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We study a pure fluid of heteronuclear sticky Janus dumbbells, considered to be the result of complete
chemical association between unlike species in an initially equimolar mixture of hard spheres (species
A) and sticky hard spheres (species B) with different diameters. The B spheres are particles whose
attractive surface layer is infinitely thin. Wertheim’s two-density integral equations are employed to
describe the mixture of AB dumbbells together with unbound A and B monomers. After Baxter factor-
ization, these equations are solved analytically within the associative Percus-Yevick approximation.
The limit of complete association is taken at the end. The present paper extends to the more general,
heteronuclear case of A and B species with size asymmetry a previous study by Wu and Chiew [J.
Chem. Phys. 115, 6641 (2001)], which was restricted to dumbbells with equal monomer diameters.
Furthermore, the solution for the Baxter factor correlation functions qαβ

i j (r) is determined here in a
fully analytic way, since we have been able to find explicit analytic expressions for all the intervening
parameters. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4953853]

I. INTRODUCTION

Recent advances in the functionalization of colloidal
particles have made available new types of “particles” with
unprecedented self-assembly properties. Janus nanoparticles,
made of two distinct parts bearing different functional groups,
are among the most interesting new colloids.1–3

A simple way to model Janus colloids is to consider them
as spherical particles in which one half (A) of the surface
is repulsive while the other half (B) is attractive. As an
immediate generalization, the simplest Janus dumbbells (JDs)
are dimers, where a repulsive spherical monomer of chemical
species A is bonded to an attractive spherical monomer of
species B4–8 (in general, these two spheres can interpenetrate
each other, but in the model of this paper they are simply taken
to be tangent to each other). For a more precise definition, let
us consider the interaction potential between two JDs, (AB)1
and (AB)2, as the sum of spherically symmetric interactions
between the monomers constituting the dimers, and denote Ai

(Bi) the interaction site located somewhere in part A (B) of the
dimer i. Then, a JD model can be characterized by assuming,
for instance, that: (i) the potentials A1–A2, A1–B2, and B1–A2
are all repulsive, while (ii) the B1–B2 pair interacts through
an attractive potential added to a repulsive part. The most
common choice for these repulsive terms is a hard-sphere
(HS) potential, while the B–B attraction may be modeled by a
square-well (SW) tail. No confusion should now be possible,

a)Author to whom correspondence should be addressed. Electronic mail:
gazzillo@unive.it

b)Email: gmunao@unime.it
c)Email: sprestipino@unime.it

if such a JD molecule is synthetically indicated as a HS-SW
dumbbell.

Sticky Janus dumbbells (SJDs) can finally be defined
as a strongly idealized simplification of the previous HS-
SW dimer model, where the B–B attraction becomes an
adhesive interaction acting only when the surfaces of two
B spheres are in contact. This peculiar surface contribution
to the Hamiltonian is obtained following Baxter’s original
proposal for simple fluids:9 one has to take the limit of a
special square-well tail, in which the depth goes to infinity as
the width goes to zero in such a way that the contribution to the
second virial coefficient remains finite but not zero (Baxter’s
sticky limit). When the particles are monomers, this procedure
generates the model of adhesive or sticky hard spheres (SHSs).
Thus, our SJD molecules may also be denoted as HS-SHS
dumbbells.

Nowadays, the main interest in JD lies in the fact that
considerable progress in experimental synthesis does allow
to fabricate this kind of colloidal molecules on a large scale,
and use them as building blocks for complex supramolecular
structures in biotechnology or in the fabrication of novel
materials, as for instance photonics crystals. The JD, or SJD,
models may also be useful to study the behavior of short
surfactant molecules, which contain both a hydrophilic and a
hydrophobic part.

The Janus dimers AB are, however, a particular case
in the large class of heteronuclear colloidal dumbbells
(of course, homonuclear dimers require that the species
B is identical to A with respect to all properties,
i.e., shape, size, and interactions, while heteronuclear dimers
include even the case of monomers with identical HS

0021-9606/2016/144(23)/234504/18/$30.00 144, 234504-1 Published by AIP Publishing.
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diameters but different attractive interactions). Over the
last decades several investigations have been performed
on homonuclear and heteronuclear colloidal dumbbells by
using both experimental and theoretical approaches (see,
for instance, the works cited in Ref. 4). In particular, one
of us (Munaò) participated in studies4–7 involving Monte
Carlo (MC) simulations as well as the fully numerical
solution of molecular integral equations corresponding to
the so-called Reference Interaction Site Model (RISM)
theory.10

In principle, we can imagine the assembly of a colloidal
dumbbell fluid starting from an equimolar mixture of A
and B monomers (we assume that only monomer reagents
are initially present), which can associate together according
to the reaction A + B � AB. In general, at equilibrium the
system contains both monomers and dimers. However, the
equilibrium amount of dimers depends on the strength B of
the attraction between A and B pairs. If the A–B attraction is
much stronger than other possible B–B or A–A attractive
interactions (as occurs when the dimerization is due to
the formation of a true covalent bond), then one can, in
practice, take the limit B → ∞ in any model representing
the physical system. This extreme simplification implies that
all monomers vanish and the mixture then reduces to a pure
fluid containing only dimers (complete association limit).
Our theoretical study follows exactly such a conceptual route
(starting from a mixture of A, B, and AB particles, and
taking the above-mentioned infinite limit at the end), trying to
derive the properties of a JD pure fluid analytically, as far as
possible.

To this aim, we will exploit the multidensity Ornstein-
Zernike (MdOZ) integral equation theory, proposed by
Wertheim for associating or chemically reactive fluids with
highly directional and saturable forces.11–15 Wertheim first
developed the formalism for a single off-center attraction
site,11,12 and then for multiple off-center SW bonding
sites embedded in the hard-core region.13,14 Kalyuzhnyi
and Stell16 reformulated the theory in order to treat
fluids with spherically symmetric associative interactions.
The effects of steric saturations are introduced explicitly
into the theory via an appropriate resummation of dia-
grams.

The MdOZ approach is called “multi-density,” since it
includes additional density parameters required to describe the
possibility of different bonding states for the particles. When
the associating monomers only possess a single chemical-
bonding site, and the saturation of the A–B covalent bonding—
due to steric effects—allows only dimerization, two densities
for each species are necessary and sufficient to describe the
mixture of monomers and dimers. Two-density, 2dOZ integral
equations have been successfully employed and analytically
solved for several models of associating fluids where chemical
bonding generates dimers. On the other hand, for particles with
two or more association sites, which can polymerize and form
chains, rings or more complex n-mers, the MdOZ equations
become more difficult to solve, since the number of required
densities increases (for two association sites, with a single
bonding condition, there are four densities for each species,
leading to 4dOZ equations).

For example, analytic solutions of the 2dOZ equations,
supplemented by adequate approximate closures, have been
found for dimerizing fluids of: hard spheres (generating
both homonuclear15 and heteronuclear HS-HS dumbbells17),
penetrable spheres,18 adhesive hard spheres (producing
homonuclear SHS-SHS dumbbells, with equal diameters
and equal stickiness strengths,19 or heteronuclear SHS-SHS
dumbbells, with equal diameters and different stickiness
strengths20), Yukawa particles,21 charged hard spheres.22–27

Analytic 4dOZ solutions are available for some models
of polymer chains: for instance, freely jointed tangent
HS chains (of any length, but without branches),28

mixtures of homonuclear HS chains,29 homonuclear SHS
chains,30 diblock polymer chains consisting of a linear
HS chain linked to a linear SHS chain (both of arbitrary
length),31 polyelectrolyte ionic chains,32,33 and multiarm star
polymers.34

With regard to SJD, we are aware of only one
work by Wu and Chiew,37 who analytically solved 2dOZ
integral equations for a dimerizing HS-SHS mixture with
equal diameters σA = σB and where A–B and B–B pairs
interact through HS potentials, while an adhesive surface
interaction acts between A–A pairs. The resulting solution
depends on three parameters, λ00, λ10, and λ11, which are
functions of the thermodynamic state. The values of λ00
and λ10 were found by solving numerically an algebraic
quartic equation for each parameter. Only one of the four
roots is physically acceptable, and was determined by
verifying that it satisfies the correct zero-density limit (see
below).

The present work has mainly been suggested from
the very recent MC numerical study by Munaò et al.7 on
heteronuclear JD fluids (HS-SW dimers with σA , σB). Our
aim is twofold: (i) to extend Wu and Chiew’s work, by
solving analytically 2dOZ equations for HS-SHS dumbbells
with arbitrarily different diameters, within the multidensity
generalization of the Percus-Yevick (PY) closure; (ii) to make
the solution fully analytic, in the sense that we will provide
closed-form expressions for all the required parameters, which
are related to the values of the cavity correlation functions at
contact.

The paper is organized as follows. In Section II, after
briefly restating the theory of two-density integral equations,
we define the model of sticky Janus dumbbell with arbitrary
monomer diameters and present the analytic solution—in
terms of Baxter auxiliary functions within the associative
Percus-Yevick approximation—for a mixture of associating
monomers and dimers in chemical equilibrium. The complete
association limit is taken in Section III, which refers to a pure
fluid of SJD. Section IV discusses how we have been able to
find fully analytic expressions for the λi j basic parameters.
Then, in Section V we report some numerical data for the λi j

as well as some structural information which can rapidly be
extracted from our analytic formulas. These latter qualitative
considerations should only be regarded as an anticipation
to our complete study of structural and thermodynamic SJD
properties deferred to a forthcoming paper. Finally, conclusive
remarks are given in Section VI, while some more technical
notes have been reported in the Appendices.
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II. THEORY

A. Two-density integral equations: Wertheim’s
and Baxter’s forms

In order to get an improved integral equation theory
for fluids of associating molecules, Wertheim11–14 started
from the fugacity expansion for the logarithm of the grand-
canonical partition function, and reorganized the graphs of
its diagrammatic representation into n-mer subsets, thus
more easily showing the cancellation of some graphs due
to steric incompatibility. After a topological reduction, he
obtained—for particles with a single saturable bonding site—
an expansion of the correlation functions in terms of two
densities for each chemical species α: the total density ρα,
and the density ρα0 of the monomers of species α which are
still free, i.e., unbound, in the actual mixture of monomer
and dimers (according to Wertheim’s new point of view,
the set of all particles of each species must be regarded as
a mixture of unbound and bound monomers, with an own
“internal” molar fraction: in fact, xα0 = ρα0/ρα is the molar
fraction of the unbound monomers “inside” the species α).
For a homogeneous fluid, the two-density expansion of the
total correlation functions hαβ(r) in terms of partial total
correlation functions hαβ

i j (r) reads as11–14,16,18

ραhαβ(r)ρβ = ραhαβ
00 (r)ρβ + ρα0 hαβ

10 (r)ρβ
+ ραhαβ

01 (r)ρβ0 + ρα0 hαβ
11 (r)ρβ0 , (1)

or

hαβ(r) = hαβ
00 (r) + xα0 hαβ

10 (r) + xβ
0 hαβ

01 (r)
+ xα0 xβ

0 hαβ
11 (r) (2)

(r denotes the distance between the centers of two monomers
of species α and β). A similar two-density expansion can be
given for the direct correlation functions (DCFs) cαβ(r).

In the hαβ
i j (r)’s (sometimes also written as

hi j
αβ(r)25,26,32,33) the greek indices refer to the chemical species,

while the latin ones i, j specify the degree of association, or
particle coordination number, i.e., the two possible bonding
states of a particle: unbound (index 0) for free monomers,
and bound (index 1) for monomers involved in dimers. More
precisely, the subscripts in hαβ

i j (r) indicate the number of
fb chemical bonds incident on each of the root points
in the diagrams for hαβ(r)18 ( fb is related to the Mayer
function corresponding to the covalent association potential).
For example, hαβ

01 denotes the sum of all diagrams with no fb
bonds incident on the first root point of species α, but one
fb bond incident on the second root point of species β (see
Fig. 1 of Ref. 18).

Similar two-density expansions can be written also for
other correlation functions, such as the radial distribution
functions (RDFs) gαβ(r) = 1 + hαβ(r) and the DCF’s cαβ(r).
One immediately finds that

g
αβ
i j (r) = δi0δ j0 + hαβ

i j (r). (3)

Let us introduce, for the total and direct correlation
functions, the matrices of matricesH(r) andC(r), respectively.
This means that H(r) and C(r) are matrices, whose elements

are in turn 2 × 2-matrices, i.e.,

[H(r)]αβ = hαβ(r), [C(r)]αβ = cαβ(r). (4)

The elements of hαβ(r) are given by

hαβ(r) =


hαβ
00 (r) hαβ

01 (r)
hαβ

10 (r) hαβ
11 (r)


, (5)

and those of cαβ(r) are similar. For the two-density case, the
density matrix is defined as

ρ =


ρA 0
0 ρB


, (6)

where the elements 0 are 2 × 2 null matrices and

ρα =



ρα ρα0
ρα0 0


= ρα



1 xα0
xα0 0


(α = A,B). (7)

In general, Wertheim’s orientation-averaged multidensity
integral equations can be written in Ornstein-Zernike-like
form as

hαβ(r) = cαβ(r) +

γ


dr′ cαγ(r ′)ργhγβ(|r − r′|). (8)

Here, the ργ matrices are essential, since the condition�
ργ
�
11 = 0 eliminates all diagrams which violate the saturation

condition of at most one fb chemical bond per particle in
dimerizing fluids.

Furthermore, the equilibrium density ρα0 of free
monomers of species α can be determined in terms of ρα
via the self-consistent relation15

ρα = ρα0 + ρα1 = ρα0 + ρα0


γ

ρ
γ
0


dr f αγ

b
(r)gαγ00 (r), (9)

where g
αγ
00 (r) = 1 + hαγ

00 (r) and ρα1 is the density of α-
monomers bound in A–B dimers. This equation is equivalent
to the law of mass action for chemical equilibrium, and shows
how ρα0 and ρα1 depend on the features of the association
interactions, expressed through the Mayer functions fb
corresponding to the chemical bonds.

By working in k-space with the Fourier transforms H(k)
and C(k), Eq. (8) can be even more compactly reshuffled as

H(k) = C(k) + C(k)ρH(k), (10)

or, in a form more adequate for factorization,


ρ−1 − C(k) 

I + ρH(k) = ρ−1, (11)

I being the unit matrix.
By employing the Baxter-Wertheim factorization and

introducing the auxiliary factor correlation functions, given
here by the matrices qαβ(r) with elements qαβ

i j (r), Eq. (8)
are usually re-expressed in the more convenient Baxter
system22,35,36
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


rhαβ(|r |) = −q′αβ(r) + 2π


γ

 ∞

Lαγ

dz qαγ(z) ργhγβ(|r − z |) (r − z) ,

rcαβ(|r |) = −q′αβ(r) + 2π


γ

∂

∂r

 ∞

Lγα

dz qγα(z) ργqγβ(r + z),
(12)

for r > Lαβ, where Lαβ =
�
σα − σβ

�
/2 (σα being the HS

diameter of species α). The prime denotes differentiation with
respect to r .

Finally, it is worth stressing that the Baxter form of
the MdOZ integral equations is tantamount to finding the
analytic expressions of the qαβ

i j (r)’s, from which all structural
and thermodynamic properties of the fluid can be calculated,
analytically or numerically. According to this point of view,
the solution at which we will arrive is fully analytic, since
it determines these auxiliary Baxter functions in a complete
way, including the explicit expressions of all their parameters.

B. SJD potential model and closure

Let us imagine to start from a fluid containing only
reagents, i.e., a binary equimolar mixture of monomers A and
B, with ρA = ρB and arbitrary HS diameters σA and σB with
the additive sum rule σαβ =

�
σα + σβ

�
/2. At equilibrium,

one has a ternary mixture with ρA
0 = ρB0 , including the

dimers formed by the association reaction (their density is
ρdim = ρA

1 = ρB1 ).
We assume that the A–A interaction uAA is a HS one,

while the B–B pairs interact through a sticky surface potential
(in our paper the roles of A and B are interchanged with
respect to Ref. 37). The A–B covalent bonding can still be
represented by a SHS potential (here named SHS∗), but is
however rather different with respect to the B–B attraction.37

In fact, apart from its much stronger strength, uSHS∗
AB

must
generate a “saturable” chemical bond (no more than one
B-particle can be bonded to one A-particle), where uSHS

BB

refers to a “non-saturable” physical (dispersion) attraction,
since more than one B-particle can adhere to another B-
particle. The above-mentioned saturation constraint cannot
be expressed by a spherically symmetric SHS∗ potential, but
the anisotropic, directional nature of the covalent bond is
nevertheless introduced into the Wertheim-OZ theory through
the steric incompatibilities.

After recalling that the Mayer functions for HS potentials
are

f HS
αβ(r) = exp


−βuHS

αβ(r)

− 1 =




−1, 0 ≤ r < σαβ

0, r > σαβ

(13)

(with β = (kBT)−1, where kB is the Boltzmann’s constant
and T the absolute temperature), our model for sticky Janus
dumbbells can be defined by choosing




f AA(r) = f HS
AA(r),

fBB(r) = f SHS
BB (r) = f HS

BB(r) + t σBδ(r − σB),
f AB(r) = f SHS∗

AB (r) = f HS
AB(r) + kchem σABδ(r − σAB),

(14)

and fBA(r) = f AB(r). Here, the Dirac delta function δ in
fBB and f AB ensures that both the physical adhesion and
the chemical association forces act only at the corresponding
contact surfaces. The factors t and kchem express the relevant
strengths. More precisely,

t =
1

12τ
(15)

is our measure of the B–B adhesion strength, so that t → 0
corresponds to the limiting case of pure HS potential. On
the other hand, τ (≡τBB here) denotes the dimensionless
parameter introduced by Baxter into his original definition
of the SHS potential.9 The value of τ is also an (not fully
defined) increasing function of the temperature: it must be
zero at the absolute zero, and if T → ∞, then τ must diverge
too. Consequently, low τ (high t) values correspond to low
temperatures and/or strong B–B adhesive forces. The strength
of chemical bond, kchem, is independent of t. Later, complete
association of monomers into dimers will be obtained by
taking the limit kchem → ∞.

The presence of hard cores in all the considered
interactions implies that any solution to the MdOZ equations
must satisfy the exact HS conditions

g
αβ
i j (r) = 0, or hαβ

i j (r) = −δi0δ j0,
for 0 < r < σαβ, (16)

where δi j is the Kronecker delta. As for the closure, we adopt
the following multidensity generalization of the Percus-Yevick
(PY) approximation to the DCF’s:




cAA
i j (r) = 0, r ≥ σA,

cBB
i j (r) = λi j σBδ(r − σB), r ≥ σB,

cAB
i j (r) = Bi j σABδ(r − σAB), r ≥ σAB,

(17)

and cBA
i j (r) = cAB

i j (r), with




λi j = t yBB
i j (σB),

Bi j = δi1δ j1 B, where B = kchem y AB
00 (σAB). (18)

Here, yαβ
i j (σαβ) is the contact value of the i j-component of the

cavity correlation function yαβ(r), which is defined through
the relationship

gαβ(r) = yαβ(r) exp[−βuαβ(r)], (19)

with uαβ(r) being the α–β interaction potential. The quantities
λi j’s refer to the SHS (dispersion) interaction between B–B
pairs, and are yet unknown parameters to be determined later
(other authors19,37 define λi j = yBB

i j (σB)/τ, without including
1
12 ). On the other hand, the Bi j’s are related to the A–B
chemical association, but only B11 = B differs from zero.

In the literature, the closure (17) was sometimes referred
to as the “associative Percus-Yevick” (APY) approximation.17
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In particular, the expressions of cAA
i j (r) and cBB

i j (r) simply
reflect the usual PY closure, while the expression of cAB

i j

for associating particles is known as “polymer PY” (PPY)
approximation.37 The three DCF approximations of the APY
closure can be summarized into a single compact expression
by writing

cαβ
i j (r) = Kαβ

i j σαβδ(r − σαβ), r ≥ σαβ, (20)

with




K AA
i j = 0,

KBB
i j = λi j,

K AB
i j = KBA

i j = Bi j .

(21)

Since both cBB
i j and cAB

i j include a Dirac δ-term “at” contact,
these DCF’s can be expressed as the sum of a “regular” part
and a “singular” δ-contribution. The same singular terms must
appear in hBB

i j and hAB
i j , so that it is convenient to write

cαβ
i j (r) = cαβ,reg

i j (r) + Kαβ
i j σαβδ(r − σαβ),

hαβ
i j (r) = hαβ,reg

i j (r) + Kαβ
i j σαβδ(r − σαβ),

(22)

although the A–A singular term is zero. However, within the
APY approximation, cAA

i j , cBB
i j , and cBB

i j all vanish beyond
the corresponding hard-core diameter: cαβ,reg

i j (r) = 0 when
r > σαβ. As can be demonstrated from the Baxter equations
for DCF’s of Eqs. (12), this fact in turn implies that the
functions qαβ

i j (r) have the same property35,36

qαβ
i j (r) = 0 for r > σαβ (and also for r < Lαβ), (23)

but without any δ(r − σαβ) singularity. Consequently, the
Baxter equations (12) become

rhαβ
i j (|r |) = −


qαβ
i j (r)

 ′
+ 2π


γ


k,ℓ

 σαγ

Lαγ

dz qαγ
ik
(z)

× ρ
γ
kℓ

hγβ
ℓ j (|r − z |) (r − z) , (24)

for r > Lαβ, and

rcαβ
i j (|r |) = −


qαβ
i j (r)

 ′
+ 2π


γ


k,ℓ

∂

∂r

×
 min(σγα,σγβ−r)
Lγα

dz qγα
ki
(z) ργ

kℓ
qγβ
ℓ j (r + z),

(25)

for Lαβ < r < σαβ (note that the absolute value of |r | is
necessary, since some Lαβ may be negative and, consequently,
in these equations r is no more a distance, but a coordinate
which can assume even negative values).

Solving the Baxter equations in the present case is thus
equivalent to finding the auxiliary functions qαβ

i j (r) in the
interval

�
Lαβ,σαβ

�
.

C. Analytic solution

To make the paper more readable, many details of
our analytic calculations are reported in the Appendices.
Here, we only present the main results. Our solution
to the Baxter equations consists in the following set of
polynomials

qαβ
i j (r) =





1
2

aα
i

(
r2 − σ2

αβ

)
+ bαi

�
r − σαβ

�
δ j0 + Kαβ

i j σ2
αβ Lαβ ≤ r ≤ σαβ,

0 elsewhere,
(26)

depending on the parameters

aα
i ,b

α
i ,K

αβ
i j


. For j = 1, these

functions reduce to constants, i.e., qαβ
i1 (r) = Kαβ

i1 σ2
αβ, and in

particular qAA
i1 (r) = 0. As can be shown, qαβ

i j (r) must satisfy
the symmetry relation35,36

qαβ
i j (Lαβ) = qβα

j i (Lβα), (27)

while qAB
i j (r) , qBA

ji (r) except for i = j.
Observe that the auxiliary functions qαβ

i j (r) are regular,
with no δ-singularity. However, at contact qAA

i j is continuous
(with qAA

i j (σA) = 0), whereas qBB
i j , qAB

i j , and qBA
i j have a jump

discontinuity. Recalling that the derivative of a function f (x)
with a jump discontinuity at x0 must contain the contribution�

f (x+0) − f (x−0)
�
δ(x − x0), one gets


qαβ
i j (r)

 ′
=
�
aα
i r + bαi

�
δ j0 − Kαβ

i j σαβ δ(r − σαβ). (28)

In other words, the qαβ
i j (r)’s are regular, but their derivatives

qαβ
i j (r)

 ′
include a singular δ-term, stemming from the

discontinuities of the Baxter functions.
The constant term Kαβ

i j σ2
αβ in qαβ

i j (r) could also be
deduced from the DCF’s through a relationship obtained from
Eq. (25), i.e.,

qαβ
i j (σ−αβ) =

 ∞

σ−
αβ

dz zcαβ
i j (z). (29)

With regard to the parameters

aα
i ,b

α
i ,K

αβ
i j


, it is simple

to obtain
�
aα
i ,b

α
i

	
as functions of the yet undetermined


Kαβ
i j



(see Appendix A). This solution is

aα
i = aHS

α δi0 −
Xα
i

∆
, bαi = bHS

α δi0 +
Xα
i

∆

σα

2
, (30)
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with

aHS
α =

1
∆
+

3ξ2σα

∆2 , bHS
α = −

3ξ2σ
2
α

2∆2 , (31)

ξm =

α

ξαm, ξαm =
π

6
ρασ

m
α , (32)

Xα
i =


γ

Xαγ
i , Xαγ

i = 2πργσγσ
2
αγ

�
Kαγ
i0 + xγ0Kαγ

i1

�
, (33)

where ∆ = 1 − η, and η ≡ ξ3 is the total volume fraction of
all particles. Observe that the ξm’s depend only on the total
densities {ρA, ρB}, i.e., they are independent of the actual
number of unbound monomers. Moreover, Xαγ

i represents
the contribution of all attractive forces (surface adhesion
and/or chemical association) added to the HS repulsion in the
interaction between monomers of species α and γ.

In our SJD model, from the definitions (18) and (21) for
Kαβ
i j


it follows that




X A
0 = 0, X A

1 = X AB
1 =MAB,

XB
0 = XBB

0 = Λ0, XB
1 = XBB

1 + XBA
1 = Λ1 +MBA,

(34)

where the quantities

Λi = 12ηB

�
λi0 + xB

0 λi1
�

(35)

(ηα ≡ ξα3 is a partial volume fraction only due to particles of
species α) stem from the B–B sticky interaction, while

MAB = 12ξB1 σ
2
AB xB

0 B,

MBA = 12ξA
1 σ

2
BA xA

0 B
(36)

are related to the chemical bonding between unlike monomers.
We will now studyMAB andMBA in more depth.

D. Chemical equilibrium

For the chemical equilibrium A + B � AB the law of
mass action reads as

ρAB

ρA
0 ρ

B
0

= Keq, (37)

where ρAB ≡ ρdim is the density of dimers, and Keq is the
equilibrium constant. Then, in the case of an equimolar starting
mixture, one finds

ρA
1 = ρB1 = ρAB = ρA

0 ρ
B
0 Keq, (38)

which leads to




ρA = ρA
0 + ρA

1 = ρA
0 + ρA

0 ρ
B
0 Keq,

ρB = ρB0 + ρB1 = ρB0 + ρB0 ρ
A
0 Keq.

(39)

This is the origin of the self-consistent relationship between
ρα0 and ρα previously given in Eq. (9). Comparing Eqs. (9)
and (39) leads to conclude that

Keq =


dr f AB

b (r)gAB
00 (r). (40)

For our SJD model, where chemical bonding is described by
a peculiar sticky interaction, i.e., the SHS∗ potential, f AB

b
(r)

must be replaced by f SHS∗
AB

(r) of Eqs. (14), so that

Keq = 4πσ3
AB kchemy

AB
00 (σAB) = 4πσ3

AB B. (41)

Putting ρB0 = ρA
0 into the first of Eqs. (39) and solving the

resulting quadratic equation for ρA
0 , the physically significant

root reads as

ρA
0 =


1 + 4KeqρA − 1

2Keq
=

ρA

1
2

�
1 +


1 + 4KeqρA

� , (42)

which implies that

xA
0 = xB

0 =
1

1
2

�
1 +


1 + 4KeqρA

� . (43)

From Eqs. (41)–(43) one sees that, if the strength of
the chemical association becomes infinite (i.e., kchem and
B → ∞), then the equilibrium constant must diverge too,
while ρA

0 = ρB0 → 0, xA
0 = xB

0 → 0, and the molar fraction
of dimers tends to unity (complete association limit). From
Eqs. (39) and (41) one also gets

B =
1 − xA

0

4πσ3
AB

xA
0 xB

0 ρA

=
1 − xB

0

4πσ3
AB

xA
0 xB

0 ρB
, (44)

which shows that B diverges as
�
xA

0 xB
0

�−1
=
�
xA

0

�−2 when
xA

0 = xB
0 → 0 (since the two numerators tend to ρA = ρB , 0).

Furthermore, these expressions for B allow us to re-express
MAB andMBA in the simpler form

MAB =
1 − xB

0

xA
0

DB, MBA =
1 − xA

0

xB
0

DA, (45)

where

Dα =
σα

2σAB
=

σα

σA + σB
. (46)

The expressions for
�
aα
i ,b

α
i

	
then become

aA
0 = aHS

A , bA
0 = bHS

A ,

aA
1 = −

1
∆

xdim

xA
0

(1 − R) , bA
1 = −

1
2

aA
1 σA,

aB
0 = aHS

B −
Λ0

∆
, bB

0 = bHS
B +

1
2
Λ0

∆
σB,

aB
1 = −

1
∆
*
,
Λ1 +

xdim

xB
0

R+
-
, bB

1 = −
1
2

aB
1 σB,

(47)

where xdim = 1 − xA
0 = 1 − xB

0 is the molar fraction of the
dimers, and

R = (1 + σB/σA)−1 = DA,

1 − R = 1 − DA = DB,
(48)
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take into account the size ratio of the monomers forming the
dumbbell (in the case of equal diameters, the counterpart of
Rxdim was denoted as 2Y in Ref. 37). More precisely, R ≡ RHS
is a rough measure of the HS portion of the dumbbell surface,
and takes values in the interval [0,1], while RSHS = 1 − RHS
refers to the adhesive part. In particular,

R →




1 if σB → 0 (HS limit, 100% HS)
1
2

if σB → σA,

0 if σB → ∞ or σA → 0 (SHS limit, 0% HS).
(49)

Thus, 1
2 < R ≤ 1 means that the HS fraction of the dumbbell

surface is larger than the SHS one, whereas 0 ≤ R < 1
2

corresponds to the predominance of the sticky contribution.
Note that ηB can be obtained from η through the relation

ηB =
(1 − R)3

R3 + (1 − R)3 η. (50)

With regard to Eqs. (45)–(47), a very important remark
is that bothMAB andMBA, as well as all aα

1 and bα1 , diverge
like

�
xA

0

�−1 or
�
xB

0

�−1 in the limit of complete association. Such
a finding is, however, not worrying. In fact, as assumed by
Wu and Chiew,37 the significant quantity is the whole function
qαβ(r), rather than its separate components. Since

qαβ(r) = qαβ
00 (r) + xα0 qαβ

10 (r) + xβ
0 qαβ

01 (r) + xα0 xβ
0 qαβ

11 (r)
= qαβ

00 (r) + qαβ
10 (r) + qαβ

01 (r) + qαβ
11 (r), (51)

where we have defined

qαβ
i j (r) =

�
xα0
�δi1 qαβ

i j (r)
(
xβ

0

)δ j1
, (52)

the important functions are the qαβ
i j ’s, which include the

weight-factors related to the molar fractions. Although some
qαβ
i j diverge in the limit of complete association, the weighted

components qαβ
i j remain finite. Note that the same behavior is

found for hαβ, hαβ
i j , hαβ

i j , and gαβ,

gαβ(r) = 1 + hαβ
00 (r) + hαβ

10 (r) +hαβ
01 (r) +hαβ

11 (r). (53)

In particular, we will also consider

λ00 = λ00, λ10 = xA
0 λ10, λ11 = xA

0 λ11 xB
0 , (54)

with xA
0 = xB

0 .

III. SOLUTION FOR PURE SJD FLUIDS

The final solution for a pure fluid containing only sticky
Janus dumbbells can now be obtained by taking the complete
association limit, i.e., xA

0 = xB
0 → 0, and consequently xdim

→ 1. In the following, instead of Eq. (52), we thus assume
that

qαβ
i j (r) = lim

xA
0 =x

B
0 →0

�
xα0
�δi1 qαβ

i j (r)
(
xβ

0

)δ j1
. (55)

A similar definition applies to all other quantities with a tilde.
However, for simplicity, we will continue to write λ00 instead
of the more correct λ00 (= limxA

0 =x
B
0 →0 λ00).

After recalling that

qHS
αβ(r) =

1
2

aHS
α

(
r2 − σ2

αβ

)
+ bHS

α

�
r − σαβ

�
,

for Lαβ ≤ r ≤ σαβ, (56)

we hereafter collect all final results for the partial contributions
qαβ
i j (r) of our SJD model,

(i) For A–A pairs




qAA
00 (r) = qHS

AA (r) ,
qAA

10 (r) = − 1
2∆

(1 − R) r (r − σA) ,
qAA

01 (r) = 0,
qAA

11 (r) = 0,

0 ≤ r ≤ σA. (57)

(ii) For B–B pairs




qBB
00 (r) = qHS

BB (r) −
1

2∆
Λ0 r (r − σB) + λ00σ

2
B,

qBB
10 (r) = − 1

2∆

(Λ1 + R
)

r (r − σB) + λ10σ
2
B,

qBB
01 (r) = λ01σ

2
B,

qBB
11 (r) = λ11σ

2
B,

0 ≤ r < σB, (58)

where

Λ0 = 12ηB

(
λ00 + λ10

)
,

Λ1 = 12ηB

(λ10 + λ11

)
.

(59)
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(iii) In the A–B case




qAB
00 (r) = qHS

AB (r) ,
qAB

10 (r) = − 1
2∆

(1 − R) (r − LAB) (r − σAB) ,
qAB

01 (r) = 0,
qAB

11 (r) = (12ξ1)−1,

LAB ≤ r < σAB. (60)

(iv) In the B–A case




qBA
00 (r) = qHS

BA (r) −
1

2∆
Λ0 (r − LBA) (r − σAB) ,

qBA
10 (r) = − 1

2∆

(Λ1 + R
) (r − LBA) (r − σAB) ,

qBA
01 (r) = 0,

qBA
11 (r) = (12ξ1)−1,

LBA ≤ r < σAB. (61)

Eqs. (57)-(61) represent our APY solution for the pure
SJD fluid with arbitrary diameters. It is worth remarking that
the qαβ

i j (r)’s depend only on the parameters

R, λ00,λ10,λ11


.

Moreover, in all cases qαβ
01 (r) and qαβ

11 (r) are constant.
Starting from the knowledge of these Baxter factor

correlation functions it is possible, in principle, to compute all
structural and thermodynamic properties of our heteronuclear
dimer fluid.37,38 In particular, the total correlation functions
hαβ
i j (r) can be obtained through Perram’s iteration method.37,39

Such a numerical and analytical work on heteronuclear
SJD structure and thermodynamics will be deferred to a
forthcoming publication.

IV. FULLY ANALYTIC EXPRESSIONS FOR THE λij
PARAMETERS

A. Nonlinear system for arbitrary diameters

Now, the only yet undetermined quantities in the
expressions (47) for

�
aα
i ,b

α
i

	
remain Λ0 and Λ1. The

determination of the stickiness parameters λi j = t yBB
i j (σαβ)

requires the knowledge of the contact values of the B–B cavity
correlation functions. As shown in Appendix B, item (a), the
APY partial cavity correlation functions at contact are given
by

y
αβ
i j (σαβ) = yHS

αβ(σαβ)δi0δ j0 − 1
∆

Xα
i σβδ j0 + X β

j σαδi0

2σαβ

+
2π
σαβ


γ


k,ℓ

(
Kαγ
ik
σ2
αγ

)
ρ
γ
kℓ

(
Kγβ
ℓ j σ

2
γβ

)
, (62)

where

yHS
αβ(σαβ) = 1

∆
+

3ξ2

2∆2

σασβ

σαβ
(63)

is the PY approximation to the HS cavity functions.
Applying Eq. (62) to the B–B case, and replacing

yBB
i j (σB) with t−1λi j, yields three coupled quadratic equations

for

λ00,λ10 = λ01,λ11


,




12ηBt λ2
00 +

(
24ηBt λ10 − 1 − 12ηBt

∆

)
λ00 + t yHS

BB −
12ηBt
∆

λ10 = 0,

12ηBt λ2
10 − λ10 + 12ηBt

(
λ00 −

1
2∆

) (λ10 + λ11

)
− 1

2∆
Rt xdim = 0,(

1 − 24ηBt λ10

) λ11 = 12ηBt λ2
10.

(64)

Moreover, the equation for λ01 obtained from Eq. (62) is exactly the same as the second of Eqs. (64). Hereafter, we will,
however, assume that xdim = 1 (complete association limit).

From the last of Eqs. (64), one finds by direct substitution that λ10 cannot be equal to (24ηBt)−1. Consequently, λ11 can be
derived from λ10 as

λ11 =
12ηBt λ2

10

1 − 24ηBt λ10
. (65)

By exploiting this expression, the first two of Eqs. (64) become a system with only two unknowns, i.e.,




12ηBt λ2
00 +

(
24ηBt λ10 − 1 − 12ηBt

∆

)
λ00 + t yHS

BB −
12ηBt
∆

λ10 = 0,(
12ηBt λ2

10 − λ10

) 
1 + 12ηBt

(
λ00 −

1
2∆

) (
24ηBt λ10 − 1

)−1

− 1

2∆
Rt = 0.

(66)
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In the case of equal diameters, Wu and Chiew37 followed
the method by Weist and Glandt19 and were able to
decouple this system, obtaining two separate fourth-degree
polynomial equations in each of λ00 and λ10. Such algebraic
equations were then solved numerically. Among their four
(in general complex) roots for λ00 (or for λ10), these
authors chose the only physically significant one by checking
which real root satisfies the correct zero-density limit.
For our model, from Eqs. (64) the zero-density conditions
read as

lim
η→0

λ00 = t, lim
η→0

λ10 = −
1
2
Rt,

and

lim
η→0

λ11 = 0. (67)

In the present paper we solve Eqs. (66) explicitly, in a fully
analytic way.

With the help of the identity

12ηBt λ2
10 − λ10 =

1
48ηBt

(
24ηBt λ10 − 1

)2
− 1


, (68)

and the change of variable

s = 24ηBt λ10 − 1, (69)

the system (66) is transformed into




12ηBt λ2
00 +

(
s − 12ηBt

∆

)
λ00 + t yHS

BB −
1

2∆
(1 + s) = 0,

�
s2 − 1

� 
1 + 12ηBt

(
λ00 −

1
2∆

)
s−1


− 24ηBRt2

∆
= 0.

(70)

The first of these equations is quadratic in λ00 and thus
generates, for each admissible value of s, two solutions (in the
complex plane), say λ

(−)
00 and λ

(+)
00 . On the contrary, the second

equation, linear in λ00, produces a unique solution, say λ
(A)
00 .

Hence, the two equations of system (70) can have only one
common solution, which must necessarily coincide with λ

(A)
00 .

Furthermore, the relationship among λ
(A)
00 and λ

(−)
00 , λ(+)

00 is not
trivial. In fact, we have verified that λ(A)

00 cannot be identified

with λ
(−)
00 or λ(+)

00 separately. As a matter of fact, λ(A)
00 coincides

with λ
(−)
00 in a η-interval just near the origin, but coincides

with λ
(+)
00 in the complementary interval.

Solving the second, linear equation with respect to λ00
(observe that s2 = 1 occurs only for η = 0) and substituting
the resulting expression λ

(A)
00 into the first of Eqs. (70) leads

to an algebraic equation containing only s, while the system
becomes




P(s) ≡ Es4 − 2

E − 2Rt

(
1 − 24ηBRt2

∆

)
s2 + (E − 4Rt) = 0,

λ00(s) = 1
2∆
− (12ηBt)−1

(
1 − 24ηBRt2

∆

1
s2 − 1

)
s,

(71)

where the fourth-degree polynomial P(s) contains only even
powers of s, and

E = E (η, t;R)
= 1 + 4

(
R−1

2

) 
1 − 1 − R
R3 + (1 − R)3

3η
2∆


t (72)

depends on the density, temperature and/or adhesive strength,
and monomer sizes.

Eq. (71) extends the analogous equation obtained by Wu
and Chiew37 for σA = σB to the more general case of arbitrary
diameters. We have thus obtained a quartic equation for λ10,
which assumes a biquadratic form when expressed in terms
of s, i.e., it is quadratic in the variable s2. Finding the roots of
this peculiar quartic equation is easy: one first solves for s2,
and then returns to the original unknown λ10. In the complex
plane, the biquadratic equation has always four roots forming
two pairs of conjugate solutions, whereas in the real field the

number of its roots may be 4, 2, or 0. The character and
behavior of these roots depend on the function E (η, t;R) (for
σA = σB, one gets E = 1). In the particular case E = 0, the

quartic equation reduces to s2 =

(
1 − 24ηBRt2

∆

)−1
. For E , 0

the solutions of P(s) = 0 are




s2 = W+
s2 = W−

, (73)

with

W± = 1 +
2Rt
E


±
√

D −
(
1 − 24ηBRt2

∆

)
, (74)

D =
(
1 − 24ηBRt2

∆

)2

+
24ηBt
∆
E . (75)
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Further useful relationships are

W+ −W− =
4Rt
E
√

D and W−W+ = 1 − 4Rt
E

. (76)

Eqs. (73) say that our quartic equation splits into two quadratic
equations. The explicit expressions for their (generally
complex) roots are




s1 = −


W+, s4 = −s1 =


W+
s2 = −


W−, s3 = −s2 =


W−

. (77)

Here, s4 and s3 may be regarded as conjugate to s1 and s2,
respectively. Since we are only interested in real roots, besides
assuming D ≥ 0 we should establish when W− and W+ are
non-negative.

When W− and W+ are both positive (which occurs for
E > 4Rt, or even for appropriate E < 0), all roots are real.
If E > 4Rt, these are ordered as s1 < s2 < s3 < s4 (since
W− < W+ by the first of Eqs. (76)); on the other hand, if
E < 0 the inversion W− > W+ implies that all roots are real
providing that W+ > 0, but now with the different ordering
s2 < s1 < s4 < s3.

The case W− = 0 (i.e., E = 4Rt) corresponds to a merging
and simultaneous vanishing of s2 and s3. Finally, when W− is
negative the roots s2 and s3 are complex and only two real
roots survive, i.e., s1 and s4 = −s1.

In principle, s1 and s2 will merge whenever a volume
fraction ηD(t;R) exists where D vanishes and, consequently,
W− = W+. For η = ηD the curves s1(η) and s2(η) must touch
each other. We have numerically verified that such a contact
may occur in two different ways:

(i) for 0.75 . R < 1 (predominance of HS repulsion over
SHS attraction), whenever ηD exists it assumes very large
values, far away from the fluid regimes we are concerned
with. For η = ηD four real roots meet in pairs (s2 = s1
and s4 = s3), however without crossing each other. Indeed,
beyond this volume fraction all roots become complex,
since D < 0 for η > ηD.

(ii) On the other hand, for 0 < R . 0.25 (predominance
of SHS attraction over HS repulsion) ηD exists at
low temperature and has relatively small values, lower
than 0.1. Now D has a double root for η = ηD,
being otherwise positive. Thus ηD can be determined
analytically as: ηD(t;R) = {1 + CB [2(1 − R)t − 1]}−1

with CB = (1 − R)3�R3 + (1 − R)3�−1, provided that t >
1
2 (1 − R)−1 (i.e., τ < 1

6 (1 − R)). In this case, the curves
s1(η) and s2(η) (as well as s3(η) and s4(η)) still touch
each other for η = ηD but, at variance with case (i), all
real roots continue to exist beyond ηD. A true crossover
between s1 and s2 would imply an inversion of ordering,
i.e., if s2 < s1 for η < ηD then s2 > s1 for η > ηD. In fact,
this never occurs; however, if one requires the continuity
of both the physically meaningful root and its derivative
as a function of η, then it is necessary to swap from one
root to the other beyond ηD.

Coming back to the complex plane, the four {sm}-
roots determine four corresponding values for each stickiness

parameter, i.e.,

λ10(sm) = 1
24ηBt

(1 + sm) (m = 1, . . . ,4), (78)

λ11(sm) = − 1
48ηBt

(1 + sm)2
sm

, (79)

λ00(sm) = 1
2∆
− sm

12ηBt

(
1 − 24ηB

∆

Rt2

s2
m − 1

)
. (80)

Summarizing, the nonlinear system (64) admits four
complex solutionsSm =


λ00,λ10,λ11


s=sm

. We are, however,
interested only in the real ones which satisfy the zero-density
conditions, Eqs. (67). To this aim, let us investigate the zero-
density behavior of each λ10(sm), by comparing each root of
the {sm} set (assuming them to be all real) with sexact near the
origin η = 0. From Eq. (69) and the zero-density limit (67) of
λ10 it results that

sexact = −1 + 24ηBt λexact
10 = −1 − 12ηBRt2 + O(η2). (81)

Since sexact is negative near the origin, the positive s3 and s4
cannot reproduce the physically correct trend. To discriminate
between s1 = −

√
W+ and s2 = −

√
W−, it is then sufficient to

consider their zero-density limits

lim
η→0

s1 = −1,

lim
η→0

s2 = −


1 − 4Rt E−1 (η = 0, t;R).
(82)

Thus, we conclude that at low densities the only physically
acceptable root is s1, and the correct real solution for the
stickiness parameters is always S1 (even when W− < 0, and
S1, S4 are the only real roots),

λ00 =
1

2∆
+

√
W+

12ηBt

(
1 − 24ηB

∆

Rt2

W+ − 1

)
, (83)

λ10 =
1

24ηBt

(
1 −


W+

)
, (84)

λ11 =
1

48ηBt

�
1 −
√

W+
�2

√
W+

. (85)

We have thus completed our analytic determination of
all parameters involved in the functions qαβ

i j (r) specified by
Eq. (26). Since solving the Baxter integral equations for a
given model is tantamount to determining the corresponding
factor correlation functions, we can rightly affirm that our
solution is fully analytic.

V. SOME NUMERICAL RESULTS

A. Real s-roots and stickiness parameters

Figure 1 shows the behavior of the real s-roots of the
equation P(s) = 0 with decreasing temperature, or increasing
adhesive strength, for R = 1

2 (equal diameters). In this case,
E − 4Rt = 1 − 2t becomes negative when t > 1

2 , i.e., for
τ < 1

6 . We consider two values of τ, i.e., τ = 0.2 and τ = 0.1
(corresponding to t = 0.42 and t = 0.83, respectively), with
η = 0.2 or 0.4.
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FIG. 1. Behavior of the real s-roots of the equation P(s)= 0, for homonu-
clear SJD’s (R = 1

2 , equal diameters), with increasing the volume fraction
η and lowering the temperature τ (or increasing the strength of the surface
adhesion).

When τ = 0.2 the polynomial P(s) has four real zeros:
(s1, s3), together with the conjugate pair (s2, s4) = (−s3,−s1).
When the volume fraction η increases, these roots move as
displayed in Fig. 1. On the other hand, when τ = 0.1 the
solutions s2 and s3 are complex, and we are left with two real
roots, s1 and s4.

As proved in Section IV, it is the first real root s1
which always determines the physically correct values of the

stickiness parameters. In order to test our analytic solutions
for


λ00,λ10,λ11


, we have first solved the system of Eqs. (64)

numerically, by using the well-known Wolfram Mathematica
software. In particular, we have considered two cases among
those studied by Wu and Chiew,37 i.e., τ = 0.2 and τ = 0.015
(for σA = σB, i.e., R = 1

2 ). For their homonuclear dimer fluid
these authors found, via the energy route to the equation
of state, a critical temperature τc = 0.0198 and a critical
volume fraction ηc = 0.228. Thus, τ = 0.2 corresponds to a
supercritical case, while τ = 0.015 is a subcritical value.

By visual comparison one can appreciate how our purely
numerical results, plotted in Figure 2 by means of black
symbols, agree with the data of Wu and Chiew reported in
Figures 1, 2, and 3 of Ref. 37. At the same time, Fig. 2 clearly
illustrates the full agreement between the purely numerical
data and those obtained from our analytic expressions for λ00,
λ10, and λ11.

B. Structural information from the cavity correlation
functions at contact

To conclude this paper, we try to extract some information
by computing very simple quantities as the contact values of
the monomer-monomer cavity correlation functions. Our aim
is to compare them, qualitatively, with the overall picture on
the structure of heteronuclear Janus fluids recently obtained by
Munaò et al.7 through MC simulations. However, we caution
the reader that a strict comparison with the SW dumbbells of
Ref. 7 is not immediately possible, since the attractive corona
of the latter is far from being a minute fraction of the hard
core.

For the SJD model within the APY closure, we get
from the general relationship (19) between RDF’s and cavity
correlation functions, gαβ(r) = yαβ(r) exp[−βuαβ(r)], and
Eqs. (14): gαβ(r) = 0 for r < σαβ, as well as




gAA(r) = yAA(r) for r ≥ σA,

gAB(r) = yAB(r) r ≥ σAB,

gBB(r) = t [σByBB(σB)] δ(r − σB) + yBB(r) r ≥ σB.

(86)

Outside the core, gBB(r) has both a “regular” part, yBB(r), and a “singular” part, containing a δ-singularity and stemming
from the sticky B–B surface interaction. While the RDFs have a discontinuity at the core distance, and gBB(r) is not even a
conventional function, the yαβ(r)’s are continuous functions.

Analytic expressions for the cavity correlation functions at contact can be derived from Eq. (62) and the relationship
yBB
i j (σB) = t−1λi j. Here, we just present our final results,

yAA(σA) = yHD
AA(σA),

yAB(σAB) = yHD
AB(σAB) − 1

∆

(Λ0 + Λ1

)
R + 2Λ0(1 − R)2

= yBA(σBA),
yBB(σB) = t−1

(
λ00 + 2λ10 + λ11

)
= yHD

BB(σB) − 1
∆

(Λ0 + Λ1

)
+

1
12ηB

(Λ2
0 + 2Λ0Λ1

)
,

(87)
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FIG. 2. Stickiness parameters

λ00, λ10, λ11


as a function of η, for

homonuclear SJD’s (R = 1
2 , equal diameters), at supercritical temperature

τ = 0.2 (upper panel), and the subcritical one τ = 0.015 (lower panel), re-
spectively. Black symbols denote results obtained by solving the system of
Eqs. (64) fully numerically, while solid lines are computed from our analytic
solution, Eqs. (84)-(86).

where

yHD
AA(σA) = yHS

AA(σA) − 1
∆
(1 − R) ,

yHD
AB(σAB) = yHS

AB(σAB) − 1
∆


R2 + (1 − R)2 ,

yHD
BB(σB) = yHS

BB(σB) − 1
∆
R

(88)

refer to the corresponding hard dumbbell (HD) molecule,
without surface adhesion. When σA = σB these formulas
reduce to those given in Ref. 37. Their zero-density limits
read as

lim
η→0

yAA(σA) = R = σA

σA + σB
,

lim
η→0

yAB(σAB) = 2R (1 − R) = 2
σAσB

(σA + σB)2
,

lim
η→0

yBB(σB) = 1 − R = σB

σA + σB
.

(89)

Note that, while for simple fluids y(r) satisfies the
condition limη→0 y(σ) = 1, here the zero-density values of
the cavity functions at contact are less than unity because of
the steric “screening effect” due to the remaining monomer in
each of the two dumbbells.

In Figures 3-7 the monomer-monomer cavity functions at
contact yαβ(σαβ) ≡ yαβ are plotted against the dimensionless
density

ρ∗ = ρσ3, where σ = max (σA,σB) , (90)

for five SJD models with increasing size of the SHS monomer
with respect to the HS one: σB =

1
3σA, σB =

1
2σA, σB = σA,

and σB =
4
3σA, σB = 3σA, corresponding to: R = 0.75, 0.67,

0.50, and 0.43, 0.25, respectively (if R decreases, then the
relative importance of the stickiness attraction, measured by
RSHS = 1 − R, increases). For each dumbbell geometry, we
also show the effects of decreasing the temperature from
τ = 0.2 to a lower value.

The diameter ratios of our dumbbells correspond to almost
all the cases considered by Munaò et al.,7 which refer to four
different densities (ρ∗ = 0.05, 0.1, 0.2, and 0.3) and several
temperatures T∗. The main difference is that in Ref. 7 the
attractive monomers were surrounded by a SW potential of
width 1

2σB, which is rendered here through a SHS interaction,
with an infinitely thin adhesive layer. Such a difference
between the two models is especially significant when the SW
width becomes larger than the HS diameter σA (i.e., when
σA ≤ 1

2σB), so that the A-monomer is fully immersed in the
attractive region of the B-one. We have preliminarily verified
that in the limit of hard-dumbbells our theoretical predictions
quantitatively agree with MC simulations in providing the
contact values of the cavity functions, for both equal and
different HS diameters. For a quantitative comparison when
the attractive interactions play a significant role one would
also need the precise correspondence between T∗ and τ, which
can be obtained by matching the second virial coefficients of
the two models. This topic will, however, be deferred to the
next paper, since we are now interested only in a qualitative
comparison.

The MC structural results from Ref. 7 can be summarized
as follows:

(i) for σB/σA < 1, the partial structure factor SBB(k)
exhibits a low-k peak, which becomes more pronounced
as the density increases and signals the self-assembly
of SW-Janus-dumbbells into nearly spherical aggregates,
similar to surfactant micelles, especially at low densities
and temperatures. On the other hand, SBB(k → 0)
remains finite, indicating that the formation of the cluster
fluid suppresses the possibility of a liquid-vapor phase
transition.

(ii) when σB ≈ σA, the self-assembled structure is different:
at low temperatures and moderate/high densities,
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FIG. 3. Monomer-monomer cavity functions at contact,
{yAA, yAB, yBB}, as functions of the dimensionless density ρ∗, for a SJD
fluid with σB =

1
3σA (RSHS= 0.25), at τ = 0.2 (upper panel), and τ = 0.02

(lower panel), respectively. The attractive monomer is B (red sphere).

molecules would be organized into planar configurations
(lamellae).

(iii) for σB/σA > 1, the SW interaction of width 1
2σB

becomes significantly larger than the HS one (when
σA ≤ 1

2σB, its range even extends beyond the HS
diameter). Now, the MC SBB(k) clearly shows a diverging
trend with k → 0, indicating a progressive approach to
a liquid-vapor phase transition, while clusters seem to
disappear.

A similar scenario on the formation of micellar clusters
of colloidal Janus particles comes out also from experiments
and simulations by Kraft et al.,40 as well as by Granick and
co-workers.41,42 Inspired by Fig. 2 of Ref. 40, we have also
tried to interpret the data displayed in Figs. 3-7, by guessing
some possible “contact aggregates” of SJD’s, compatible

FIG. 4. Monomer-monomer cavity functions at contact,
{yAA, yAB, yBB}, as functions of the dimensionless density ρ∗, for a SJD
fluid with σB =

1
2σA (RSHS= 0.33), at τ = 0.2 (upper panel), and τ = 0.02

(lower panel), respectively.

with our yαβ-results and probably yielding a significant
contribution to the correlation functions. These theoretical
snapshots, given in Fig. 8, should be regarded as describing
either isolated supramolecular entities or rough “building
blocks” of larger aggregates. The limits of this analysis are
evident to us; nevertheless, such simple images may be useful
for a qualitative comparison with the structures emerging from
the MC simulations.7,40–42

Fig. 3 refers to σB =
1
3σA (R = 0.75, or RSHS = 0.25).

Both at moderate and low temperatures (τ = 0.2 and 0.02,
respectively), one always observes that y AA > y AB > yBB

over the whole, wide, interval of densities considered here.
Since ρA = ρB, for this kind of SJD the probabilities of finding
two particles at contact exhibit the same AA > AB > BB
order. A possible visual appearance is given in Fig. 8(a). Here,
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FIG. 5. Monomer-monomer cavity functions at contact,
{yAA, yAB, yBB}, as functions of the dimensionless density ρ∗, for a SJD
fluid with σB =σA (RSHS= 0.50), at τ = 0.2 (upper panel), and τ = 0.02
(lower panel), respectively.

we show an aggregate ofN = 4 dumbbells. If mαβ denotes the
numbers of contacts between α and β monomers belonging
to different SJD molecules, then Fig. 8(a) corresponds
to a configuration with mAA = 3 > mAB = 2 > mBB = 1,
compatible with the ordering y AA > y AB > yBB.

Upon increasing the diameter ratio σB/σA, but still
keeping it below 1, we find essentially the same previous
behavior for low and moderate densities, even at low
temperatures. Our results agree qualitatively with part of
the structural properties reported in Ref. 7. We can assess
that, when 0 < σB/σA < 1, the SJD molecules spontaneously
organize into micellar clusters, in which the attractive
monomers B constitute the “core” of the aggregate, while
the non-attractive monomers A are located “outside.”40

FIG. 6. Monomer-monomer cavity functions at contact,
{yAA, yAB, yBB}, as functions of the dimensionless density ρ∗, for a SJD
fluid with σB =

4
3σA (RSHS= 0.57), at τ = 0.2 (upper panel), and τ = 0.024

(lower panel), respectively.

However, the bottom panel of Fig. 4 displays a rather
peculiar behavior of the SJD with σB =

1
2σA (RSHS = 0.33), at

low temperature τ = 0.02 and high densities around ρ∗ ≈ 0.8.
Here, we find two singularities: yBB → +∞, and y AB → −∞.
The latter divergence may be an artifact of the APY closure.
In fact, it is well known that the PY approximation is
inapplicable at very high densities:43 even for simple HS’s
the PY g(r) becomes negative for ρ∗ & 1.18. Our opinion is
that the divergence y AB → −∞ is due to the breakdown of
the closure, but seems to indicate y AB → 0 as the correct
trend. If this is the case, then the behavior of yBB and y AB

may have an acceptable physical meaning. We imagine that,
at very high densities, the clusters are very compressed, and
the B monomers inside each “micellar core” are so ordered,
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FIG. 7. Monomer-monomer cavity functions at contact,
{yAA, yAB, yBB}, as functions of the dimensionless density ρ∗, for a SJD
fluid with σB = 3σA (RSHS= 0.75), at τ = 0.2 (upper panel), and τ = 0.09
(lower panel), respectively.

and protected by the corresponding HS “outside shell,” that
AB-contacts among different molecules become impossible,
while the number of the BB-ones increases as the size of
the aggregates grows. Fig. 8(b) displays such an arrangement
(here, the third dimension would be essential).

Fig. 5 takes into account the homonuclear case with
σB = σA (RSHS = 0.50). In the upper panel with τ = 0.2 one
observes that y AB ≈ y AA > yBB, i.e., the numbers of AB- and
AA-contacts are practically equivalent for ρ∗ . 0.3, while the
BB-ones are less frequent. Decreasing the temperature—see
the lower panel with τ = 0.02—leads to a further decrease of
BB-contacts (apart a small peak of yBB not much visible in
Fig. 5, at very low densities near ρ∗ = 0, where yBB ≈ y AB),
while the AB-contacts become predominant. The snapshot of

FIG. 8. Possible snapshots of SJD aggregates (or “contact configurations”)
compatible with the previous cavity function results, for several geometries:
(a) σB =σA/3; (b) σB =σA/2; (c) σB =σA; (d) σB = (4/3)σA; and (e)
σB = 3σA. Further explanations are given in the text.

Fig. 8(c) illustrates the arrangement at low temperature: here
we have drawn N = 8 dumbbells, with mAA = 3, mAB = 10,
mBB = 1. The dashed lines identify possible lamellar planes.

Fig. 6 corresponds to σB =
4
3σA (RSHS = 0.57): now the

attractive B-part of the dumbbell is slightly predominant. In
the upper panel with τ = 0.2 one sees yBB > y AB > y AA at
very low densities. Then, the AB-contacts become numerous
for ρ∗ & 0.05. In the lower panel, the behavior is similar,
but the peak of yBB is remarkably strong at low densities.
Fig. 8(d) reports a possible snapshot corresponding to such a
BB-maximum at low density/low temperature: an aggregate of
N = 4 dumbbells with contact numbers mAA = 1, mAB = 3,
mBB = 4.

In Fig. 7, referring to σB = 3σA (RSHS = 0.75), for both
temperatures the AB-contacts are the most important at low
densities, while the AA-ones are the most suppressed. As in
Fig. 6, there is a prevalence of AB-contacts at moderate and
high densities. Fig. 8(e) shows a configuration at high density/
low temperature, with mAA = 1, mAB = 3, mBB = 1.

In conclusion, despite some differences among the
models, our numerical results appear to be qualitatively
compatible with the structural scenario depicted in Refs. 7
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and 40–42. Our naïve drawings also suggest the following
remark: it is plausible that when the Janus dumbbells have
different diameters, i.e., for σB , σA, their overall, more or
less pronounced, cone-like shape and the A–A attraction are
the driving factors, which always lead to the formation of
micelles.40 For σB ≤ σA these spontaneous aggregates have a
B-core and an A-outside, whereas for σB ≥ σA one has A-core
and B-outside (see, for instance, Fig. 14 of Ref. 7, although we
employ different colors). Spherical micelles are observed even
for σB = σA, although the dumbbell geometry allows for their
formation only at very low densities and temperatures. Overall,
the system would be regarded as a “simple fluid,” built up by
“super-particles” identified with the micellar clusters. Since
the interaction between these super-particles is characterized
by the species involved in the “outside shell,” the phase
behavior found in the MC simulations can be understood in a
very simple way. For σB ≤ σA the super-particles interact as
HS, so that no liquid-vapor phase transition is possible. On the
contrary, for σB ≥ σA the super-particles behave essentially
as SW or SHS “simple-particles”; due to the presence of an
attractive term in the potential, a liquid-vapor phase transition
is now allowed. Probably, for σB ≥ σA the clustering exists at
the beginning but would then become hidden very fast, since
the divergence of SBB(k → 0) overcomes the presence of a
low-k prepeak, which disappears while the clusters merge.

Finally, more insight may be obtained through a
systematic cluster analysis that makes it possible to identify
typical aggregate shapes in terms of three cluster order
parameters, as applied by Avvisati et al.8 to the self-assembly
of patchy colloidal dumbbells. In their dumbbell model the
A and B spheres were not tangential, but intersecting each
other with center-center separation ℓ < (σA + σB) /2, while
the SW interaction range was again half the diameter of the
attractive monomer. The authors showed that by varying the
size ratio σB/σA, the sphere separation ℓ, as well as the
volume fraction η, one can obtain the formation of a large
variety of structures: spherical micelles, elongated micelles,
hollow vesicles, double-layers, liquid-like droplets, and even
faceted polyhedra.

VI. CONCLUSIONS

In this paper we have developed the fully analytic solution
of Wertheim’s two-density integral equations for a fluid of
heteronuclear sticky Janus dumbbells within the associative
Percus-Yevick approximation. Our analysis extends and
completes a previous theoretical study by Wu and Chiew,
only limited to dumbbells made up of equal-size monomers.
Explicit expressions for all the parameters intervening in the
Baxter factor correlation functions have been given, which
would greatly simplify the comparison of specific cases with
simulation data. Our approach provides results for the contact
values of cavity functions that reasonably agree with the
overall phase scenario emerging from MC simulations. In
a preliminary comparison with simulation data by Munaò
et al.7 for SW-Janus-dumbbells, we have checked that in the
hard-dumbbell limit our sticky-Janus-dumbbell predictions
quantitatively agree with the MC results from the former
model. On the other hand, upon progressively switching on

the attractive interactions, the differences between SW-JD and
SJD models seem to increase. In this respect, we anticipate
that further extensive Monte Carlo simulations are currently
underway, where the sticky potential is replaced by one
with a “narrow” square-well attractive corona. We defer to
a forthcoming paper the detailed analysis of the structural
differences between these two fluid models, together with
the elucidation of the conditions allowing for a meaningful
comparison between their structures.
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APPENDIX A: DETAILS OF ANALYTIC COMPUTATION

Replacing hαβ
i j with g

αβ
i j − δi0δ j0 in Eq. (24) gives

rgαβ
i j (|r |) +


qαβ
i j (r)

 ′
=
�
aα
i r + bαi

�
δ j0 + Γ

αβ
i j (r), (A1)

with




aα
i = δi0 − 2π


γ


k
ρ
γ
k0

 σαγ

Lαγ

dz qαγ
ik
(z),

bαi = 2π


γ


k
ρ
γ
k0

 σαγ

Lαγ

dz qαγ
ik
(z) z,

(A2)

and

Γ
αβ
i j (r) = 2π


γ


k,ℓ

ρ
γ
kℓ

 σαγ

Lαγ

dz qαγ
ik
(z)

× gγβℓ j (|r − z |) (r − z) . (A3)

Let us decompose g
αβ
i j into regular (reg) and singular

(sg) parts, i.e., gαβ
i j (|r |) = g

αβ,reg
i j (|r |) + Kαβ

i j σαβδ(|r | − σαβ),
taking also into account the identity δ(|x | − x0) = δ(x − x0) +
δ(x + x0). Then

(i) the l.h.s. of Eq. (A1) becomes

rgαβ,reg
i j (|r |) + Kαβ

i j σαβ

×
�
δ(r − σαβ) + δ(r + σαβ)� +


qαβ
i j (r)

 ′
,

where δ(r + σαβ) can immediately be neglected since
it would “act” at r = −σαβ, while r must satisfy the
constraint r ≥ Lαβ > −σαβ.

(ii) On the r.h.s. of Eq. (A1), Γαβ
i j (r) splits into Γαβ,reg

i j (r) +
Γ
αβ,sg
i j (r). The first contribution Γαβ,reg

i j (r) is given by
Eq. (A3) with g

γβ
ℓ j replaced by g

γβ,reg
i j . Since the

integration range is Lαγ ≤ z ≤ σαγ, it can be shown
that one has |r − z | < σγβ when Lαβ < r < σαβ. Due
to the hard-core conditions Eq. (16), this implies that
g
γβ
ℓ j (|r − z |) = 0 and

Γ
αβ,reg
i j (r) = 0 for Lαβ < r < σαβ. (A4)
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Furthermore, the definition of Γαβ,reg
i j (r) involves inte-

gration, which “smoothes” the possible discontinuities
of the integrand functions. Thus, the Γαβ,reg

i j (r) ’s
are continuous functions, and one finds at contact:
Γ
αβ,reg
i j (σ−αβ) = Γαβ,reg

i j (σ+αβ) = 0.

To evaluate the second term Γαβ,sg
i j (r), we have exploited

the identity δ(|z − r | − σγβ) = δ(z − z−) + δ(z − z+) with
z± = r ± σγβ, as well as the relation

 σαγ

Lαγ

dz qαγ
ik
(z) (r − z) δ(z − z±)

=

 σαγ

Lαγ

dz
�
±σγβ qαγ

ik
(z±)� δ(z − z±)

= ±σγβ qαγ
ik
(z±)

 σαγ

Lαγ

dz δ(z − z±).

The expression for Γαβ,sg
i j (r) then includes the factor

qαγ
ik
(z+)

 σαγ

Lαγ

dz δ(z − z+)

− qαγ
ik
(z−)

 σαγ

Lαγ

dz δ(z − z−). (A5)

Now, from the definition of δ-function it follows that b

a

dx δ(x − x0) = Θ(x0 − a)Θ(b − x0)

=



1 if a < x0 < b
0 otherwise

, (A6)

where Θ is the Heaviside function, with Θ(x > 0) = 1 and
Θ(x < 0) = 1. We thus obtain

Γ
αβ,sg
i j (r) = 2π


γ


k,ℓ

ρ
γ
kℓ

Kγβ
i j σ

2
γβ

×
�

qαγ
ik
(r − σγβ)Θ(r − σαβ)Θ(σαβ + σγ − r)

− qαγ
ik
(r + σγβ)Θ(r − Lαβ + σγ)Θ(Lαβ − r)�

and, since r > Lαβ, the expression reduces to

Γ
αβ,sg
i j (r) = Θ(r − σαβ) 2π


γ


k,ℓ

ρ
γ
kℓ

Kγβ
i j σ

2
γβ

× qαγ
ik
(r − σγβ)Θ(σαβ + σγ − r). (A7)

As a result, we also get

Γ
αβ,sg
i j (r) = 0 for Lαβ < r < σαβ.

In conclusion, in the interval
�
Lαβ,σαβ

�
Eq. (A1)

becomes

qαβ
i j (r)

 ′
=
�
aα
i r + bαi

�
δ j0 − Kαβ

i j σαβ δ(r − σαβ). (A8)

Integrating, and taking into account Eq. (23), we obtain

qαβ
i j (r) =





1
2

aα
i

(
r2 − σ2

αβ

)
+ bαi

�
r − σαβ

�
δ j0 + Kαβ

i j σ2
αβ Lαβ ≤ r ≤ σαβ

0 elsewhere
, (A9)

where the set of parameters

aα
i ,b

α
i ,K

αβ
i j


is yet to be

determined.
Using this expression for qαβ

i j (r) in Eqs. (A2) leads to a
set of equations for the parameters




(1 − ξ3 − 3ξ2σα) aα
i − 6ξ2bαi = δi0 − Xα

i ,

3
2
ξ2σ

2
α aα

i + (1 − ξ3 + 3ξ2σα) bαi =
1
2

Xα
i σα,

(A10)

where ξm =
π
6


γ ργσ
m
γ and Xα

i = 2π


γ σγσ
2
αγ


k ρ

γ
k0Kαγ

ik
.

The solution to this system, reported in Eqs. (30)-(33), gives�
aα
i ,b

α
i

	
as functions of


Kαβ
i j


, which thus remain the last

parameters to be determined.

APPENDIX B: WORKING ON PARAMETERS

Splitting both g
αβ
i j and


qαβ
i j

 ′
into a regular and a singular

part, the two delta terms cancel each other, so that Eq. (A1)

becomes

rgαβ,reg
i j (|r |) + 

qαβ,reg
i j (r) ′

=
�
aα
i r + bαi

�
δ j0 + Γ

αβ,reg
i j (r) + Γαβ,sg

i j (r). (B1)

Let us study it at r = σ+αβ. Here, one has g
αβ,reg
i j (σ+αβ)

= y
αβ
i j (σαβ),


qαβ,reg
i j

 ′(σ+αβ) = Γαβ,reg
i j (σ+αβ) = 0. Using

Eq. (A7) we then arrive at the following expressions for
the cavity correlation functions at contact

σαβ y
αβ
i j (σαβ)
=
�
aα
i σαβ + bαi

�
δ j0 + 2π


γ


k,ℓ

qαγ
ik
(L+αγ)

× ρ
γ
kℓ

qαγ
ℓ j (σ−αγ), (B2)

where qαγ
ℓ j (σ−αγ) = Kγβ

ℓ j σ
2
γβ. From Eqs. (30) and (31) we get

aα
i σαβ + bαi =

(
1
∆
σαβ +

3ξ2

2∆2σασβ

)
δi0 −

Xα
i

2∆
σβ, (B3)
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as well as

qαγ
ik
(L+αγ) = −

(
1
2

aα
i σα + bαi

)
σγ δk0 + Kαγ

ik
σ2
αγ

= − 1
2∆

σασγ δi0δk0 + Kαγ
ik
σ2
αγ. (B4)

The condition qαβ
i j (Lαβ) = qβα

j i (Lβα) implies that

Kαβ
i j = K βα

j i , (B5)

and this allows us to arrive at the final result given by
Eqs. (62) and (63).
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