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The emergence of supramolecular aggregates from simple microscopic interaction rules is a fasci-
nating feature of complex fluids which, besides its fundamental interest, has potential applications in
many areas, from biological self-assembly to smart material design. We here investigate by Monte
Carlo simulation the equilibrium structure of a two-dimensional mixture of asymmetric dimers and
spheres (disks). Dimers and disks are hard particles, with an additional short-range attraction between
a disk and the smaller monomer of a dimer. The model parameters and thermodynamic conditions
probed are typical of colloidal fluid mixtures. In spite of the minimalistic character of the interaction,
we observe—upon varying the relative concentration and size of the two colloidal species—a rich
inventory of mesoscale structures at low temperature, such as clusters, lamellæ (i.e., polymer-like
chains), and gel-like networks. For colloidal species of similar size and near equimolar concentra-
tions, a dilute fluid of clusters gives way to floating lamellæ upon cooling; at higher densities, the
lamellæ percolate through the simulation box, giving rise to an extended network. A crystal-vapour
phase-separation may occur for a mixture of dimers and much larger disks. Finally, when the fluid is
brought in contact with a planar wall, further structures are obtained at the interface, from layers to
branched patterns, depending on the nature of wall-particle interactions. Published by AIP Publishing.
https://doi.org/10.1063/1.4995549

I. INTRODUCTION

Colloids are mixtures in which insoluble particles in the
submicron range are dispersed throughout another substance
(the “medium”) of lower molecular weight. Besides being
common in everyday life, colloidal suspensions provide the
template by which the building blocks of biological matter
(ultimately, cells) are constructed; hence, they are extensively
studied by biologists and chemists.

From the point of view of physics, colloids are versatile
materials with a rich self-assembly behaviour,1–5 which in the
fluid regime includes a wealth of different structures—such as
micelles, lamellæ, networks, and clusters. In the last decades,
the constant increase in computing power has been pivotal in
revealing similar features also in simple models of colloids,
where the medium is only implicit and interactions are simpli-
fied to the bone, showing that also these systems are capable of
self-organization. In particular, there are by now many exam-
ples of model colloids and colloidal mixtures (i.e., with two
or more solute species) where diffuse order arises from local
interactions, without the guidance of any external agent.6–13
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The ability to control self-assembly is of overwhelming
importance in the fabrication of synthetic colloids tailored for
targeted applications,14,15 such as the delivery of drugs in the
human body16–18 or the addition of bioactive substances to
foods.19,20

Recently, we have investigated by Monte Carlo simu-
lation the low-temperature structure of a dilute mixture of
dimers (made up of two spherical monomers of unequal size)
and spheres.21–23 In these studies, an additional attraction
takes place between spheres and the small monomers. This
model aims to represent, within an implicit-medium descrip-
tion, a colloidal dispersion made up of a guest species and
an amphiphilic dimer where the small monomer is lyopho-
bic and has a strong affinity for the guest. Originally, our
model interaction was intended for driving the formation of
capsules of spheres coated with dimers (as in Refs. 24 and
25). Indeed, we have seen encapsulation in simulation runs
at low concentration of spheres. However, in different con-
ditions of size and concentrations, other aggregates arise in
equilibrium, including clusters, lamellæ, and liquid-vapour
phase separation. Clearly, a minimalistic model of mixture
makes it simpler to identify the microscopic features (sizes
and interactions) that superintend the formation of specific
patterns at equilibrium, so that the model can be designed on
purpose, i.e., to obtain a target structure just by thermalization.
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Significantly enough, real colloids can be engineered with
the same characteristics as our model, implying that the
self-assembly behaviour of the latter can also be probed
experimentally.26,27

In this paper, we study by Monte Carlo simulation the two-
dimensional (2D) counterpart of the model in Refs. 22 and 23,
focusing on its self-assembly behaviour at low temperature.
The broad interest in 2D colloidal models is witnessed by a
flourishing literature on this topic, aimed at exploring routes
to self-assembly into structures of assigned morphology. In
most cases, particles have been modeled either through repul-
sive pair potentials28–33 or as patchy particles,34–38 both being
known for giving stable cluster phases at moderate tempera-
tures. Often, the focus has been on the possibility to create
quasicrystalline solids by spontaneous aggregation of the par-
ticles; in one instance,39 the solid phases of a 2D mixture of
disks and patchy particles have been analyzed, reporting the
existence of many crystalline and quasicrystalline patterns;
on the other hand, in a just published paper,40 a mixture of
Janus particles and much smaller disks has been studied for
increasing densities, highlighting the existence of an inter-
mediate gel-like regime. We argue that each of these studies
deserves its own interest since it provides suggestions that can
be helpful for a better understanding of the three-dimensional
case.

The models employed in Refs. 28–38 are one-component
systems, and the interest has been exclusively (with the only
exception of Refs. 30 and 38) in the solid phases. Hence,
the main novelty of our work is that we investigate self-
organization in a more complex two-component mixture, con-
centrating on the fluid sector of the phase diagram. Moreover,
as a convenient benefit of studying a 2D system, experience
has shown that relaxation to equilibrium in three dimensions
may take a very long time, a circumstance which sheds uncer-
tainty on the stability of the observed structures. Working in
2D provides a possible way out since this permits to overcome
the limitations of a slow approach to equilibrium.

We anticipate that the phenomenology of a 2D mix-
ture of dimers and spheres (disks) is quite rich. Aggregates
of various kinds are found, depending on the concentration
and size of disks. At low density and for disks of the same
size as the large monomers, clusters are observed at mod-
erate temperatures, giving way to one-dimensional lamellæ
(polymers) and vesicles (closed polymers) upon cooling, at
least for nearly equimolar conditions. Under the same con-
ditions of concentration, at moderate density a percolating

network of lamellæ is formed. We have also investigated the
effect of increasing the size of disks at fixed density: when
the disk diameter is large enough, a distinct crystal-vapour
separation occurs at sufficiently low concentration. Other char-
acteristic patterns arise when bringing the mixture against an
attractive wall, a situation that mimics the bias exerted by
an external substrate or template on the self-assembly pro-
cess. In this case, the crucial parameter is the strength of the
attraction.

The outline of the paper is as follows. After describing
the model and the simulation method in Sec. II, we present
and discuss our results in various settings in Sec. III. Finally,
concluding remarks and perspectives are given in Sec. IV.

II. MODEL AND METHOD

The model is the 2D counterpart of the mixture stud-
ied in Refs. 22 and 23: a dimer is made up of two tangent
hard disks of unequal size, with diameters σ1 and σ2 = 3σ1,
whereas guest particles are represented as hard disks of size
σ3 ≥ σ2. Besides hard repulsion, we put an additional pair
attraction between species 1 and 3, modeled as a square-well
potential of depth ε. The width of the well is set equal to
the size σ1 of the smallest species. By creating contacts with
two nearby disks, a small monomer provides the bridge by
which the disks can bind together. In the following, σ2 and ε
are taken as units of length and energy, respectively (reduced
quantities are denoted with an asterisk). Finally, N1 and N3 are
the number of dimers and disks, respectively; hence, N = N1

+ N3 is the total number of particles and χ = N3/N is the disk
concentration.

Most of the data have been collected for N3 = 400 disks
and for mixtures with σ3 = σ2. The overall number density in
reduced units has been fixed to ρ∗ ≡ (N/A)σ2

2 = 0.05 (where
A is the system area), but we have also performed a few runs
at ρ∗ = 0.25. We have analyzed the system behaviour at five
concentrations: χ = 20%, 33%, 50%, 67%, and 80%. Once
ρ∗ and χ are fixed, the number of dimers follows accordingly.
Furthermore, we have examined how self-assembly changes
when, still for ρ∗ = 0.05, the diameter of disks is increased
up to 5σ2. In Table I, we summarize the packing fractions of
disks and dimers for all the cases investigated at ρ∗ = 0.05. The
thermodynamic conditions (low density) and model parame-
ters (short-range attraction and diameter ratios) have been so
chosen as to represent, within an implicit-medium description,
a generic colloidal dispersion made up of a guest species and

TABLE I. Sizes and concentrations of disks, with ensuing packing fractions of disks (ηdisk) and dimers (ηdim)
for the cases investigated in this work at ρ∗ = 0.05.

χ = 20% χ = 33% χ = 50% χ = 67% χ = 80%

σ3/σ2 ηdisk ηdim ηdisk ηdim η disk ηdim ηdisk ηdim ηdisk ηdim

1 0.007 854 0.034 90 0.013 09 0.029 09 0.019 63 0.021 86 0.026 18 0.014 54 0.031 42 0.008 72
2 0.031 42 0.034 90 0.052 36 0.029 09 0.078 54 0.021 86
3 0.070 69 0.034 90 0.117 8 0.029 09 0.176 7 0.021 86
4 0.125 7 0.034 90 0.209 4 0.029 09 0.314 2 0.021 86
5 0.196 3 0.034 90 0.327 2 0.029 09 0.490 9 0.021 86
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an amphiphilic dimer where the small monomer is lyophobic
and has a strong affinity for the guest.

Simulations are carried out using the standard Metropolis
algorithm in the canonical ensemble, with periodic conditions
at the boundaries of a square box. Depending on the temper-
ature T, from a few to several hundred million Monte Carlo
(MC) cycles have been performed, one cycle consisting of N
trial single-particle (either translational or rotational) moves.
The schedule of moves is so designed that detailed balance
holds exactly. The maximum random shift and rotation are
adjusted during the equilibration run so as to keep the ratio
of accepted to total number of moves close to 50%. As a
general setup, particles are initially distributed at random in
the simulation box; then, after setting the reduced temperature
T ∗ ≡ kBT/ε at either 0.15 or 0.10, the MC simulation is started.
In a previous study,22 we had checked that using as initial con-
dition the configuration obtained at the end of a slow cooling
process from high temperature does not make any substantial
difference in the structural properties of the ensuing steady
state, even when the state probed is located inside a spinodal
region. This is due to the fact that the simulated systems are
overall dilute. We surmise that the same will occur also in two
dimensions.

The property that better indicates how far away the sys-
tem is from equilibrium is the total potential energy U: an
energy fluctuating around a fixed value for long is the hall-
mark of (meta)stable equilibrium. At any instant, U gives the
number of 1-3 contacts present in the system configuration.
Hence, a stationary energy value indicates that the aggre-
gates have eventually acquired a nearly stable structure. Once
equilibrium (or a steady state whatsoever) has been reason-
ably established, we compute the radial distribution function
(RDF) g33(r) of disks in a rather long production run of 2× 108

cycles. Even in a strongly heterogeneous system, where meso-
scopic structures are present, g33(r) bears valuable information
on the disk arrangement in the immediate neighbourhood of
a reference disk. Other instruments to gain insight into the
system structure are visual inspection and cluster analysis.
As for the latter, we identify at regular times—and count
as a function of the number of hosted disks—all connected
structures, generically referred to as “clusters” of disks held
together by dimers. We classify two disks as bound together
when their distance is smaller than rmin = σ3 + 3σ1; we
refer the reader to Sec. III for a detailed discussion about this
point.

The statistics of clusters have been gathered from the last
2× 108 cycles of the MC trajectory and are updated every
1000 cycles. The cluster-size distribution, Ncl(s), has been
normalized according to the expression23,41–44

n(s) =
sNcl(s)

N3
, (1)

where s is the cluster size, defined as the number of disks within
the cluster (hence, an isolated disk is a cluster of size one).
The function n(s) represents the average fraction of particles
contained in all clusters of size s, as opposed to the mean
number Ncl(s) of s-clusters in one configuration. Next, for each
cluster, we have counted the number Ndim of dimers belonging
to it and computed the binding energy Eb (that is, the number

of 1-3 contacts). Insofar as the number of dimers bound to a
disk is on average the same for each disk in a cluster, we expect
that the distributions Ndim(s) and Eb(s) are strongly correlated
to each other. Finally, we determine the distribution of the
number z of disks that are bound to the same disk in the sense
specified above and the distribution of the angle α formed by
two 3-3 bonds with an end in common.

III. RESULTS
A. A wide variety of structures

In Fig. 1, we report the evolution of U in MC time for
σ3 = σ2, at two temperatures, 0.15 and 0.10 and various disk
concentrations χ; the overall density has been set equal to ρ∗

= 0.05. We see that, after an initial exponential decay, U enters
a regime of much slower relaxation which can last long at the
lowest temperature; however, even in the worst case, relative
to χ = 20%, a stationary state is attained after, say, 5× 108 MC
cycles. Looking at Fig. 1, it appears that the absolute value of
U/N3 grows as concentration decreases, meaning that the more
numerous are dimers relative to disks, the more contacts each
disk can establish with small monomers. The higher value of
U/N3 for larger χ is a symptom of the lesser stability (and
more marked dynamic nature) of the structures formed as the
concentration of disks is increased.

We get a first clue about the nature of the structures present
in the system by visual inspection (see Fig. 2). For T ∗ = 0.15,
the system can invariably be described as a fluid of small glob-
ular clusters [panels (a)-(e)]. The nature of aggregates is more
varied for T ∗ = 0.10: these are capsules for χ = 20% [Fig. 2(f)]
or lower, while the shape is more elongated and worm-like

FIG. 1. Left: MC evolution of the potential energy U per disk, for ρ∗ = 0.05
and various χ values (in the legend). For each color, two curves are shown,
relative to two temperatures: T∗ = 0.15 (above) and 0.10 (below). Right: same
data reported on a semi-logarithmic scale. The energy relaxation during the
first 107 cycles is appreciable on the right panel.
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FIG. 2. Snapshots of typical steady-state configurations for ρ∗ = 0.05 (only a fraction of the system is shown). Different colors are used for the three species:
blue (1), cyan (2), and red (3).

for intermediate concentrations [Figs. 2(g) and 2(h)]. A closer
look at such “worms” reveals that they are assembled from a
seamlessly repeating unit, like in a homopolymer chain. For
the highest χ considered, the mean size of aggregates again
reduces since there are too few dimers, and many disks then
remain isolated [Figs. 2(i) and 2(j)]. Therefore, it turns out that
a large numerical disequilibrium between dimers and disks is
detrimental to aggregation; in other words, aggregates only
achieve large sizes when the number of disks roughly matches
that of dimers.

For T ∗ = 0.10, the general criterion underlying the specific
shape of aggregates is energy minimization, whereas entropic
considerations play a less important role. Clearly, the relative
size of the particles is a crucial parameter (see Sec. III B), as
would also be the range of 1-3 attraction. The short range
assumed is responsible for the essentially one-dimensional
character of the larger structures formed. Particularly inter-
esting are the cases χ = 33% and χ = 50% [Figs. 2(g) and
2(h)], where the typical aggregate (a worm) is the 2D ana-
log of a lamella. The geometry of its backbone is dictated
by the necessity to keep the energy small while complying
with the given concentration: as illustrated in the insets of
Figs. 2(g) and 2(h), this is accomplished by a straight chain of
disks for χ = 33% (U/N3 = �4 and α ' 180◦) and a zig-
zag chain for χ = 50% (U/N3 = �3 and α ' 90◦). Both
chain morphologies allow disks to bind all dimers, so that
no free particles are eventually left in the box. Occasionally,
a worm bends to the point that a closed loop appears, which
is nothing but a 2D vesicle (see two examples in Fig. 3, both
relative to χ = 50%). This indicates that worms/lamellæ have a
high flexibility, suggesting that their bending modulus is small.
From a thermodynamic perspective, the presence in the system
of numerous lamellar aggregates hints at a phase-separation

scenario in equilibrium where the competing phases are a
dilute fluid and a lamellar solid (i.e., the 2D analog of the
situation depicted in Fig. 8 of Ref. 7).

It is worth spending a few words on the specificity of
aggregate formation in the present model. During the initial
stages of thermalization, aggregation through the formation of
contacts between disks and dimers is very fast. As an aggregate
grows in size, however, its surface becomes increasingly rich in
large monomers, which are inert particles; at a certain point, the
aggregate stops growing since its disks and small monomers
(which would provide the “fuel” for further growth) all lie
beneath the surface. Once in a while, two large aggregates
succeed to join together and U then makes a small step down-
wards. Indeed, while local adjustments of the structure occur
at a high rate, the merging of large disconnected aggregates
(a phenomenon akin to coarsening) only takes place on much
longer time scales. The existence of two regimes of growth
(fast and slow), corresponding to a transition from diffusion-
limited to reaction-limited aggregation (see, e.g., Ref. 45),

FIG. 3. Two snapshots of the mixture for ρ∗ = 0.05, T∗ = 0.10, and χ = 50%,
where vesicles (closed lamellae) are clearly visible.
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FIG. 4. RDF of disks with diameter σ3 = σ2 at ρ∗ = 0.05, for T∗ = 0.10 and
various concentrations (in the legend).

is reflected in the crossover of U from an exponential to a
sub-exponential decay, as seen in Fig. 1.

The structure of the mixture has been so far discussed
through an examination of a few snapshots. Now, we give a
more comprehensive treatment in terms of size and energy dis-
tributions of clusters (where the term “cluster” is used here in
the broad sense, as a synonym of aggregate). As anticipated in
Sec. II, two disks form a bound pair when their distance is less
than rmin = σ3 + 3σ1: this is the maximum distance at which
two disks can still be in contact with the same small monomer
(exactly placed in the middle). For σ3 = σ2, this implies that a
disk makes bonds with all first and second neighbours, identi-
fied as such through the RDF profile—see Fig. 4, where g33(r)
is plotted for T ∗ = 0.10 and all concentrations. We note that the
use of a smaller rmin would imply to often break long linear
clusters in pieces which, by eye, are clearly connected; hence,
we keep our choice at the cost of slightly overestimating the tail
of the cluster-size distribution as a result of accidental close-
ness of two aggregates (anyway, an unlikely possibility at low
densities).

In Fig. 5, we plot the normalized cluster-size distribu-
tion n(s), see Eq. (1). Overall, the results are similar to those
found in three dimensions:22 for T ∗ = 0.10 (top panel), n(s)
has gaps for large s at moderate concentrations, indicating
a low propensity of the largest aggregates to add/lose parti-
cles. In particular, for χ = 50%, a broad maximum is visible
for s ≈ 100, while the smaller the mean size of clusters, the
more we deviate from equimolarity. Hence, we confirm that the
biggest aggregates occur at moderate concentration. The noise
present in the cluster-size distribution at large s would clearly
be reduced by increasing the size of the system. For fixed sam-
ple size, the statistical accuracy of n(s) substantially improves
with increasing temperature; concurrently, the typical cluster
size decreases (bottom panel); all curves for χ ≥ 33% show a
maximum around s = 2-6, as expected for a fluid of small clus-
ters.43,44 Next, we report in Fig. 6 the mean number Ndim(s)
of dimers hosted in a s-cluster as well as the mean number
Eb(s) of 1-3 contacts. It turns out that the number of dimers
per cluster is linearly dependent on s for large s, suggesting a
nearly constant density of dimers within the big clusters. Also
the binding energy Eb(s) grows linearly with size, moreover
exhibiting a strong correlation with Ndim(s).

FIG. 5. Normalized cluster-size distribution n(s) for σ3 = σ2 and ρ∗ = 0.05
(χ values in the legend): T∗ = 0.10 (top) and T∗ = 0.15 (bottom).

As geometrical indicators of the arrangement of disks
within clusters, we have computed (i) the distribution P(α)
of the angle α formed by two 3-3 bonds with a common disk
at the angle vertex and (ii) the statistics of the disk coordination
number z (defined in Sec. II). In Fig. 7, results are presented for

FIG. 6. Average number of dimers (top) and of 1-3 contacts (bottom) in a
cluster, for T∗ = 0.10 (same color code as in Fig. 5).



144902-6 Prestipino et al. J. Chem. Phys. 147, 144902 (2017)

FIG. 7. Top: distribution of the angle α between two closest 3-3 bonds, for
T∗ = 0.10 and various concentrations (same legend as in the panel below).
Bottom: distribution of the disk coordination number z.

all concentrations, at the lower temperature only (T ∗ = 0.10).
For χ = 67% and 80%, P(α) is essentially uniform and the
sharp maximum near 30◦ refers to the typical angle between a
first-neighbour bond and a second-neighbour bond [see Figs.
2(i) and 2(j)]; for χ = 50%, the maxima of P(α) roughly fall at
multiples of 45◦, which is consistent with zig-zagging of disks
within worms. Upon moving to χ = 33%, the maximum at
180◦ undergoes a sharp enhancement due to a different geom-
etry of disk chains at this χ (i.e., straight rather than zig-zag).
Finally, for χ = 20%, very few clusters have a size larger than
two, and most of them are straight chains. A glance at Fig. 7(b)
confirms the above picture. The most likely value of z is four
for χ = 50% and two for χ = 33%. The pronounced maximum

FIG. 8. Two snapshots of the mixture with density ρ∗ = 0.25 and temperature
T∗ = 0.10, for χ = 33% (left) and χ = 50% (right).

FIG. 9. Left: MC evolution of the potential energy U per disk, for T∗ = 0.10
and two χ values. For each concentration, two curves are shown, relative to
two densities: ρ∗ = 0.05 (above, in color) and 0.25 (below, black). Right: same
data reported on a semi-logarithmic scale.

of P(z) at zero reaffirms the presence of many isolated disks
when χ is large.

As to the dependence of self-assembly on density, we
have studied the mixture with σ3 = σ2 at ρ∗ = 0.25, while
still keeping the temperature fixed at 0.10. In this case, even
longer lamellæ are formed for χ = 33% and 50%, but due
to a denser environment they are now joined in an intricate
manner, giving rise to an extended network (Fig. 8). Now the
asymptotic energy is slightly less than for ρ∗ = 0.05 since
lamellar order is more diffuse (see Fig. 9). Looking at Fig. 8,
we note in both panels the presence of a spanning cluster (i.e.,
a connected structure with at least one particle on each side of
the box), which is a remarkable outcome considering that this
structure has emerged from scratch through the blind, undi-
rected MC dynamics. By taking the snapshot of the mixture
at intervals of a few ten million cycles, we see that the disk
network is completely reshuffled at each shot, suggesting that
it is all but rigid. Clearly, a detailed assessment of the sta-
tistical properties of the percolating network would require
specialized scale-free schemes to get rid of finite-size effects,
such as those involving the estimate of the fractal dimension
of the largest aggregate occurring in the mixture (see, e.g.,
Ref. 46).

B. Increasing the disk size

In this section, we examine self-assembly as a function of
disk diameter, still for ρ∗ = 0.05 and T ∗ = 0.10 (to speed up
simulations, for χ = 20% and χ = 33% we have used smaller
samples of N3 = 200 disks). We increase σ3/σ2 in unit steps,
up to reaching five. Clearly, as σ3 grows, the packing fraction
of disks becomes progressively larger, and even a mixture of
density 0.05 may appear quite dense. On the other hand, the
main stimulus to study samples with varying σ3 is to establish
whether ordered patterns exist that are unknown to mixtures
with σ3 = σ2; in that respect, a moderate increase in packing
fraction can help, rather than hinder, the discovery of novel
self-organizing behaviour.



144902-7 Prestipino et al. J. Chem. Phys. 147, 144902 (2017)

FIG. 10. Left: MC evolution of the potential energy U per disk, for ρ∗ = 0.05,
three concentrations, and various σ3/σ2 values (1, black; 2, blue; 3, cyan; 4,
magenta; 5, red). Right: same data reported on a semi-logarithmic scale.

We first comment on the time evolution of U, reported
in Fig. 10 for three values of χ. What first catches the eye
is the slowness of the approach to equilibrium for the low-
est concentration considered, i.e., χ = 20%. As is apparent
from the semi-logarithmic plots, even after one billion of MC
cycles the mixture has not yet reached a stationary state, a prob-
lem that worsens with increasing σ3. However, the decrease
of U in time appears to be intermittent, suggesting that only
small (i.e., local) adjustments of the structure occur most of
the time, occasionally interrupted by a major system rearrange-
ment (such as the coalescence of two large aggregates). This
means that, after approximately 108 MC cycles, the dynam-
ics of the mixture has eventually entered a coarsening regime
which would hardly affect the intermediate-scale order already

established. Hence, it is worthless to extend the runs further.
A second observation concerns the asymptotic value of U/N3

as a function of σ3. We see that the sequence is reversed when
going from χ = 20% to χ = 50%, meaning that, while for
χ = 20% the number of 1-3 contacts per disk becomes larger
with increasingσ3, a bigger disk size is indifferent (χ = 33%),
if not even deleterious (χ = 50%) to lamellar order.

These expectations are confirmed by looking at the sys-
tem snapshots (see Fig. 11). For χ = 50%, worms/lamellæ
are already absent for σ3/σ2 = 2, and only small clusters are
formed; for larger σ3, the mixture even becomes more homo-
geneous. With two dimers per disk (χ = 33%), lamellar order
locally survives though in an overall entangled structure where
lamellæ are either braided into small necklaces (σ3/σ2 = 2 or
3) or connected in a gel-like network (σ3/σ2 = 5); in both
cases, the number of 1-3 contacts is on average four per disk.
The intermediate σ3/σ2 = 4 case shows intermediate features
between 3 and 5.

The most interesting case by far is the one relative to χ
= 20%. Again, forσ3/σ2 = 2, interlinked chains of particles are
found. Asσ3 grows, the disk structure becomes more compact,
and many squares, pentagons, and hexagons appear, where
disks are held together by the dimers interspersed between
them. The guests are now so big that large monomers have
no possibility to adequately screen the attraction between two
nearby clusters during the fast-growth regime, and coagula-
tion then continues until all particles are gathered in a unique
condensate. Eventually, for σ3/σ2 = 5 mostly the squares
survive and this motif propagates to large distances, giving
rise to extended square-crystal patches. In this structure, an
average of four dimers are entrapped in the hole inside each
square, which corresponds to a reduced energy per disk of
�8. The prevalent square symmetry of the system patches
for σ3/σ2 = 5 is made evident in the location of the first

FIG. 11. Snapshots of long-term con-
figurations for ρ∗ = 0.05 and T∗ = 0.10
(only a fraction of the system is shown).
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FIG. 12. RDF of disks with increasing diameter σ3 (in the legend in units of
σ2), for ρ∗ = 0.05, T∗ = 0.10, and χ = 20%.

three peaks of g33(r), see Fig. 12: the second and the third
peak are approximately centered at distances which are in
a ratio of

√
2 and 2, respectively, with the location of the

first peak. Also notice how the nearest-neighbour distance
in units of σ3 first grows when σ3/σ2 changes from 1 to
2 and then gradually reduces on increasing the disk size
further, which is consistent with the transition of the system
from compact capsules to more floppy configurations of disks,
until a full-fledged crystalline structure eventually occurs.
Obviously, the emergence from scratch of a two-component
square crystal without defects is extremely unlikely in a simu-
lation since this would require a perfectly coordinated move-
ment of many particles. Hence, only a floating polycrystalline
structure can be observed at finite time, which anyway well
reflects the symmetry of the stable crystal phase at high den-
sity; indeed, the sub-exponential asymptotic decay of U cor-
responds to the extremely slow elimination of crystal defects
(mainly grain boundaries and pores) from the condensate.
From the point of view of thermodynamics, a polycrystalline
structure in vacuum clearly points to a crystal-vapour coex-
istence scenario; this looks different from more conventional
instances of two-phase separation where the morphologies of
the minority-phase inclusion have a high symmetry (see, e.g.,
Refs. 47–50).

FIG. 13. Map of the self-assembled structures observed at T∗ = 0.10 for var-
ious mixtures of density ρ∗ = 0.05. The patterns found, upon varying ηdisk
and ηdim , are marked with a symbol: capsules (C), clusters (CL), homoge-
neous fluid (H), lamellæ (L), necklaces (N), and square crystal (SQ) coexistent
with vapour. Dots with no attached marker refer to situations of difficult
classification (see Fig. 11).

The present results can be compared with those in Ref.
39, where a mixture of disks and patchy particles with two to
five patches is studied. At relatively high packing fractions,
various types of solid-vapour separations have been reported
at low temperature, similarly as found in our 20% mixture.
Lamellæ and gel-like structures—but no crystal states—arise
in another recent simulation study40 though the relative size
of amphiphilic particles and disks is the opposite of ours. A
comparison with other works in 2D28–38 is harder since the
models employed are one-component systems and the interest
has been almost exclusively in the solid phases rather than in
the fluid sector of the phase diagram.

In conclusion, the number of dimers per disk proves cru-
cial to decide whether a dilute mixture of dimers and large
disks orders in space. The different outcomes obtained at dif-
ferent concentrations suggest that, in order to separate guest
particles (disks) from the solvent, the addition of a consistent
amount of amphiphilic dimers could be helpful. We summarize
the results up to now in Fig. 13, where we give an overview of
the self-organized structures observed for ρ∗ = 0.05 as a func-
tion of the packing fractions of disks (ηdisk) and dimers (ηdim):

FIG. 14. Snapshots of typical station-
ary configurations for inhomogeneous
mixtures with χ = 50% and T∗ = 0.15
(the number of disks is N3 = 400;
only the situation near the left wall
is shown, whereas boundary conditions
are periodic along the y direction): (a)
hard walls (ρ∗ = 0.05); (b) attractive
hard walls (ρ∗ = 0.05, ε ∗W = 2, and
h∗W = 1); (c) attractive hard walls (ρ∗

= 0.05, ε ∗W = 5, and h∗W = 3); (d) attrac-
tive hard walls (ρ∗ = 0.25, ε ∗W = 5, and
h∗W = 3).
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linear aggregates are observed for low ηdisk and moderate ηdim

values, while crystal-vapour separation only occurs for large
ηdisk and ηdim.

C. Mixtures under confinement

Our last effort has been a study of the structure of the
equimolar mixture with σ3 = σ2 under a number of inhomo-
geneous conditions. We fix the temperature at T ∗ = 0.15 and
the overall density at ρ∗ = 0.05; moreover, we take a rectan-
gular simulation box, with sides Lx and Ly in the ratio 3:1 and
periodic conditions along the y direction. As before, the initial
configuration of the mixture is fully disordered; subsequently,
it is taken to evolve under the Metropolis algorithm until U
ceases to drift.

Initially, we assume the box sides orthogonal to x (“walls”)
to be unstructured and impenetrable [Fig. 14(a)]. In this case,
we have verified (by computing the x-dependent and species-
resolved number densities) that a depletion region, poor of
particles, of width ≈4σ2 occurs in the long run near x = 0 and
x = Lx, as an effect of the entropic repulsion associated with
lateral confinement of elongated objects. The depletion region
is still present at high temperature, but its width is smaller (see
Fig. 15), suggesting that the strength of the entropic repulsion
exerted by the wall is enhanced by the formation of aggregates.
Then, while still keeping the walls rigid, we add an exponential
attraction uW between each wall and the large monomers only
(which would mimic walls with a strong affinity for species
2). Specifically, for the left wall, uW (x) = −εW exp(−x/hW ).
In this case, the confining potential heavily interferes with
the intrinsic self-assembly properties of the system, and novel
structures may be expected to result. Two cases are considered:
εw = 2ε , hW =σ2 (b) and εW = 5ε , hW = 3σ2 (c). In case (b)
(weak, short-range attraction), a monolayer of disks wets each
wall, sandwiched between two rows of dimers. For a stronger
and longer-range attraction, layering is more effective [see Fig.
14(c)], though less and less perfect as the distance from the wall
increases. The last examined case, (d), is identical to (c) but
for the value of the number density, ρ∗ = 0.25, instead of 0.05.
The stationary structure of the mixture is now more strongly
influenced by the interplay between diffusion (as referred to
the MC, rather than Newtonian, dynamics) and drift in a dense

FIG. 15. One-body density functions for our model mixture under confining
hard walls, for ρ∗ = 0.05 and χ = 0.50: T∗ = 0.15 (left) and T∗ = 1.50 (right).
The color distinguishes the three species (1, blue; 2, cyan; and 3, red).

environment. In the early stages of relaxation, the wall attrac-
tion determines a flow of dimers towards the walls. A number
of disks are randomly captured in this flow, but the region
near the walls is so crowded that the system structure can-
not be optimized by diffusion alone and, as a result, layering
does not occur in an ordered fashion. In the end, an arrested
structure arises near the walls [Fig. 14(d)], with arm-like pro-
trusions towards the interior of the box. Similar (dendritic)
structures are found in the ballistic deposition of patchy par-
ticles on a substrate,51 an irreversible process of adsorption
which may vaguely recall the dynamics of our mixture after
quenching.

IV. CONCLUSIONS

Colloidal mixtures are smart materials, capable of count-
less self-organizing behaviours. In this paper, we have investi-
gated by Monte Carlo simulation the self-assembly of a dilute
2D mixture made up of asymmetric dimers and disks. All inter-
actions are hard-core, with an additional short-range square-
well attraction between each disk and the smaller monomer of
a dimer.

We have studied the long-time behaviour of the mixture, as
a function of density and disk concentration, for a wide range
of disk diameters. At low temperature (one tenth in reduced
units or less), a dilute mixture minimizes its energy by self-
assembling into mesoscale structures. Specifically, for disks
with the same diameter as large monomers, we find either
small globular or long worm-like (lamellar) aggregates at low
density, depending on the disk concentration; for sufficiently
large densities, worms join together, giving rise to a spanning
network. For larger disk sizes, the exact amount of dimers is
crucial to decide whether the solution separates into crystal
and vapour phases or it remains homogeneous altogether. For
instance, when the ratio between the numbers of dimers and
disks is 4:1 and the size of disks is at least four times that of
large monomers, a unique condensate of disks occurs, locally
resembling a square crystal. Other ordering patterns (i.e., lay-
ers and branched structures) arise when the mixture is confined
between two attractive walls.

In the recent literature, many one-component systems,
either with interparticle pair repulsions or made up of patchy
particles, have been studied with the aim of exploring the
nature of the solid phases, often focusing on the conditions
allowing quasi-crystalline states. Our work instead provides
insight into the fluid phase diagram and self-organization of
a two-component mixture. The occurrence of a wide variety
of mesoscale structures at low temperature, resembling those
observed in realistic colloidal suspensions, stands as a highly
non-trivial feature of our oversimplified model of mixture. As
a further remark, we observe that the very same mixture of
asymmetric dimers and disks can also be employed as a model
of surfactant (the dimer) dispersed in an explicit solvent (the
disk); in this case, realistic conditions would be those where
the total packing fraction is liquid-like, and disks are more
numerous and much smaller than dimers. In the next future,
we plan to address the dynamics of self-assembly in our model,
with specific attention to the nucleation and growth of lamellar
structures.
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21G. Munaò, D. Costa, S. Prestipino, and C. Caccamo, Phys. Chem. Chem.

Phys. 18, 24922 (2016).
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43P. D. Godfrin, R. Castañeda-Priego, Y. Liu, and N. J. Wagner, J. Chem.

Phys. 139, 154904 (2013).
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