying
the generic (i.e., qualitative) effects of more realistic effective
interactions.

While for unbounded repulsive interactions thermody-
namic stability is always guaranteed, since the thermodynamic
limit is well defined, the situation is quite different for bounded
repulsions.

As first observed by Ruelle and Fisher,5,6 a pair poten-
tial which is bounded at the origin and attractive enough for
some range of distances undergoes a thermodynamic catastro-
phe; i.e., particles collapse to a finite volume of space (Ruelle
instability). In this case, a large number N of particles gather
together into a highly dense spherical cluster, with an energy
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proportional to N2. On the contrary, for thermodynamically
stable systems, the energy per particle is asymptotically con-
stant and the system satisfies H-stability5 (i.e., denoting the
total potential energy with U, a constant B ≥ 0 exists such that
U ≥ �NB in each system configuration). This property ensures
that particles will not collapse as N →∞.

Ruelle and Fisher have devised a few simple criteria
to check thermodynamic (alias H-)stability for a bounded
isotropic potential u(r), which have been recently revived by
Heyes and Rickayzen.7 Specifically, a sufficient condition for
Ruelle instability is ũ(0) < 0, ũ(k) being the Fourier transform
of u(r). Conversely, if ũ(k) ≥ 0 for all k, then the system is
thermodynamically stable. However, when applied to a spe-
cific bounded, parameter-dependent potential, such criteria
can only serve to locate the transition from the stable to the
Ruelle-unstable regime, while they are silent on the modifi-
cations undergone by the stable system as it approaches the
thermodynamic-stability threshold (TST).

Recently, we have studied this issue for a system of par-
ticles interacting through a potential consisting of a Gaussian
repulsion, centered at the origin, augmented with a weaker
Gaussian attraction shifted at larger distances (shifted double-
Gaussian potential).8–11 The phase behavior of this system has
been investigated as a function of the attraction strength η.
Above a certain threshold ηc, the infinite-size system becomes
Ruelle-unstable and thus collapses to a cluster of finite vol-
ume in finite time. As ηc is approached from the stable side,
the liquid-vapor region undergoes an anomalous widening at
low temperature, until the liquid density diverges for T → 0
at η = ηc.10,11 Inspired by previous observations by Fantoni
and co-workers,12,13 we have also analyzed the homogeneous
fluid beyond the threshold, finding that a sharp line divides
the thermodynamic plane into two regions, characterized by
radically different collapsing behaviors: on the one side of
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the line (i.e., for high densities), collapse occurs extremely
fast (“strongly unstable” regime), whereas on the other side
(low densities), the waiting time for collapse enormously
exceeds typical simulation time (“weakly unstable” regime).

The aim of the present work is to assess whether the
behavior observed for the shifted double-Gaussian potential
holds the same for all systems characterized by a finite inter-
particle repulsion with a longer range attractive component
(FRAC potential). We consider a substantial number of FRAC
potentials with widely different features and examine, through
the hypernetted-chain (HNC) equation, how their behavior
changes as the attraction becomes increasingly more effective.
We find that all systems exhibit qualitatively similar behavior
below (and also beyond) the TST. This strongly suggests that
the approach of FRAC fluids to Ruelle instability occurs along
a universal pathway.

For all the investigated systems, the TST estimate derived
from the HNC analysis is in excellent agreement with the value
independently derived by the Ruelle-Fisher criteria (the dis-
crepancy being of order 10�3 in relative terms, or even less).
This supports the conclusion that, at least in a small interval
around the threshold, the HNC predictions are reliable.

Then, for two specific FRAC interactions, namely, the
shifted double-Gaussian and the double-exponential potential,
we use a refined liquid-state theory, the Hierarchical Reference
Theory (HRT), and Monte Carlo (MC) simulation to study how
the shape of the liquid-vapor region changes when approaching
the TST from below. The results confirm the previous sugges-
tions, including the anomalous widening of the liquid-vapor
region, thus indicating that the HNC theory faithfully describes
the changes undergone by the system near the TST.

The outline of the paper is the following. In Sec. II, we
introduce a few parametric FRAC potentials, whose TST is
exactly known from the Ruelle-Fisher criteria. The methods
used to analyze the behavior close to the TST are described in
Sec. III. In Sec. IV, we first assess the quality of a HNC-based
estimate of the TST; then, for two specific FRAC potentials, the
results of the HNC analysis are compared with HRT and MC
data. We conclude Sec. IV by providing a theoretical argument
for the generic behavior of FRAC potentials near the TST.
Section V is devoted to conclusions.

II. MODELS

We here present a number of FRAC potentials which, in
some range of parameters, become Ruelle-unstable. With one
exception only, the straightforward application of the Ruelle-
Fisher criteria allows one to compute the TST exactly.7 In the
following, r denotes the interparticle distance.

A. Double-Gaussian (DG) potential

The DG potential consists of the sum of a repulsive
Gaussian with an attractive one,

u(r) = A exp{−ar2} − B exp{−br2} (2.1)

[from now on, r and u(r) are written in dimensionless units].
Notice that the potential form (2.1) is different from the shifted-
DG model studied in Refs. 10 and 11. The DG potential is
a generic model for the effective pair interaction between

polymer chains in solutions. For A > B and a > b, the DG
potential has a positive maximum at r = 0. As r increases,
u(r) turns negative at a certain distance and, after reaching a
minimum value, it eventually goes to zero from below when
r → ∞. The DG potential essentially depends on the ratios
A/B and a/b. Choosing B = b = 1, we remain with two free
parameters, A and a. As a increases for fixed A, the repulsive
Gaussian decreases rapidly; accordingly, the attractive well of
u(r) becomes wider and deeper.

B. Double-exponential (DE) potential

The analytic form of the DE potential is

u(r) = A exp{−ar} − B exp{−br}, (2.2)

with A, a, B, b ≥ 0. This potential has been employed, e.g.,
in the modeling of small clusters.14,15 The much used Morse
potential for neutral atoms can be written in DE form, with
a = 2b and atom-specific amplitudes. For A > B and a > b, the
DE potential has a shape similar to the DG potential, though
it falls more rapidly near r = 0.

C. Cosine-Gaussian (CG) potential

The CG potential is written as

u(r) = A cos(ar) exp{−br2}, (2.3)

with A > 0 and a, b ≥ 0. This potential can find applications
in metals under high pressures, as an effective atom-atom
interaction embodying the Friedel oscillations of electronic
screening.

D. Radial symmetric short-ranged attractive
(SHRAT) potential

The SHRAT potential, which is written as

u(r) =

{
A(1 − r)4 − B(1 − r)3 , r ≤ 1
0 , r > 1 ,

(2.4)

has been used in the past as a generic embedded-atom potential
for metals.16

E. Separation-shifted Lennard-Jones (LJ) potential

The form of the separation-shifted LJ potential is

u(r) = Aa2p(r2 + a2)−p − Bb2q(r2 + b2)−q, (2.5)

with a, b, A, B ≥ 0. At variance with the standard LJ potential,
separation-shifted LJ potentials are finite at the origin. We will
only consider cases p = 6 and q = 3. The stability of (2.5) has
been extensively studied in Ref. 17.

F. Generalized exponential-6 (GE6) potential

The GE6 potential combines an exponential repulsion
with an algebraic attraction regularized at the origin

u(r) = A exp{−ar} − B(r2 + b2)−3 . (2.6)

If we set b = 0 in the above expression, we obtain the exp-6
potential, also known as the Buckingham potential,18 in turn
a simplified case of the more general Born-Mayer-Huggins
potential for alkali-halide crystals. The Buckingham potential
is commonly employed as an effective pair potential for ele-
mental substances under extreme thermodynamic conditions
(see, e.g., Refs. 19 and 20).
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III. METHODS
A. Hypernetted-chain equation

The phase behavior of fluids described by the potentials
presented in Sec. II has been first analyzed by the HNC inte-
gral equation.21 In general, the HNC equation has known
limitations, related to its thermodynamic inconsistency. How-
ever, at high density, the HNC equation proves to be very
effective in describing the thermodynamics and structure of
particles interacting through a bounded pair potential (see, e.g.,
Ref. 22). Hence, it represents a valuable tool for a systematic
investigation of FRAC fluids.

In particular, we have looked at the boundary line (BL)
separating the region of thermodynamic parameters where the
HNC equation can be solved (“stable-fluid region”) from the
“unstable-fluid region,” where no iterative solution is found.
Upon crossing the BL from the stable-fluid region, the com-
puted isothermal compressibility KT turns abruptly from a
large positive value to a negative one. For ordinary simple
fluids, characterized by an unbounded short-range repulsion,
the BL can roughly be associated with the liquid-vapor spin-
odal line, marking the threshold of instability toward phase
separation (also called “mechanical instability”), whence the
name “pseudospinodal line” also reserved to the BL. Clearly,
no crystallization transition can be predicted by the HNC the-
ory, which is a fluid-state theory, implying that a portion of the
liquid region may actually be metastable.

Recently, the BL of the HNC equation has been computed
for the shifted-DG model.10,11 Compared to the liquid-vapor
coexistence line obtained by simulation, the BL yields rea-
sonable results. In particular, the binodal line and the BL show
similar topological modifications as a function of the attraction
strength.

B. Hierarchical reference theory

The Hierarchical Reference Theory (HRT) of flu-
ids21,23 is a genuine microscopic approach that implements
renormalization-group considerations in a liquid-state theory.
This approach comes closest to a realistic description of the
liquid-vapor transition, being able to generate non-Landau crit-
ical exponents and scaling laws, as well as a convex free energy,
so that flat isotherms at coexistence naturally emerge from the
theory. Previous implementations of HRT in lattice models,
atomic fluids, and mixtures proved its accuracy in determin-
ing the phase boundaries and the thermodynamic properties of
the systems under investigation.

In essence, HRT accounts, via a differential equation,
for the effects of density fluctuations on top of a mean-field
description of the model. When specializing this approach to
a physical system, first we have to properly define the starting
mean-field approximation. In our case, we split the interaction
u(r) into the sum of a repulsive (or “reference”) and an attrac-
tive part, responsible for the occurrence of phase separation:
u(r) = uR(r) + w(r). The physical properties of the reference
system (both thermodynamics and correlations) are evaluated
via other standard liquid-state approaches, like integral equa-
tions. In this implementation, we adopted the HNC equation,
which proved to be accurate for systems characterized by soft-
core repulsion.24 The mean-field approximation for the excess

free-energy density Aex then reads Aex
mf = Aex

R − ρ2w̃(0)/2,
in terms of the number density ρ of the fluid and the fully
integrated attractive part of the potential, w̃(0).

Then, the exact HRT equation, in the sharp cut-off for-
mulation,23 describing the change in the free-energy density
Aex upon the inclusion of density fluctuations of wavevector Q
reads

∂Aex
Q

∂Q
= kT

Q2

4π2
ln

[
1 − ρ

βw̃(Q)
1 − ρ̃cQ(Q)

]
. (3.1)

This “evolution equation” depends on the Fourier transform
of the attractive part of the interaction w̃(Q) and on the direct
correlation function c̃Q(k) of the system, when fluctuations
of wavevector larger than Q have been taken into account.
The initial condition, set at Q→∞, coincides with the mean-
field approximation (A∞ = Amf ), which disregards fluctuations
altogether, and the physical result including fluctuations on all
length scales is obtained for Q = 0. However, the integration of
Eq. (3.1) requires some approximate closure, expressing the
direct correlation function c̃Q(k) in terms of the free-energy
density AQ at each Q. Most of the previous implementa-
tions of HRT were based on a RPA-type closure, inspired
by the known Random Phase Approximation, which amounts
to set c̃Q(k) = c̃R(k) − βQw̃(k), where the parameter βQ is
determined by the compressibility sum rule, valid at each Q:
∂2Aex

Q

∂ρ2 = −kTc̃Q(0). Within this closure, also adopted in the
present study, the effects of fluctuations on the correlations are
represented as a renormalization of the system temperature.

The HRT equation then becomes a non-linear parabolic
partial differential equation for the free-energy density Aex in
the (ρ, Q) plane, which has been solved numerically by use
of an implicit predictor-corrector finite-difference scheme at
fixed temperature.23 The physical free energy is obtained at
Q = 0, where the convexity requirement is always satisfied by
the theory. Below a certain temperature T c, the resulting free
energy displays a region of flat isotherms, signaling the occur-
rence of phase separation and allowing for the unambiguous
determination of the phase boundaries.

An illustrative example, displaying the role of fluctua-
tions in suppressing van der Waals loops, is shown in Fig. 1.
The equation of the state of the shifted double-Gaussian model
[defined at Eq. (4.2) below] for η = 0.025 is plotted for
different values of the cutoff Q, at a reduced temperature
T = 0.12 < T c. When Q is large, the free energy is given
by its mean-field value, and a van der Waals loop is clearly
present. As Q is decreased, density fluctuations of wavevector
Q are gradually included, leading, for Q = 0, to the complete
suppression of the loop: a region of constant pressure now
appears in the density interval 0.05 < ρ < 0.265, allowing
the unambiguous identification of the coexistence region at
T = 0.12.

C. Monte Carlo simulation

In Ref. 10, we have investigated liquid-vapor coexistence
in a shifted-DG system near the stability threshold, using
the method of Gibbs-ensemble Monte Carlo (GEMC) sim-
ulation.25,26 Here, the same analysis is performed for a DE
type of system (see Sec. IV B).
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FIG. 1. The HRT equation of state (reduced pressure vs. density) of the model
defined in Eq. (4.2) for η = 0.025 at different values of the cutoff Q. The initial
condition at Q = 5 is given by the mean-field approximation (black line). The
integration of the “evolution equation” (3.1) allows us to gradually include
density fluctuations. The equation of state is shown for a few representative
intermediate values of the cutoff: Q = 0.249 (blue), Q = 0.091 (green), and
Q = 0.037 (magenta), till Q = 0 (red), where the convexity of free energy is
eventually recovered.

In a GEMC simulation run, N particles are initially dis-
tributed between two cubic simulation boxes and arranged in,
e.g., a lattice configuration with the same number density in
both. Periodic boundary conditions are applied to each box
separately. One GEMC cycle consists of trial moves of three
types: shift of a particle within a box, exchange of volume
between the boxes, and particle swap. The acceptance rule as
well as the schedule of the moves is designed in such a way that
detailed balance holds; particular care has been paid to treat-
ing the case where one box happens to be empty (see Ref. 26,
which we have closely followed in writing our GEMC code).
In order to achieve faster equilibration at low temperature, we
have found it useful to start with largely different numbers of
particles in the two boxes (in the captions of Figs. 9 and 10
below, we write N1 + N2 to mean that we initially put N1 par-
ticles in one box and N2 particles in the other). Typically, from
4 × 104 to 4 × 105 GEMC cycles (depending on the sample
size) are more than enough for equilibrium quantities like the
density or the energy, whose averages are computed over the
second half of the trajectory only.

IV. RESULTS
A. HNC results

For each potential of those listed in Sec. II, we have
examined first how the BL changes upon varying the balance
between repulsive and attractive interactions. We focus on an
interval of potential parameters lying close to the TST.

Though the HNC equation can only provide a qualita-
tive assessment of the fluid phase diagram, it turns out that
it is extremely accurate in locating the ultimate threshold of
thermodynamic stability. As shown below, for all the inves-
tigated systems we find that the HNC estimate of the TST is
in excellent agreement with the analytic result derived from
the Ruelle-Fisher criteria (relative differences being of the
order of 10�3, or even smaller). Therefore, we can confidently

assume that, at least in a small interval around the threshold,
the HNC equation is able to grasp the essential features of the
fluid behavior. In Sec. IV C, we present a theoretical argument
to justify the effectiveness of the HNC equation for FRAC
fluids.

1. DG potential

For fixed A, B, b, the DG potential (2.1) only depends
on the a parameter. As a increases, the repulsion becomes
more and more short-ranged; hence, the interval of distances
over which the attractive component is effective grows, and
the depth of the attractive well also increases. Clearly, the
attraction can be enhanced relative to repulsion in many dif-
ferent ways; for example, at fixed A, a, b, an increase of B
makes the attractive well deeper, while the attractive range
is not affected. Otherwise, one can extend the range of the
attractive well (controlled by b), while keeping its depth (B)
fixed. In general, for any given, one can use different param-
eters to control the importance of attraction versus repulsion.
The choice of the control parameter determines the way in
which attraction grows at the expense of repulsion as the sys-
tem approaches thermodynamic instability. Alternatively, one
may consider many different potential forms and study their
behavior in the approach to thermodynamic instability as only
one of the possible control parameters is varied. In our analysis,
we followed the latter option, which allows a more thorough
investigation of the space of interaction potentials.

In Fig. 2, we plot the BL for A = 1.5 and B = b = 1 in a range
of a values enclosing the TST (a = ac = 1.310 370 69. . .). We
see in this figure that, for small a, the unstable-fluid region is
bell-shaped and its area is finite; above the temperature Tmax,
corresponding to the bell maximum, the HNC equation can
be solved for any ρ. As a increases, the unstable-fluid region
becomes higher (Tmax increases) and wider. In the proximity
of ac, the widening of the curve blows up at low T, until the
liquid density apparently diverges for T → 0 at a = a′c ' ac.
In analogy to the evolution of the liquid-vapor binodal line
in the shifted-DG model,10 we surmise that a′c is the HNC
estimate of ac. For a > a′c, the topology of the BL changes

FIG. 2. DG potential for A = 1.5, B = b = 1: BL for a few values of a (in the
legend), growing from bottom to top. In this figure, as well as in the following
ones, both ρ and T are expressed in dimensionless units.
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radically: the right side of the bell “opens up” and, at large
densities, the BL becomes a straight line with a positive slope.
In other words, for all T there is a density above which the
HNC equation cannot be solved. Accordingly, the area of
the unstable-fluid region becomes infinite. As a increases fur-
ther, the BL becomes monotonically increasing, and eventually
resembles a straight line running close to the T axis; in turn, the
unstable-fluid region covers the entire thermodynamic plane,
except only for a narrow region of low densities.

In order to estimate a′c accurately, we proceed as follows.
At a = a′c, the BL has a vanishing asymptotic slope. We cal-
culate for a > a′c the slope m∞ of the BL at very high density
(where the BL is a perfectly straight line) and report it in a
graph as a function of a (Fig. 3). We find that these slopes lie
on a straight line, meaning that the BL slope is to a very good
approximation a linear function of a, at least close enough to
a′c. Through a least-square fit, we extrapolate m∞(a) down to
zero slope, thus obtaining the crossover value a′c between the
stable and the Ruelle-unstable regime. We stress that m∞(a) is
close to a straight line for all the a > a′c values considered in
Fig. 2, regardless of the shape of the BL at low density.

Obviously, the accuracy of a′c depends on the r grid used to
solve the HNC equation by iteration. Throughout this paper,
we use a spatial grid with N = 210 points and spacing 0.02
(we have performed a few checks with more refined grids and
found no appreciable variation in the overall BL behavior). We
obtain a′c = 1.310 516 8, which is extremely close to ac (the
difference is 0.000 15). Using a denser mesh of points (N = 211,
with spacing 0.01), we obtain the even more accurate estimate
a′c = 1.310 402 47 (corresponding to a difference a′c − ac of
0.000 032). A similar systematic improvement in accuracy is
found for all the potentials considered.

In Table I, we report a′c for a few values of A and com-
pare it to the TST [according to the Ruelle-Fisher criteria,
A/B ≥ (a/b)3/2 ≥ 1 is a necessary and sufficient condition for
thermodynamic stability7]. It turns out that a′c is in remark-
able agreement with the threshold ac, the relative discrepancy
being smaller than 0.001.

FIG. 3. DG potential for A = 1.5, B = b = 1: asymptotic BL slope m∞ for
a number of a values (open dots). A linear least-square fit of the data points
gives a′c = 1.310 402 47, to be compared with ac = 1.310 370 69. . . The red
line represents |̃u(0) | as a function of a (see Sec. IV C). The r grid used in the
computer code to solve the HNC equation has 2048 points and a spacing of
0.01 (see text).

TABLE I. DG potential for B = b = 1: for a few A values, we compare the
TST ac with its estimate a′c from the HNC theory. The a′c data have been
computed with a r grid of 1024 points and a spacing of 0.02 (see text).

A ac a′c

1.5 1.3104 1.310 52(1)
2 1.5874 1.587 5(5)
3 2.0801 2.080 5(5)

2. DE potential

For fixed A, B, b, the DE potential (2.2) only depends on
a. As a increases, the repulsion becomes more short-ranged
and the importance of the attraction in turn increases. The
evolution of the BL with increasing a (see Fig. 4) is similar to
that reported for the DG potential.

In Table II, we report a′c for a few values of A, while ac

follows from the Ruelle-Fisher criteria, according to which
A/B > (a/b)3 is a necessary and sufficient condition for ther-
modynamic stability.7 The relative discrepancy between the
HNC threshold and the exact one is smaller than 0.001.

3. CG potential

According to the Ruelle-Fisher criteria, a2/(2b) ≤ 1 is a
necessary and sufficient condition for thermodynamic stabil-
ity.7 A CG-type of potential has been considered by Louis
et al.,27 who wrote it in the form

u(r) = cos
(√

2 + δ r
)

exp{−r2} (4.1)

FIG. 4. DE potential for A = 1.5, B = b = 1: BL for a few values of a (in the
legend), growing from bottom to top.

TABLE II. DE potential for B = b = 1: For a few A values, we compare the
TST ac with its estimate a′c from the HNC theory.

A ac a′c

1.5 1.1447 1.1447(3)
2 1.2599 1.2595(5)
3 1.4422 1.4425(5)
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FIG. 5. CG potential (4.1): BL for a few values of δ (in the legend), growing
from bottom to top.

(i.e., a =
√

2 + δ, b = 1). Hence, the stability criterion for (4.1)
reads δ ≤ 0. Our analysis based on the HNC equation yields a
threshold value δ′c = 0.001(1) (see Fig. 5).

4. SHRAT potential

According to the Ruelle-Fisher criteria, A/B ≥ 7/4 is a
necessary and sufficient condition for thermodynamic stabil-
ity.7 For B = 1, the HNC analysis gives A′c = 1.7497(5) (see
Fig. 6). Notice that the path from the stable to the Ruelle-
unstable regime corresponds for the SHRAT potential to the
direction of decreasing A.

5. Separation-shifted LJ potential

In Ref. 17, the conditions for stability of potential (2.5)
have been investigated for p = 6 and q = 3 (which yields a
regularized LJ potential), and it has been found for a = b that
A/B ≥ 32/7 = 4.5714. . . is a necessary and sufficient condition
for thermodynamic stability. For B = 1, the HNC equation pre-
dicts a threshold value A′c = 4.569(1) (see Fig. 7). Again, the
system turns from stable to Ruelle-unstable upon decreasing
the value of A.

FIG. 6. SHRAT potential for B = 1: BL for a few values of A (in the legend),
growing from top to bottom.

FIG. 7. Separation-shifted LJ potential (a = b, B = 1, p = 6, q = 3): BL for a
few values of A (in the legend), growing from top to bottom.

6. GE6 potential

The Fourier transform of the GE6 potential in Eq. (2.6)
is negative at the origin for Ab6/B < π(ab)3/32.7 However,
ũ(k) is not positive definite for Ab6/B ≥ π(ab)3/32; hence, one
cannot state—based only on the Ruelle-Fisher criteria—that
the system is thermodynamically stable above this threshold.
However, the HNC analysis indicates that this is likely the case.
We have computed the BL for B = b = 1, a = 3, and several A
values (see Fig. 8; notice that the system turns from stable to
Ruelle-unstable with decreasing A). By fitting the asymptotic
BL slopes for A = 2.6, 2.62, 2.64, we obtain A′c = 2.6503(2),
which is indeed close to the TST value (Ac = 2.6507). We have
checked numerically that, for A = 2.65, the BL indeed attains
a minimum for a density ρ ≈ 200.

B. Comparison with HRT and MC results

For the same shifted-DG potential investigated in Ref. 10,
i.e.,

u(r) = exp{−r2} − η exp{−(r − 3)2} , (4.2)

FIG. 8. GE6 potential for B = b = 1, a = 3: BL for a few values of A (in the
legend), growing from top to bottom.
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we have used the HRT to compute a number of points along
the binodal line for a few values of η (the attraction strength).
Adding these points to the MC data points in Fig. 1 of Ref. 10,
we finally obtain the present Fig. 9. As η moves toward ηc, the
HRT binodal line shows the characteristic widening already
observed in the BL and in the MC data. Moreover, the HRT bin-
odal line satisfactorily encloses the HNC pseudospinodal line.
In more quantitative terms, however, the HRT substantially
overestimates the densities of the coexisting liquid.

As a second example, we have considered the following
one-parameter family of DE potentials,

u(r) = 2 exp{−3r/L} − exp{−3r} . (4.3)

The TST of potential (4.3) is Lc = 2�1/3 (see Sec. IV A).
In order to speed up the simulation, the potential has been
cut off at r = 5. We have carried out GEMC simulations on
samples of increasing size, until finite-size effects vanish alto-
gether. We have checked that, once formed, the liquid always
occupies the box of larger volume (otherwise, the simula-
tion is restarted from a different configuration). The BL, the
MC coexistence line for various sizes, and the HRT binodal
line are all reported in Fig. 10. Overall, the same scenario of
Fig. 9 shows up, with the HRT line considerably wider than
the MC line, especially closer to Lc. Despite this, the behavior
of the HRT line qualitatively reproduces the MC coexistence
line.

As a last comment, we point out that we have never
observed in our simulations the spontaneous onset of a crys-
talline phase. This means that either a stable crystal only occurs
at densities considerably higher than those probed here or the
liquid phase is actually metastable, but its lifetime is very long.
In any event, the possible metastability of the liquid phase at the
highest densities would not weaken in any respect the expec-
tation, corroborated by simulation in two distinct cases, of an
anomalous widening of the liquid-vapor coexistence line of
FRAC fluids approaching the TST from below.

FIG. 9. Shifted-DG potential (4.2), with η < ηc = 0.026 315 79. . .: Liquid-
vapor coexistence densities from GEMC simulations performed for a number
of η values (0.020, red; 0.025, magenta; 0.0263, blue; and 0.026 31, black).
The various symbols correspond to different initial numbers of particles in
the two simulation boxes (864 + 864, triangles; 4000 + 108, squares; 8192
+ 128, open dots; and 16 000 + 128, full dots). Also reported are the BL and
the HRT coexistence densities for the same η values (dotted and dashed lines,
respectively).

FIG. 10. DE potential (4.3), with L > Lc = 0.793 700 52. . .: Liquid-vapor
coexistence densities from GEMC simulations performed for a number of L
values (0.80, red; 0.796, blue; and 0.795, black). The various symbols corre-
spond to different initial numbers of particles in the two simulation boxes (864
+ 864, triangles; 4000 + 256, squares; 8192 + 250, open dots; 16 000 + 128, full
dots; and 32 000 + 256, crosses). Also reported are the BL and HRT coexis-
tence densities as dotted and dashed lines, respectively (the green lines are for
L = 0.794).

C. Theory

In order to account for the BL behavior described in
Sec. IV A and thus unveil the roots of universality in the
approach of FRAC fluids to the TST, we put forward an argu-
ment that builds on that presented in Ref. 10 but considerably
extend it. In the following, the ultimate threshold of stability
of the homogeneous fluid is identified with the locus T0(ρ),
where the inverse isothermal compressibility, given in general
by

1
ρkBTKT

=
1

1 + ρ̃h(0)
= 1 − ρ̃c(0) , (4.4)

is predicted to vanish.
In Ref. 10, we have made the hypothesis that, for each

FRAC fluid, a characteristic density ρ0(T ) exists above which
the total correlation function

h(r) ≈ 0 , (4.5)

that is, h is zero for all distances to within a small tolerance
fixed once and for all [we have checked that Eq. (4.5) is roughly
satisfied in MC simulations of the shifted-DG fluid along the
ρ = 5 isochore]. We expect that ρ0(T ) is a decreasing func-
tion of T because the higher is the temperature the better the
system would conform to ideal-gas behavior. Equation (4.5)
shows that the structure of a FRAC fluid at high enough den-
sity resembles that of an ideal gas (“infinite-density ideal gas”
limit2,28).

This ansatz is actually a direct consequence of the form
of the HNC equation

c(r) = h(r) − ln[1 + h(r)] − βu(r) . (4.6)

In fact, by spatial integration of both sides of Eq. (4.6),
we get c̃(0) = ∫ dr {h(r) − ln[h(r) + 1]} − βũ(0). The HNC
equation, by encompassing the Ornstein-Zernike equation,
has solutions only provided that c̃(0) < 1/ρ, which implies
∫ dr {h(r) − ln[h(r) + 1]} < βũ(0) + 1/ρ. Close to the Fisher-
Ruelle stability threshold and at high density, the right-hand
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side is small and the thermodynamic stability then implies
that also the left-hand side is small. However, the integrand
is positive semidefinite and vanishes only for h(r) = 0. As a
consequence, in this limit the HNC equation forces the total
correlation function to small values at all distances.

If Eq. (4.5) holds, for ρ > ρ0(T ), we obtain from the HNC
equation that

c(r) = h(r) − ln[1 + h(r)] − βu(r) ≈ −βu(r) , (4.7)

namely, at sufficiently high density, the HNC approximation
reduces to the random phase approximation (RPA). Taken the
RPA for granted, we have

1
ρkBTKT

= 1 + βũ(0)ρ . (4.8)

Hence, KT is always positive in the stable regime, where
ũ(0) > 0, while it is negative beyond the density kBT/ |̃u(0)|
in the unstable regime (for the sake of clarity, we hereafter
use a notation appropriate to the shifted-DG potential,10,11

where the stable regime corresponds to η < ηc; however, sim-
ilar considerations apply for each parametric FRAC potential
which becomes Ruelle-unstable exactly where ũ(0) changes
sign). While the previous conclusions are consistent with
the high-density behavior of the BL for η > ηc,10 they
are clearly insufficient to explain its anomalous widening
below ηc.

Reasoning in purely heuristic terms, a better approxima-
tion for large densities would be

c̃(0) = −βũ(0) +
A
ρ

, (4.9)

with A being a dimensionless quantity. From Eq. (4.4), it then
follows:

1
ρkBTKT

= 1 + βũ(0)ρ − A . (4.10)

Aiming to reproduce the HNC phenomenology at high den-
sity, we assume that A = T ∗/T, for a convenient T ∗. This is
a reasonable assumption, considering that Eq. (4.6) becomes
better satisfied, at fixed density, when T is higher. With this A,
we obtain

KT > 0 ⇐⇒ kBT > kBT ∗ − ũ(0)ρ . (4.11)

Below ηc, Eq. (4.11) predicts that the BL is a straight line for
high densities. Stated differently, Eq. (4.11) reads

KT > 0 ⇐⇒ ρ >
kB(T ∗ − T )

ũ(0)
. (4.12)

In particular, at T = 0 the system would be stable only for
densities larger than

ρ∗ =
kBT ∗

ũ(0)
, (4.13)

which grows and eventually diverges when η goes to ηc. Very
close to ηc, where ũ(0) ≈ B(ηc − η) with B > 0, an immediate
prediction is ρ∗ ∝ (ηc−η)−1. However, we find that this scaling
law is not generally obeyed, which can only be the effect of
a ρ0(T ) diverging for T → 0 faster than ρ∗. Indeed, we have
checked in a few cases that the radial structure of the saturated
liquid near T = 0 is anything but trivial in the HNC theory. We
conclude that, even though the simple modification (4.9) to

the RPA correctly accounts for the general blowing up of ρ∗ at
ηc, it is by far insufficient to give the correct scaling exponent
(which, moreover, appears to be non-universal).

Above ηc, where the HNC equation can still be solved, we
obtain from Eq. (4.11),

KT > 0 ⇐⇒ kBT > kBT ∗ + |̃u(0)|ρ . (4.14)

In particular, the asymptotic slope of the BL above ηc is just
|̃u(0)|, as already checked to a very high precision in the
shifted-DG potential10 (see also Fig. 3). Stated differently, the
stability condition reads

ρ <
kB(T − T ∗)
|̃u(0)|

(4.15)

and is clearly violated for T = 0, with the result that the
unstable-fluid region now extends to infinite density.

V. CONCLUSIONS

We have shown that a considerable number of FRAC
potentials exhibit similar fluid behavior when the threshold
of thermodynamic (alias H-)stability is approached and even-
tually surpassed. The most important feature of this gen-
eral behavior is the pronounced widening of the binodal
line at low T. Right at the TST, a vanishing-density vapor
coexists with a diverging-density liquid. This is consistent
with the long-time behavior of the shifted double-Gaussian
fluid beyond the TST,10,11 where N particles collapse to an
extremely dense aggregate and the energy per particle is pro-
portional to N. Given the widely different features of the
systems examined in this paper, our results suggest that the
transition of FRAC fluids to Ruelle instability indeed occurs
following a universal pathway.

Using the HNC pseudospinodal line as a clue to the liquid-
vapor coexistence behavior, we have found that the HNC
estimate of the TST is, for all the investigated systems, in
excellent agreement with the value provided by the Ruelle-
Fisher criteria. This supports the assumption that, at least in
a narrow interval around this threshold, the HNC equation
gives reliable indications. For two specific interactions (the
shifted-DG and DE potentials), the predictions of the HNC
equation have been checked against MC simulation and a
more refined liquid-state theory, the HRT. By this compari-
son, we conclude that the HNC equation faithfully describes
the modifications undergone by the liquid-vapor coexistence
line as the TST is approached from the stable side. We argue
that this happens as a result of the nearly ideal-gas structure
of the high-density fluid, as illustrated in Sec. IV C, where
we have put forward a general explanation for the universal
approach of a bounded potential to the TST, by an argu-
ment that supersedes and improves the original one given in
Ref. 10.

In the light of the present results, it is possible to build
up the following general scenario for the transition to Ruelle
instability in fluid systems with a bounded interparticle repul-
sion and a longer-range attraction. For stable homogeneous
fluids, there exists a region of mechanical instability (bounded
above by the spinodal line) lying inside that of thermodynamic
instability (bounded above by the binodal line). Both regions
occupy a bounded subset of the thermodynamic plane. Upon
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getting closer to the threshold of Ruelle instability, the exten-
sion of both regions increases due to widening of both binodal
and spinodal lines at low temperatures. When the TST is even-
tually reached, the liquid density becomes infinitely large for
T → 0. In the HNC analysis, the transition to the Ruelle-
unstable regime is evidenced in the “opening up” of both
thermodynamically and mechanically unstable-fluid regions;
i.e., the extension of these regions on the ρ-T plane turns from
bounded to unbounded at the crossing of the TST.
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