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Specialized Monte Carlo methods are nowadays routinely employed, in combination with thermo-
dynamic integration (TI), to locate phase boundaries of classical many-particle systems. This is
especially useful for the fluid-solid transition, where a critical point does not exist and both phases
may notoriously go deeply metastable. Using the Lennard-Jones model for demonstration, we hereby
investigate on the alternate possibility of tracing reasonably accurate transition lines directly by
integrating the pressure equation of state computed in a canonical-ensemble simulation with local
moves. The recourse to this method would become a necessity when the stable crystal structure is not
known. We show that, rather counterintuitively, metastability problems can be alleviated by reducing
(rather than increasing) the size of the system. In particular, the location of liquid-vapor coexistence
can exactly be predicted by just TI. On the contrary, TI badly fails in the solid-liquid region, where
a better assessment (to within 10% accuracy) of the coexistence pressure can be made by following
the expansion, until melting, of the defective solid which has previously emerged from the decay of
the metastable liquid. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921884]

I. INTRODUCTION

A recurrent theme in the numerical simulation of
condensed-matter systems is that of metastability, which
seriously plagues the determination of phase boundaries in all
cases where the transition is accompanied by a spontaneous
symmetry breaking. Metastability is evidenced in the dramatic
slowing down of the system relaxation dynamics (be it true
or fake, as in a Monte Carlo (MC) simulation), causing a
noticeable shift of the transition point which prevents the
correct identification of the system structure throughout the
transition region. For example, a better control of coexistence
conditions may be useful in the design of complex-fluid
systems with prescribed self-assembly properties.1

In order to overcome the metastability bottleneck, a
toolbox of smart methods has been developed through the
years, which has made it unnecessary to wait for the
spontaneous nucleation of the stable phase (say, solid) from
the parental phase (liquid). As a matter of fact, only deep in the
solid region the size of the critical nucleus is reduced to such an
extent that the spontaneous formation of a solid embryo occurs
within typical simulation times (once an embryo has formed,
the growth of the solid from the liquid is very fast). Among the
numerical methods which enable one to draw a melting line
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“exactly” (i.e., with a negligible statistical error), we can at
least mention the Einstein-crystal (or Frenkel-Ladd) method
(see, e.g., Ref. 2), the MC phase-switch method,3 the interface-
velocity method,4 and the interface-pinning method.5 Another
method which does not require an interface to form between
coexisting phases is the Gibbs-ensemble method,6 which,
however, only works for the equilibria between fluid phases.
While the three last mentioned algorithms allow one to directly
compute coexistence parameters, a Frenkel-Ladd simulation
rather aims at determining the free energy of the system in
a reference crystalline state far from coexistence. The crystal
free energy in any other state (either stable or metastable) is
then obtained by resorting to thermodynamic integration (TI)
along any path joining the given state to the reference state. The
shortcoming shared by all these approaches is the necessity
to assume a priori the knowledge of the crystalline structure,
whose optimization may in fact be a rather daunting task if the
system of interest is sufficiently complex (see, e.g., the cases
analyzed in Refs. 7 and 8). In such a case, metadynamics9 or
a genetic algorithm10 may be useful ways out.

However, suppose that we do not have any of these
powerful machinery at hand. If we attempt a stepwise approach
to the solid-liquid transition from the liquid side (e.g., by
slowly increasing the density in an isothermal simulation with
local moves), we invariably end up with the formation of
a metastable liquid, thus bypassing the coexistence region.
Eventually, the overcompressed liquid undergoes freezing into
a more or less ordered solid, and the pressure abruptly drops
down. Further compressions lead to a regular increase of the
pressure of the by-now solid system. Clearly, the resulting
equation of state (which superficially recalls the van der Waals

0021-9606/2015/142(21)/214502/10/$30.00 142, 214502-1 © 2015 AIP Publishing LLC
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loop of mean-field theories) is not by itself sufficient to extract
coexistence parameters (for example, the coexistence pressure
may be wrong by 50% or more, see below), and this would be
the rule for numerical experiments implementing local particle
moves only. Obviously, an explicit two-phase simulation
where the position of the interface is recorded as a function of
time4 would be a more straightforward and potentially very
accurate method for locating solid-liquid coexistence but,
in order to implement it, the crystalline structure would be
required as an input. Based on such a discussion, the question
naturally arises as to which simulation features mostly affect
the error made in estimating phase thresholds by exclusive
resort to TI and, in particular, whether the simulation setup
can be managed in such a way that the system relaxation
time becomes acceptably small. Being able to answer these
questions may greatly help in locating solid-liquid coexistence
when the crystalline structure is unknown.

Similar problems would also be encountered when deal-
ing with the condensation of vapor into liquid by isothermal
compression. We know that, owing to the finiteness of the
system and to the use of periodic boundary conditions,
the heterogeneous fluid sample undergoes a sequence of
geometric transitions inside the coexistence region.11–16 Such
pseudo-transitions produce a series of jumps and plateaus in
the pressure and chemical-potential equations of state, raising
doubts on the possibility of accurately computing the chemical
potential of the bulk liquid by moving across the two-phase
region rather than circumventing the critical point. In fact, the
grand-canonical simulations with reweighting performed by
MacDowell et al. have already shown that the location of the
condensation transition is nearly independent on the system
size (see Fig. 4 of Ref. 14), but it is not clear whether standard
canonical molecular dynamics (MD) or MC simulations would
be accurate as well.

In order to find the best strategy for making a reliable
estimate of coexistence thresholds in an ordinary simulation
with local moves, we have considered the Lennard-Jones (LJ)
model in two variants. Using periodic boundary conditions,
we have simulated different system sizes and box shapes,
eventually identifying a workable protocol to minimize the
error due to the occurrence of metastability. Surprisingly,
we found that too large a system size is detrimental to the
accuracy of the chemical-potential reconstruction, for both
the liquid-vapor and solid-liquid transitions. We expect that
the suggestions coming from the analysis of LJ-type models
will in fact be of more general use, thus allowing one to draw
a reasonable melting line also in those cases where no other
route can be successfully pursued.

This paper is organized as follows. In Sec. II, we introduce
the models under study and describe the simulation method
in detail. Canonical-ensemble results for both the liquid-vapor
and the solid-liquid transitions are discussed in Sec. III. A few
concluding remarks are presented in Sec. IV.

II. MODEL AND METHOD

In order to assess the ability of traditional simulation
methods to predict accurate transition boundaries, any model
fluid whose behavior is known with very high precision would

suffice. Hence, we have chosen the paradigmatic LJ model.
We have considered two variants of the LJ potential: (model
A) the original potential, truncated at 5σ and augmented with
energy and pressure long-range corrections (whose critical and
triple-point temperatures are, respectively, Tc ≃ 1.32 ϵ/kB

17

and Tt ≃ 0.69 ϵ/kB,18 where kB is Boltzmann’s constant) and
(model B) the cut-and-shifted LJ potential,

u(r) =



4ϵ
�(σ/r)12 − (σ/r)6� − c, for r < rcut

0, for r > rcut

with (2.1)

c = 4ϵ


(
σ

rcut

)12

−
(
σ

rcut

)6
,

with rcut = 2.5σ; no long-range corrections are required in this
case. The critical temperature of model B is slightly less than
1.10 ϵ/kB

17 (from now on, all quantities will be expressed in
the units set by ϵ and σ).

As far as model A is concerned, we carried out canonical-
ensemble, NVT molecular-dynamics simulations (where N
is particle number and V is volume) using the MOLDY
code19 (in this package the temperature T is set by a Nosé-
Poincaré thermostat20). The sample consisted of N = 1372
particles enclosed in a cubic simulation box whose edge
varies according to the value of the number density ρ = N/V .
Periodic boundary conditions (PBC) were applied. For model
A, all simulation runs were started from scratch, i.e., from
an initial face-centered cubic (fcc) configuration with random
momenta. The time length of each run was typically 25 000 ps,
with an integration time step of 5 × 10−15 s; statistical averages
were computed over the last 5000 ps only.

As for model B, we performed NVT Metropolis MC
simulations for samples of various sizes (N = 108,256,500,
1372,4000) in a cubic box with PBC. We also considered
a system of 1500 particles in an elongated, cuboidal box.
Simulation runs for model B were made in a sequence:
for each state point along a path, the initial configuration
was taken to be the last (rescaled) configuration generated
at the previous state. For each state, a number M of
MC cycles (one cycle = N elementary particle moves)
were first produced to achieve equilibration, followed by
other M cycles over which the equilibrium averages were
computed. All of our runs within the liquid-vapor re-
gion were made of as many as 4 × 106 cycles (M = 107

for N = 1372), whereas we took M = 5 × 105 (M = 106

for N = 4000) for higher densities. Statistical errors were
estimated assuming no correlation between block averages
(the equilibrium trajectory was usually divided in ten blocks).

Along an isothermal path, the excess Helmholtz free
energy per particle was computed through the equation

β fex(ρ,T) = β fex(ρ1,T) +
 ρ

ρ1

(
βP(ρ′,T)

ρ′
− 1

)
dρ′

ρ′
, (2.2)

where β = (kBT)−1. In order to set the free-energy offset, a low-
density and high-temperature fluid was taken for reference. At
this point, the chemical potential was computed by Widom’s
method.21 The grid spacing along an isothermal path was typi-
cally ∆ρ = 0.01. The raw data were interpolated by spline

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

62.211.230.38 On: Mon, 01 Jun 2015 17:06:33



214502-3 Abramo et al. J. Chem. Phys. 142, 214502 (2015)

functions and then integrated through Eq. (2.2). For an integra-
tion along an isochoric path, a different formula was used,

β fex(ρ,T) = β1 fex(ρ,T1)
−
 T

T1

e(ρ,T ′) − (3/2)kBT ′

kBT ′2
dT ′, (2.3)

where e is the energy per particle. The grid spacing along
isochoric paths was ∆T = 0.05. From the knowledge of fex,
one promptly derives the chemical potential µ and can thus
identify a first-order transition point as the point where, e.g.,
the µ(P) curves of the two phases cross each other at constant
temperature.

For a thorough check of our method, we computed the
free energy of model B at a reference fcc-solid state by the
Frenkel-Ladd method. This calculation provided a benchmark
estimate of solid-liquid coexistence with which to compare.

III. RESULTS

We carried out extensive simulations of models A and
B, for various temperatures and with different simulation
protocols, in order to gain as much information as possible on
the ability of traditional simulation methods to predict accurate
liquid-vapor and solid-liquid boundaries. In the following, we
keep the analysis of the two transitions distinct, since they
have specificities which recommend a separate treatment.

A. The condensation transition and the shape
of the liquid-vapor interface

Suppose we start with a stable vapor at a certain
temperature T < Tc and then slowly increase the pressure
P until condensation occurs. Clearly, this simple-minded
approach to liquid-vapor coexistence is doomed to fail since
the vapor usually goes metastable. Quite different would be
the outcome of the experiment if the system density ρ (rather
than its pressure) is increased in steps: in this case, the path
goes through the liquid-vapor region and the pressure is a
continuous function of the density. The question is: will liquid-
vapor coexistence be properly characterized by plain TI or, in
other words, how correct is the chemical potential µ of the
liquid as computed via Eq. (2.2)?

As remarked by Binder and coworkers in a number of
recent papers,12,14–16 but actually known since the early times
of the computer-simulation era,22 a finite-size vapor system
in a periodic simulation box undergoes, in the two-phase
region, a sequence of so-called “geometric transitions,” which
are morphological transitions of the interface between liquid
and vapor. For each geometric transition (actually a more or
less pronounced crossover, depending on the system size N)
P(ρ) exhibits a drop, while staying roughly constant in the
density interval between one pressure “jump” and the next
one (we emphasize that these features of P(ρ) are equilibrium
characteristics elicited by the use of PBC). As N grows, the
jumps reduce in extent until just one perfect plateau only is
left in the thermodynamic limit, extending from ρv to ρl (the
bulk coexistence densities of vapor and liquid). While the
density location of each geometric transition is only slightly
size-dependent, the pressure level of each intermediate plateau

exhibits a stronger dependence on N , thus raising doubts on the
possibility of obtaining the right coexistence via integration of
the equation of state across the binodal line.

In order to elucidate this point and to quantify the error,
we carried out simulations of the LJ models A and B, with
the method described in Sec. II. For model A, we analyzed
two isothermal paths at T = 0.75 and T = 1. As for model B,
runs were performed sequentially, moving with small steps
along the integration path for T = 0.90, with samples of
N = 500,1372, and 4000 particles in periodic cubic boxes.
Even though more time-consuming, executing the runs one
after the other allowed us to keep at a minimum the time
needed by the structure to relax to equilibrium. For the
same temperature T = 0.90, we also simulated 1500 model-B
particles enclosed in a periodic cuboidal box with edges in the
ratio of 1 : 1 : 3.

Starting with model B in a cubic box, we first computed
the chemical potential for ρ = 0.02 and T = 1.40 (a dilute-gas
state denoted G) by Widom’s method (at this state point the
production run was 5 × 106 cycles long). We then considered
two different paths from G to a liquid state L (ρ = 0.75 and
T = 0.90): one path consists of the T = 1.40 isotherm up to ρ
= 0.75 plus a portion of the ρ = 0.75 isochor down to T = 0.90
(path 1); the other path (2) descends isochorically down to
T = 0.90 and then continues isothermally up to ρ = 0.75.
While path 1 circumvents the binodal line, the isothermal
portion of path 2 crosses the liquid-vapor region from one
side to the other. The energy and pressure equations of state
for N = 1372 along the T = 0.90 and T = 1.40 isotherms are
shown in Fig. 1. While P is a smooth function of ρ along path
1, it shows a rich structure along the T = 0.90 isotherm, due to
the occurrence of the geometric transitions mentioned above.
In particular, by looking at a few system snapshots (see, e.g.,
Fig. 6 below), we were able to confirm that the liquid-drop
shape changes from spherical to cylindrical to slab-like as ρ
increases along path 2 (the further shape transitions where the
roles of vapor and liquid are inverted14 are not present here,
likely because they would require much larger N values to
be resolved). The chemical potential for T = 0.90, as either
a function of pressure or density in the two-phase region, is
plotted in Fig. 2. We see that µ , µcoex in the central part of the
region, contrary to what expected for a slab configuration.15

We attribute this feature to a finite-size effect typical of the
canonical ensemble (see Fig. 5 below). Indeed, a similar effect
is seen in the pressure, which slightly deviates from Pcoex in
the same density range.

The chemical potential at L as computed through path 1
was found to be −2.2942 (with M = 5 × 105 cycles in each
production run). Choosing instead path 2 (now with M = 107,
so as to reduce the statistical error on P), the value of µ at L
turned out to be practically the same (−2.2945 for N = 500
and−2.2923 for N = 1372), with a residual discrepancy which
we essentially ascribe to the finite step of the integration
grid, causing imperfections in the spline interpolation of the
pressure data especially for N = 1372. From the crossing
of liquid and vapor chemical potentials, we derived the
coexistence densities for N = 1372: we found ρv = 0.0451
and ρl = 0.6649, corresponding to a coexistence pressure of
Pcoex = 0.031 46, which well compare with preexisting data
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FIG. 1. LJ model B, energy and pres-
sure equations of state for 1372 parti-
cles in a cubic box with PBC (left: T
= 0.90; right: T = 1.40). Here, only the
range from low to moderate densities
is examined. Statistical averages were
computed over M = 107 MC cycles.
The three pressure plateaus observed in
the left-bottom panel correspond, in or-
der of increasing density, to a spherical,
a cylindrical, and a slab-like droplet of
liquid immersed in a vapor (see next
Fig. 6). The vertical lines mark the co-
existence densities of vapor and liquid,
ρv and ρl; the full horizontal line is lo-
cated at the coexistence pressure, Pcoex.

(see, e.g., Table II of Ref. 23). We have attempted to quantify
the error on the chemical potential from the statistical error
attached to the raw pressure data. Using standard error-
propagation formulas, we estimated a precision on µ in the

FIG. 2. LJ model B, chemical potential of 1372 particles in a cubic box with
PBC, plotted as a function of either pressure or density forT = 0.90 across the
liquid-vapor region. While in the top panel, we observe the cusp of µ(P) at
the transition, the three plateaus corresponding to spherical, cylindrical, and
slab-like liquid droplets are seen in the bottom panel. The vertical lines stay
at the coexistence densities of vapor and liquid, whereas the horizontal line
marks the coexistence chemical potential µcoex=−3.0530.

liquid of about one unity on the third decimal figure. This result
is gratifying, since it means that pressure integration across a
two-phase region is a valid tool to compute µ. Obviously,
choosing a path which circumvents the critical point remains
the favored option to determine the chemical potential, since
the pressure is then a smoother function of the density and
relaxation to equilibrium is much faster.

One might think that increasing the system size, say, from
1372 to 4000, would entail a better estimate of the liquid µ,
i.e., a better compliance with the chemical potential computed
along path 1, for the obvious reason that the bulk limit is
closer. In fact, this proves to be false. Using N = 4000 with
M = 4 × 106, we obtained −2.2832, appreciably far from the
value computed along path 1. This error is precisely due to the
use of too big a sample. Indeed, for N = 4000, we observed
a hysteretic behavior near geometric-transition points (see
Fig. 3): the pressure values found by moving backwards in
density are rather different from those registered along the
forward path. Different is the case for N = 1372, where no
hysteresis was found. The occurrence of metastability for
geometric transitions is clearly responsible for the failure of
TI. The conclusion is that TI can be safely applied across a
two-phase region, provided only that the size of the system is
sufficiently small (obviously not too small, otherwise finite-
size corrections will dominate).

We have also investigated the role played by the shape
of the simulation box. We carried out a MC simulation of
1500 model-B particles in a cuboidal box for T = 0.90 (with
M = 4 × 106 cycles in each production run). In Fig. 4, we
make a comparison of the equations of state for this system
with those for 1372 particles in a cubic box. In the two-
phase region and in spite of the similar sizes, we see that
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FIG. 3. LJ model B, energy and pressure equations of state at low density
for T = 0.90: N = 1372 (black open dots) and N = 4000 (red open squares).
For every state point, averages were computed over M = 4×106 MC cycles.
We show the effect of retracing the e and P curves backwards in den-
sity (full dots and squares): while nothing particular happens for N = 1372
(i.e., the system travels the thermodynamic path reversibly), hysteresis is
found close to geometric-transition thresholds for N = 4000 (this effect is
less visible for the energy but nonetheless present). The vertical line marks
the position of ρv whereas the full horizontal line stays at the level of
Pcoex.

FIG. 4. LJ model B, energy and pressure equations of state for T = 0.90:
N = 1372 particles enclosed in a cubic box with PBC (black dots) and
N = 1500 particles enclosed in a cuboidal box with PBC (blue squares). The
statistical errors affecting the data are smaller than the size of the symbols.
The vertical lines mark the positions of ρv and ρl. A full horizontal line has
been drawn at Pcoex.

FIG. 5. LJ model B, pressure (top) and chemical-potential equation of state
(bottom) near the center of the liquid-vapor region for systems of various
sizes: N = 500 (green diamonds), N = 1372 (black dots), N = 4000 (red
triangles), and N = 1500 (blue squares, elongated box). The arrow in the top
panel marks the center of the two-phase region. The horizontal lines are drawn
at the coexistence pressure (top) or chemical potential (bottom) for N = 1372.
The vertical lines mark the vapor coexistence density ρv.

FIG. 6. LJ model A, pressure equation of state for T = 0.75 (only the range
from low to moderate densities is shown). In addition to the three expected
“plateaus” (see Fig. 1), we see another one, marked in the figure, where the
liquid drop has the shape of a punched slab (see an example in Fig. 7).
The miniatures show typical system configurations in the regions indicated
by the arrows. Particles (which here were given a diameter of σ) have
been colored differently, according to the number nNN of nearest neighbors
(NN) of each (two particles are said to be NN of each other if they stay
within a distance rmin, which is where the radial distribution function of
the liquid at coexistence attains its first non-zero minimum). The color code
is as follows: nNN= 4 or 5, yellow; nNN= 6 or 7, magenta; nNN= 8 or 9,
green; nNN= 10 or 11, cyan; nNN ≥ 12, blue (particles with nNN ≤ 3 were not
plotted).
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the pressure of the two systems is largely different, due
arguably to an explicit dependence of the geometric-transition
thresholds on the box aspect ratio. Note, in particular, that in
the elongated-box case, the spherical “phase” is washed out
(as was checked by inspection of many system configurations)
whereas the cylindrical “phase” is greatly reduced in extent.
Notwithstanding the difference in pressure between the
two systems, their coexistence parameters are very close:
for N = 1500, we found Pcoex = 0.031 49, µcoex = −3.0523, ρv
= 0.0452, and ρl = 0.6649; finally, the chemical potential at
point L was found to be −2.2912, again close to that computed
along path 1.

The top panel of Fig. 5 shows the pressure equation of
state near the center of the liquid-vapor region for model-B
systems of various sizes. We see that, for ρ ≃ (ρv + ρl)/2,
the difference Pcoex − P(ρ) becomes smaller as the size of
the system grows. The system in the elongated box is an
exception, in that the discrepancy is smaller than for a sample
of comparable size (N = 1372) but enclosed in a cubic box.
The same effect is seen in the chemical potential (bottom
panel): the value of µ at the center of the two-phase region
is closer to µcoex for N = 1500 (elongated box) than for
N = 1372 (cubic box).

Finally, we looked at model A for two different subcritical
temperatures, T = 0.75 and T = 1. We made no attempt to
perform sequential simulations for this system but rather ran
the MD code for each state point independently, using an initial
fcc configuration for every density. A rapid glance at Fig. 6
shows that a further pressure “plateau” now shows off in a ρ
range between those relative to cylindrical- and slab-shaped
liquid drops. By looking at the typical system configuration
in this density range, it appears that the liquid gives rise to
an unusual, brand-new arrangement: a slab with a circular
hole inside (see an example in Fig. 7). The same evidence was
found at the higher temperature T = 1, though the extra plateau
is now narrower. However, the extra plateau for T = 1 soon
disappeared when we doubled the length of the MD trajectory

FIG. 7. LJ model A, a snapshot of the system configuration for ρ = 0.262
and T = 0.75. The liquid drop has the shape of a slab with a circular hole. The
color of each particle has been decided on the basis of the number of NN, as
explained in the caption of Fig. 6. White particles are those with nNN ≤ 3.

while nothing similar happened for T = 0.75. We argue that the
hollow-slab structure of the liquid drop is a manifestation of a
stable (or nearly stable) heterogeneous “phase” of the system,
at least for sufficiently low temperatures. This structure did not
emerge in our model-B simulations likely because T = 0.90
is not too low a temperature, or for the simple reason that
sequentially generated configurations unavoidably bear some
memory of the structure of the system in the previous run
performed with a slightly smaller density, a bias not present
when runs are performed in parallel.

B. The solid-liquid transition of the LJ system

We have seen that a straightforward NVT simulation is
able to reproduce the subtle structure of the LJ fluid inside
the liquid-vapor region. In addition, TI works correctly across
the two-phase region, at least provided the system is not too
big. This happens thanks to the fast relaxation of the system
to equilibrium: in spite of the non-zero cost of interface
formation, the density of the heterogeneous fluid is not as
large as to prevent particles from finding their place in the
overall system architecture in a time affordable by a MD or MC
simulation. Different is the case of a dense fluid approaching
solidification at constant temperature. In this case, relaxation
times are so long that a simulation with local moves simply
fails to notice the existence of a more stable crystalline phase
and the fluid then goes metastable. A noteworthy exception is
Ref. 24 where, thanks to the reduced system dimensionality
and, especially, to a smart simulation method, one observes
a few geometric transitions also in the solid-liquid region. In
Ref. 25, the existence of shape transitions was instead implicit
in the kind of heterogeneity emerging out of a very long run
carried out at selected densities within the solid-liquid region
on a system initially prepared in a liquid configuration with a
solid droplet inside. Hence, the right question one should ask
is whether in an ordinary simulation things can be so arranged
that the error made in estimating coexistence parameters by
TI can be kept at a minimum.

We simulated model A for various temperatures (T
= 0.75,1.15,1.35,2.00,2.74) by preparing 1372 particles in
a perfect fcc configuration and then letting them evolve
for a fixed density (as is well known, for sufficiently high
temperatures, the stable LJ crystal is fcc rather than hexagonal
close packed, see, e.g., Ref. 26). We wanted to check down
to what density the crystal withstands the thermal motion
of the particles for long without melting. For instance, for
T = 1.15 (1.35), we know from Ref. 27 that the coexistence
densities are ρl = 0.936 (0.964) and ρs = 1.024 (1.053). We
report the final system pressure as a function of density in
Fig. 8. We see that the undercompression of the crystal is
indeed small, but the values found for the pressure in the
coexistence region are admittedly wrong. Upon interpolating
these data with spline functions, we found ρl = 0.907 (0.934)
and ρs = 0.992 (1.000), about 8% (4%) away from the known
thresholds.

Moving to model B, Pedersen has recently computed the
transition boundaries for T = 0.90 (1.40),5 finding ρl = 0.903
(0.988) and ρs = 0.989 (1.061), for a coexistence pressure
of Pcoex = 3.514 (11.181). We first checked our MC code and
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FIG. 8. LJ model A, pressure equation of state for T = 1.15 (blue dots) and
T = 1.35 (red squares) in the high-density region, obtained by performing
a long MD simulation at each density from an initial perfectly ordered fcc
configuration (N = 1372). For, e.g., T = 1.15, at the end of the simulation the
crystal still keeps its structure for ρ & 0.95 while it has eventually melted for
smaller ρ values.

method against these benchmarks by computing, for N = 1372
particles in a cubic box with PBC, the “exact” Helmholtz free
energy of the fcc crystal for ρ = 1.20 and T = 0.50 by the
Frenkel-Ladd method. Using this state for reference, TI allows
one to obtain the chemical potential of the fcc crystal in any
other state where this phase is stable or metastable. Upon
comparing the crystal µ with the fluid chemical potential,
we located the phase transition at Pcoex = 3.459 (11.066) for
T = 0.90 (1.40), whence obtaining ρl = 0.901 (0.987) and
ρs = 0.988 (1.060), which are extremely close to Pedersen’s
values (for T = 0.90, the chemical potentials of liquid and
solid are plotted throughout the relevant pressure range in
Fig. 9).

We reported our energy and pressure data for the
isothermally compressed fluid in Fig. 10, where we see that
the fluid goes deeply metastable at both temperatures, until
it abruptly transforms at a certain density into a (defective)
crystal (both the energy and pressure of the solid resulting
from the decay of the metastable fluid are larger than those of
the fcc crystal). Also the fcc crystal became metastable but the
undercompression of the crystal is a moderate effect compared
to the overcompression of the fluid. In Fig. 11, we plotted the
elastic constants (see, for example, Ref. 30) and Steinhardt
order parameters (OPs),31 of the system along the fcc branch.
We see that both the elastic moduli and orientational OPs
vanish at the ultimate metastability threshold of the crystal
rather than at the melting density. Hence, there is no hope of
getting ρs (and Pcoex as well) from the vanishing of the crystal
OPs.

If we were to estimate the coexistence parameters from
the integration of P(ρ) along the fluid branch, we would
obtain a pressure which, for example, at T = 1.40 is wrong
by as much as 80%. This wrong estimate of P even slightly

FIG. 9. LJ model B, chemical potential vs. pressure for N = 1372 and
T = 0.90. The phase transitions are evidenced in the two cusps of µ(P), at
(0.031 46,−3.0530) (liquid-vapor transition) and at (3.4589,1.1527) (solid-
liquid transition). A magnification of the transition regions is shown in the
insets (right bottom inset, liquid-vapor transition; left top inset, solid-liquid
transition). The thin horizontal and vertical lines in the insets mark the
location of the transition points.

worsens should we go up in size from 1372 to 4000 (for
a M value of equal magnitude). That is, notwithstanding
there are more opportunities in a larger system for the solid
to nucleate spontaneously, the more pronounced inertia of
the bigger liquid to convert into a solid eventually prevails.
This evidence suggests that a better strategy to reduce the
error of Pcoex is to decrease (rather than increase) the system
size. As shown in Fig. 12, this expedient actually works: the
decay of the metastable fluid into a solid occurs for a density
which is systematically lower the smaller the system. The best
result ever (that is, Pcoex overestimated by “only” 16% for
T = 1.40) was obtained for N = 108, a system so small that
for high densities, we had to include energy and pressure tail
corrections in terms of a radial distribution function computed
beyond half box edge, up to 2.5σ (see Ref. 32 for details).
Looking retrospectively, we conclude that PBC stabilize the
crystalline phase in a small system more effectively than
a larger availability of nuclei centers would do in a large
system.

A still better estimate of coexistence thresholds is
obtained if, as soon as the metastable fluid has decayed into
solid, we start following the defective-solid branch backwards
in density until the system re-melts (to accomplish this
purpose, it is not necessary to know the crystalline structure in
advance). We expect a small-size crystal with imperfections
to melt upon isothermal expansion very near the true melting
point; this is why the minimum pressure of this solid is a
rather good estimate of Pcoex: for model B (N = 256), we
predicted Pcoex = 3.099 (10.532) for T = 0.90 (1.40), both
estimates being within 10% of the exact values.
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FIG. 10. LJ model B, energy and pres-
sure equations of state at high den-
sity for T = 0.90 (left) and T = 1.40
(right) along the fluid (black open dots)
and the fcc-crystal branch (blue full
dots), for N = 1372. By exact free-
energy calculations, the transition for
T = 0.90 (1.40) is located at Pcoex
= 3.461 (11.066), marked by a hori-
zontal line, in perfect agreement with
the thresholds reported in Table I of
Ref. 5. The vertical lines represent the
exact melting and freezing densities.
We have also reported (as red open dots)
the energy and pressure values obtained
by moving backwards in density from
the last point reached along the fluid
branch.

FIG. 11. LJ model B, cubic elas-
tic constants and Steinhardt parame-
ters along the fcc-crystal branch for T
= 0.90 (left) and T = 1.40 (right). The
three elastic constants were computed
by the formulas derived in Ref. 28
(c11, red crosses; c12, blue squares; c44,
black dots). The orientational OPs, q4
(squares) and q6 (dots), were obtained
by the method described in Ref. 29. The
vertical lines represent the exact melt-
ing and freezing densities. Both c44 and
the orientational OPs are found to van-
ish exactly where the metastable crystal
melts (see Fig. 10).
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FIG. 12. LJ model B, energy and pres-
sure equations of state at high density
(fluid branch, open symbols) for sys-
tems of various sizes: N = 108 (blue
triangles), 256 (inverted triangles), 500
(diamonds), and 4000 (red squares).
The data points for N = 108 and N
= 4000 were joined by straight-line seg-
ments to guide the eye. The energy and
pressure for a 1500-particle system in
a cuboidal box are also shown (crosses
and dotted lines). Left: T = 0.90; right:
T = 1.40. Full symbols refer to data
points for N = 256 obtained by follow-
ing the solidified system backwards in
density.

IV. CONCLUSIONS

A cheap way to work out the entire phase diagram of a
model fluid is by following the isothermal evolution of the
pressure P as a function of density ρ, any loop in P(ρ)
being the hallmark of the crossing of a two-phase region
(see, for instance, Refs. 8, 33, and 34). However, traditional
simulation methods usually fail to attain thermal equilibrium
near transition points and the question is whether it is possible
to obtain accurate transition thresholds from an equation of
state which is only approximate in the coexistence regions.

To this aim, we have studied the Lennard-Jones model as
its behavior is paradigmatic for most fluids. We first verified
that the liquid chemical potential is indeed exactly recovered
through pressure integration along a path crossing the liquid-
vapor coexistence region, at least unless the sample is too
big (for a too large system, the chemical-potential estimate
is far from perfect because of pressure hysteresis close to
morphological transitions of the liquid drop). Conversely, the
same confidence cannot be placed in the chemical potential
computed along a fluid branch running across the solid-
liquid region. It is a fact that neither molecular dynamics nor
Metropolis Monte Carlo simulation can achieve equilibration
in the solid-liquid region in a sufficiently short time. If we
anyway decide to avoid using smarter simulation methods, the
most we can do is to employ systems of moderate size since
too large systems incur a more serious form of metastability.
We found that a decent estimate of the transition pressure
(accurate to within 5%-10%) can be obtained by isothermally
expanding until melting the defective solid eventually emerged
from the freezing of the metastable liquid. Clearly, the error

remains and it is at the least problematic to infer reliable
melting and freezing densities from a non-monotonic pressure
by plain thermodynamic integration, especially when the
phase diagram is suspected to host many crystalline phases
of nearly equal stability. A more systematic analysis of the
merits and pitfalls of pressure integration, in comparison with
other heuristic methods (along the lines of what done in, e.g.,
Refs. 30, 35, and 36) is deferred to a future study.
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