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Isotropic pair potentials that are bounded at the origin have been proposed from time to time as mod-
els of the effective interaction between macromolecules of interest in the chemical physics of soft
matter. We present a thorough study of the phase behavior of point particles interacting through a
potential which combines a bounded short-range repulsion with a much weaker attraction at mod-
erate distances, both of Gaussian shape. Notwithstanding the fact that the attraction acts as a small
perturbation of the Gaussian-core model potential, the phase diagram of the double-Gaussian model
(DGM) is far richer, showing two fluid phases and four distinct solid phases in the case that we have
studied. Using free-energy calculations, the various regions of confluence of three distinct phases
in the DGM system have all been characterized in detail. Moreover, two distinct lines of reentrant
melting are found, and for each of them a rationale is provided in terms of the elastic properties of
the solid phases. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866897]

I. INTRODUCTION

Interaction potentials accounting for effective forces in
complex fluids can be quite different from those typical of
atomic fluids.1 In particular, while in elementary fluids the
short-range interaction is always infinitely repulsive due to
excluded-volume effects, in complex fluids the effective inter-
actions obtained by averaging over microscopic/internal de-
grees of freedom may result in a bounded repulsion, thus al-
lowing full particle interpenetration. For example, polymers
in a good solvent form highly penetrable coils and the repul-
sion between their centers of mass is finite at all distances,
decaying rapidly beyond the radius of gyration of the coils.
For self-avoiding polymers, the effective pair potential is rea-
sonably well represented by a Gaussian whose width is of the
order of the radius of gyration whereas its value at zero sepa-
ration is roughly 2kBT.2

A bounded repulsion may be combined with an at-
tractive tail. For instance, in polymer solutions depletion
(e.g., Asakura-Oosawa) forces give rise to a weak attrac-
tion between two polymers.1 However, a pair potential with
a bounded repulsion and an attractive component may be
thermodynamically unstable. The issue of thermodynamic
stability in the context of the penetrable-sphere potential
supplemented by a square-well attraction has been recently
discussed by Giacometti and co-workers.3, 4 As first pointed
out by Fisher and Ruelle,5 if the potential is not sufficiently
repulsive to discourage particles overlap, the system collapses
into a small volume and no thermodynamic limit exists. Fisher
and Ruelle derived sufficient conditions for a bounded pair
repulsion with an attractive tail to lead to thermodynamic
equilibrium.
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In the present paper, we investigate the phase behavior
of a model fluid with a bounded interparticle repulsion and a
longer-ranged attraction. In particular, both the repulsion and
the attraction are given a Gaussian shape. Our purpose is to in-
vestigate the effect of a weak attraction on the melting behav-
ior associated with the Gaussian repulsion. The strength of the
attraction is chosen small enough so that the double-Gaussian
fluid is everywhere thermodynamically stable. Moreover, the
center of the attractive well is displaced from the repulsive
core in order that the strength of the repulsion be roughly un-
affected by the attraction. This makes it possible to compare
the phase behavior of the system investigated here with that
of the popular Gaussian-core model (GCM) fluid.6–10

The outline of the paper is the following. After introduc-
ing the double-Gaussian model and briefly describing the sim-
ulation method in Sec. II, our results are presented in Sec. III.
Thanks to these calculations, the characteristics of the phase
diagram of the system are uncovered to their finest details.
Some concluding remarks are given in Sec. IV.

II. MODEL AND METHOD

We are going to explore how the phase diagram of the
three-dimensional GCM fluid is being modified when a shal-
low attractive well is added, at medium-range distances, to
the repulsive Gaussian core. Clearly, a prominent effect of the
attraction will be to provide the original GCM system with an-
other (liquid, as distinct from vapor) fluid phase, although we
also expect important changes in the solid sector of the phase
diagram, at least for pressures low enough that the average
distance between two neighboring particles in the system is
much larger than the core size.

To be concrete, let the following pair potential be
considered:

u(r) = ε exp{−r2/σ 2} − ε2 exp
{− (r − ξ )2/σ 2

2

}
, (2.1)
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FIG. 1. Upper panel: DGM potential u(r), see Eq. (2.1), for ε2 = 0.005ε, σ 2
= σ , and ξ = 3σ (solid line), together with the force f(r) = −u′(r) (dashed
line). In the lower panel, a magnification of the small-u region is shown so as
to highlight the attractive well.

where ε and σ are arbitrary energy and length units, respec-
tively. The potential (2.1) defines what will be called the gen-
eral double-Gaussian model (DGM). As far as we know, no
thorough study of the phase behavior of the DGM potential
has hitherto been performed, nor even for ξ = 0. Aiming to
perturb the GCM phase diagram only slightly, we shall take,
quite arbitrarily, ε2 = 0.005 ε, σ 2 = σ , and ξ = 3σ (see
Fig. 1). With this choice, the inner particle core is almost un-
changed with respect to the GCM with the same ε and σ , thus
suggesting very similar GCM and DGM high-pressure behav-
iors; moreover, considering the closeness of ε2/kB to the max-
imum GCM melting temperature Tmax, we expect the critical
temperature Tc of the DGM fluid to be of the order of Tmax

too.
As anticipated in the Introduction, a problem of stabil-

ity may arise for a system of particles interacting through
a repulsive potential that is finite at the origin when it is
augmented with an attractive tail. If the added attraction is
too strong, a thermodynamic catastrophe occurs in that, in
the infinite-size limit, all system particles eventually con-
centrate in a finite region of space; should this happen, no
clearly defined thermodynamics would be possible for the
system. In order to figure out whether this be the case or
not for the DGM potential hereby considered, we resorted
to a pair of criteria originally put forward by Ruelle (see
Propositions 3.2.4 and 3.2.7 of Ref. 11), which have been re-
cently revived by Heyes and Rickayzen (Theorems 1 and 2 of
Ref. 12). Denoting ũ(k) the Fourier transform of the poten-
tial, a sufficient condition for instability is ũ(0) < 0. Con-
versely, if we are able to prove that ũ(k) ≥ 0 for all k then
the system is stable. For the interaction potential in Eq. (2.1),
the Fourier transform can be formally evaluated in terms of
the error function of complex argument. For σ 2 = σ and ξ

= 3σ , we find ũ(0) < 0 for ε2 > 0.026315 ε. Below exactly
the same threshold ũ(k) is positive definite. Hence, we were

TABLE I. Zero-temperature phases of the DGM system under study. For
each pressure range in column 1, the thermodynamically stable phase
is indicated (column 3) together with its values of the number density
ρ (column 2).

P range (ε σ−3) ρ range (σ−3) Stable phase

0–0.00013 0.0677–0.0710 bcc
0.00014–0.01162 0.0781–0.1361 fcc
0.01163–0.03386 0.1364–0.1752 hcp
≥0.03387 ≥0.1761 bcc

able to decide on the stability of the system for all values
of ε2: for σ 2 = σ and ξ = 3σ , the DGM system is stable
for ε2 < 0.026315 ε; above this value, it is actually unstable
and thus u(r) cannot serve as an interaction potential of stable
matter.

Once the stability of the DGM system has been estab-
lished, the next step is to find the relevant crystalline struc-
tures at low temperatures, so as to provide the necessary input
to the simulation of the system in the solid sector of the phase
diagram. This was accomplished through exact T = 0 total-
energy calculations for a set of candidate structures compris-
ing Bravais and non-Bravais lattices with at most one internal
parameter (see the complete list of such structures in Ref. 13).
This list also included clustered fcc and bcc crystals with two
particles per lattice site.10

Table I reports the T = 0 phase boundaries for those
solids whose chemical potential turned out to be lowest over
a range of pressures (any other crystalline phase is much far
above in chemical potential to be considered relevant for non-
zero temperatures). We see that there are two distinct P in-
tervals where the bcc phase is thermodynamically stable at T
= 0. In particular, a bcc solid is expected to occur at very low
pressures. Although we can easily envisage the existence of
a subtle competition between this dilute solid and the fluid
phases, this question can only be settled by accurate free-
energy calculations.

The phase diagram of the DGM model was carefully
investigated by Monte Carlo (MC) simulation in the NPT
(isothermal-isobaric) ensemble (Sec. III). In order to trace the
liquid-vapor binodal line, we made use of Gibbs-ensemble
simulations.14 Systems of about 1000 particles (with peri-
odic repetition of the simulation box) are perfectly suitable
for investigating bulk properties and for determining phase
boundaries; for such sizes, there is no advantage in employ-
ing cell linked lists in the simulation. Typically, as many
as 105 sweeps/cycles were generated at equilibrium for ev-
ery (T, P) point along a simulation path, which proved suf-
ficient to obtain accurate statistical averages for the volume
and the energy per particle. Much longer runs of 5 × 105

sweeps each were performed for the calculation of the chem-
ical potential in the fluid phase by Widom’s particle-insertion
method.15 The location of the melting transition was deter-
mined through thermodynamic integration along isobaric and
isothermal paths (see, e.g., Ref. 16), combined with “exact”
free-energy calculations for some selected states. While in
the fluid sector of the phase diagram the reference state was
a dilute gas, in the solid region we chose a low-temperature
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FIG. 2. Numerical DGM phase diagram in the P-T plane. We show: the
liquid-vapor coexistence points obtained from Gibbs-ensemble simulations
(black diamonds), along with the estimated critical point (black asterisk); the
solid-liquid and solid-solid coexistence points obtained from the “exact” free-
energy calculations described in the text (filled dots, squares, and triangles);
a few points on the structural-anomaly locus (red open diamonds) and one
point on the volumetric-anomaly locus (the red open square; the maximum-
density locus continues towards higher densities in a region of the phase dia-
gram that we have not investigated). The lines through the points are plotted
as a guide for the eye. The bcc-vapor coexistence line is only schematic. The
black open triangle lies on the metastable continuation of the high-pressure
fcc-bcc locus inside the liquid region of stability. We included it only to show
that the fcc-bcc coexistence temperature reaches a maximum as a function of
pressure roughly at the confluence with the melting line.

crystal (a different one for each solid phase) as the start-
ing point of a MC trajectory. In any such state, the excess
Helmholtz free energy per particle was computed by the
Einstein-crystal method.17, 18

III. RESULTS

We display in Fig. 2 the overall P-T phase diagram of
the DGM system as derived from our numerical free-energy
calculations. To improve the visibility of the low-pressure re-
gion, we have unevenly stretched the pressure scale by report-
ing the fourth root of P rather than P itself on the horizontal
axis. The same phase diagram but in the ρ-T plane is shown
in Fig. 3, so as to highlight the coexistence regions. Finally,
in Fig. 4 a zoom is made on the extremely low-density re-
gion, which is where the main novelties over the GCM case
are concentrated. In the Appendix, the “exact” transition lines
are compared with those derived by a number of (necessarily
approximate) theoretical approaches.

By a first glance at Fig. 2, one immediately realizes
how complete and congruous is the thermodynamic picture
emerging from our simulations. Except for the vapor-bcc
coexistence locus, which is confined to such an extremely
small neighborhood of P = 0 that it could not be analyzed
in detail, all the other transition lines in Fig. 2 are smooth
enough and well characterized to allow us to resolve the most
minute details of the DGM phase diagram with precision.
On the low-pressure/high-temperature side of Fig. 2 we see
the liquid-vapor coexistence line, which was traced by re-
porting the common value of the pressure in the two simu-
lation boxes at the end of the Gibbs-ensemble runs. By the

FIG. 3. Numerical DGM phase diagram in the ρ-T plane. We show: a num-
ber of points along the liquid-vapor binodal line obtained by Gibbs-ensemble
simulations (black diamonds), along with the estimated critical point (black
asterisk); a number of points along the line enclosing the region where the
HNC equation could not be solved (blue diamonds joined by a dotted line);
the solid-liquid and solid-solid coexistence points obtained from the “exact”
free-energy calculations described in the text (filled dots, squares, and trian-
gles); some points on the P = 0 isobar of the bcc solid (black triangles point-
ing to the right joined by a dotted line). All the lines through the points are
plotted as a guide for the eye. Note that the phase-diagram region enclosed in
the red frame is shown magnified in Fig. 4.

usual extrapolation procedure,17 we locate the critical point
at ρc = 0.02295, Tc = 0.00767, and Pc = 0.000046 (from
now on, all quantities will be given in reduced units). The
liquid-vapor coexistence region is shown in Fig. 3; inter-
estingly enough, it fairly coincides with the region within
which the hypernetted-chain (HNC) equation19 could not be
solved.

Another expected feature of the DGM phase diagram
is the reentrant melting of the high-pressure bcc phase,

FIG. 4. DGM phase diagram in the ρ-T plane: Magnification of the low-
density region. We show: one point on the liquid-vapor binodal line obtained
by Gibbs-ensemble simulations (black diamond); a number of solid-liquid
and solid-solid coexistence points obtained from the “exact” free-energy
calculations described in the text (filled dots, squares, and triangles); some
points on the bcc sublimation line, obtained from MC simulations of the bcc
crystal at P = 0 (black triangles pointing to the right joined by a dotted line).
All the lines through the points are plotted as a guide for the eye. The yellow
shaded regions denote two-phase coexistence regions.
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which occurs similarly as in the GCM: upon increasing
P, the nearest-neighbor (NN) distance in the bcc solid be-
comes more and more blurred, due to an increasingly easier
penetration of the first-shell particles into the finite repul-
sive core, until the coordination shells all crumble together
at the melting point. Compared with the GCM, the max-
imum Tmax of the DGM melting temperature is slightly
larger whereas the pressure Pmax in the same point is a little
smaller.

The range of stability of the hcp crystal narrows upon
heating, until the hcp phase ceases to exist as a stable phase at
a temperature slightly smaller than 0.0045. Beyond this point,
a fcc-bcc coexistence line starts, which seems the continu-
ation of the hcp-bcc transition line towards higher temper-
atures; the fcc-bcc locus eventually terminates with roughly
zero slope at the confluence with the melting line, which oc-
curs slightly below T = 0.0050 (this feature is vaguely rem-
iniscent of the fcc-bcc coexistence line in the GCM, where
however the point of maximum temperature falls within the
solid sector of the phase diagram).

Let us now focus on the low-pressure region of the phase
diagram, where according to our calculations a number of un-
conventional features occur for the DGM. To begin with, we
have the indisputable evidence of a tiny region of bcc sta-
bility at low pressure. In this dilute crystal the average NN
distance is close below the “center” of the attractive well, ξ .
Moreover, the slope of the melting line is negative. On the
low-density side the bcc-liquid coexistence locus meets the
liquid-vapor line at a triple point; on the high-density side it
merges with the fcc-liquid line at another triple point, which
also represents the lowest-temperature state where the liquid
exists as a stable phase. The bcc density along the sublima-
tion line was estimated through P = 0 simulations of the
crystal (the actual coexistence pressures are indeed smaller
than 10−6).

The DGM phase diagram of Fig. 3 is also reproduced
in part in Fig. 4, showing a magnification of the low-
density/low-temperature region. The most curious feature
emerging from this picture has to do with the nature of
the bcc-liquid equilibrium, which unexpectedly sees the bcc
phase on the low-density (rather than on the high-density)
side. Upon compression, and before the fcc crystal becomes
relevant (which only occurs beyond a certain pressure), the
NN distance in the bcc crystal is pushed increasingly far-
ther away from ξ , with the effect of destabilizing the bcc
phase with respect to the liquid phase. The net result will
be a second reentrant-melting line (besides the one exist-
ing at high pressure), ending at a bcc-liquid-fcc triple point.
Another explanation of this anomaly underscores the effect
of pressure on the “degree of rigidity” of the dilute bcc
phase, which in the pressure range under focus becomes
progressively smaller with increasing compression (see
Fig. 8).

One aim of the present study was to ascertain the nature
of the liquid phase in presence of a bounded repulsion be-
tween the particles. For example, in Fig. 5 we plot the radial
distribution function (RDF) of the DGM system for a num-
ber of temperatures, for P = 0.002 (i.e., a typical value for
the liquid). For comparison, also the RDF of the GCM fluid is

FIG. 5. Radial distribution function (RDF) for a number of temperatures (T
= 0.003, 0.004, . . . , 0.010) along the P = 0.002 isobar: GCM fluid (red curves
on the right) and the DGM system under study (black curves on the left). The
arrow marks the direction of temperature increase.

plotted along the same isobar. There is clearly more structure
in the DGM liquid than in the GCM fluid of same T and P, ow-
ing to the stabilizing effect of the attraction which enhances
the local density and overall improves the spatial definition of
the coordination shells around a particle. At the chosen pres-
sure of 0.002, there would anyway be little influence of the
inner potential core on the RDF, other than providing a bar-
rier against system collapse; in other words, particles would
be blind to the exact shape of the inner core, i.e., to whether
it is soft or hard, since the average separation between neigh-
boring particles is close to ξ .

Finally, we explore how the phase diagram of the double-
Gaussian fluid changes when ε2 and ξ are slightly modified
from the values hereby considered (for simplicity, we only
admitted the fcc, bcc, and hcp crystals as candidate solids).
Since there is no space for a detailed study here, we shall
make use of the HNC equation in association with the melt-
ing criterion of Ref. 20, which is shown in the Appendix to
predict very carefully the topology of the phase diagram for
the case ε2 = 0.005 and ξ = 3. Looking at the phase por-
traits of Figs. 6 and 7, we soon realize that (i) a deeper at-
tractive well will increase the size of the liquid-vapor coexis-
tence region, with repercussions also on the sequence of stable
solids with pressure (for example, for ε2 = 0.015 and 0.020
the bcc crystal is the only zero-temperature stable phase);
(ii) as ξ is increased, the nature of the anomalous melting
becomes more complicated, with significant modifications in
the shape of the melting line (for ξ = 4, the fcc crystal is
stable at T = 0 in a range of densities between roughly 0.16
and 0.21; this is apparently confirmed also for non-zero tem-
peratures). Focusing on Fig. 6, we see that, as the strength of
the Gaussian attraction becomes larger and larger, the liquid-
vapor line extends to increasingly higher pressures and tem-
peratures until it eventually passes over the point of maximum
Tm (this would occur for ε2 ≈ 0.020ε—remember: the values
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FIG. 6. Schematic phase diagrams (see text) for the DGM system as a func-
tion of ε2, for fixed σ 2 = σ and ξ = 3σ (same symbols and notation as in
Fig. 8). Observe that the actual melting temperatures are about a half of those
shown.

of Tm in Fig. 6 would be overestimated by roughly 100%).
If a suitably small hard core is added to this potential, a bcc-
fcc phase transition will be induced at higher pressure, with
likely little influence on the low-pressure part of the phase di-
agram. The overall phase portrait would now be reminiscent
of that of water, with the bcc-fcc coexistence line mimicking
the locus of points separating ice-I from ice-III in water. Also
the waterlike anomalies would be located at the right place,
i.e., above the unique reentrant-melting line. The actual effec-
tiveness of this approach to generating an isotropic potential
with a phase behavior reminiscent of water is currently under
investigation.

FIG. 7. Schematic phase diagrams (see text) for the DGM system as a func-
tion of ξ , for fixed ε2 = 0.005ε and σ 2 = σ (same symbols and notation as in
Fig. 8). Observe that the actual melting temperatures are about a half of those
shown.

IV. CONCLUSIONS

In this paper, we carefully analyzed the phase behavior
of a system of particles interacting through an isotropic two-
body potential combining a Gaussian repulsion with a much
weaker Gaussian attraction. A weak attraction at medium dis-
tances would be a generic trait of the pair interaction between
fully interpenetrating polymer chains in a solution, whence
the importance of understanding the effects of small attrac-
tive forces on the thermodynamic behavior of softly repulsive
particles. We found that even a modest attraction is able to
change the phase diagram of the GCM in important ways.
First of all, a different solid polymorphism shows up in the
DGM system, with novel hcp and bcc phases. Of these, the
(low-density) bcc phase shows a form of reentrant melting
which has a completely different origin from the anomalous
melting of the other (high-density) bcc phase. While the latter
GCM-type melting is ultimately determined by the bounded-
ness of the repulsive core, it is the shallow potential well that
plays a leading role in the weakening of crystal coherence
upon compression observed in the low-density bcc phase. In
simpler terms, on approaching the bcc-fcc transition pressure
at T = 0, the rigidity of the bcc crystal progressively reduces
as a result of the increasing detuning of the nearest-neighbor
distance from the center of the attractive well.

We have finally noted that a promising approach to build-
ing up an isotropic water-type fluid would be to first increase
the strength of the Gaussian attraction and then supplement it
with a suitably chosen hard core. The feasibility of this sce-
nario will be the subject of a future study.
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APPENDIX: HEURISTIC APPROACHES

In this appendix, we outline a number of theoretical ap-
proaches which aim at gaining some information on the over-
all structure of the DGM phase diagram, prior to carrying out
the simulation.

Some useful hints on the phase-diagram topology come
from a calculation that needs only a few minutes to be per-
formed on a desktop computer. It makes use of the semi-
empirical melting criterion introduced in Refs. 20 and 21,
which combines the Lindemann melting rule with a descrip-
tion of the solid phase as an elastic continuum. This method
proved to be effective in many cases, at least in predicting
the exact topology of the melting line; on the other hand, for
all the potentials investigated so far the melting temperature
Tm was systematically overestimated by roughly a factor of
two. In practice, Tm is first estimated as a function of pres-
sure or density for a number of crystalline phases; then, the
alleged melting-temperature locus is the upper envelope of all
the individual melting lines drawn. Figure 8 shows the melt-
ing lines of the fcc, bcc, and hcp phases as computed by this
method for the GCM fluid (left) and for the present DGM
system (right). Aside from the erroneous Tm scale, the exact
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FIG. 8. Schematic phase diagrams of the GCM fluid (left) and of the DGM
system under study (right). These diagrams were obtained by using the HNC
approximation in combination with a Lindemann-type criterion of crystal
melting20 (see text). The (ρ, T) set of points where the HNC equation has
no solution is the region delimited by the black dots. The lines are tenta-
tive melting loci for the fcc (blue dotted line), the bcc (red solid line), and
the hcp crystal (cyan dashed line); more realistically, the actual values of Tm

are roughly a half of those shown. A narrow bcc basin is expected to occur
for the DGM system at low density, bounded from above by a reentrant-
melting line. The more standard GCM-type reentrant melting is located at
much higher densities. Another fcc basin at lower densities would never en-
ter into play since being hidden under the liquid-vapor spinodal region. In the
present DGM system, the hcp crystal would apparently be stable only at the
lowest temperatures.

GCM phase diagram8 is clearly apparent in the left panel of
Fig. 8. From the same plot we draw the prediction of a fcc
phase becoming, upon compression, eventually superseded by
a bcc crystal, which turns out to be correct. Upon switching
on a weak attraction at moderately large distances, the GCM
phase diagram gets modified only at the lowest densities (say,
below 0.1 in reduced units). A second bcc basin appears at low
pressures, which is partially hidden under the liquid-vapor co-
existence region as approximated through the region where
the HNC equation has no solution; within the region of stabil-
ity of this bcc phase, the melting line would be a descending
function of pressure. At ρ = 0.0742 σ−3, the melting tempera-
ture falls to zero since right at this density the bcc crystal loses
rigidity against tetragonal shear.20 In the same region of den-
sities, the DGM system would exist as a liquid down to very
low temperatures, bounded by bcc states on the low-density
side and by fcc states on the high-density side. Indeed, two
further triple points (i.e., vapor-bcc-liquid and bcc-liquid-fcc)
beyond the one also present in the Gaussian fluid do appear
in the DGM phase diagram (Sec. III), and the melting line
joining them is a further reentrant-melting line.

More reliable estimates of DGM melting points are ob-
tained by the so-called heat-until-it-melts (HUIM) method.22

Following the HUIM approach, several heating trajectories of
the solid are generated by MC simulation at selected pressures
or densities, and eventually terminated at the point where the
sample is observed to melt spontaneously (an event signalled
by a distinct jump in both system energy and density). The
accuracy of the melting temperature estimated in this way is

usually poor (a solid can be overheated a lot, even by a 20%
of Tm, and to varying degrees as a function of pressure), but
nonetheless the outcome gives a clear indication of the trends
of Tm with pressure. From these calculations (see the data
plotted in Figs. 2 and 4) we learn that (i) reentrant melting in
the DGM system occurs at high pressure in almost the same
terms as in the GCM fluid; (ii) the melting curve of the (possi-
bly metastable) low-pressure bcc phase would be almost flat.

Yet another approach is the variational theory (VT),
which is an adaptation to the DGM of the same approach fol-
lowed for the GCM by Lang et al.7 (see also Ref. 1). The idea
is to combine the HNC virial route for the fluid phase with an
approximation for the Helmholtz free energy F of the crystal
based on the use of the Gibbs-Bogoliubov inequality,

F ≤ F0 + 〈H − H0〉0, (A1)

where H is the exact DGM Hamiltonian and H0 is that of a
reference system (here an Einstein crystal with the same un-
derlying lattice {Rk} as for the given DGM crystal). The aver-
age 〈. . . 〉0 is taken over the canonical distribution pertaining to
H0. The Helmholtz free energy of the reference system reads:

F0 = NkBT

(
3

2
ln

α

π
+ 3 ln

�

σ

)
, (A2)

where α = βcσ 2/2, c being the spring constant, and β

= (kBT)−1. It is then possible to show (for σ 2 = σ ) that

〈H − H0〉0 = 1

2
εN

∑
k �=1

Ik − 1

2
ε2N

∑
k �=1

Jk − 3

2
NkBT ,

(A3)
where

Ik =
(

α

2 + α

)3/2

exp

{
− α

2 + α

(Rk − R1)2

σ 2

}
, (A4)

FIG. 9. Numerical DGM phase diagram in the P-T plane: comparison be-
tween the “exact” coexistence loci of Fig. 2 (black solid lines) and the ap-
proximate results of the theoretical approaches described in the Appendix.
We show: the HUIM melting points obtained by heating (in steps of 
T
= 0.0001) the solid system along isobaric paths until it melted (blue crosses
joined by a dashed line); the VT coexistence points (blue open dots and tri-
angles joined by dotted lines). The lines through the points are plotted as a
guide for the eye.
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while the calculation of Jk is deferred to the end of this ap-
pendix. Within the VT, the optimal estimate of the crystal
free energy for the given T and ρ is the minimum of the
right-hand side of Eq. (A1) as a function of α. As far as the
fluid phase is concerned, its pressure P and chemical poten-
tial μ are given by closed-form expressions in terms of the
radial distribution function and of the direct correlation func-
tion in the HNC approximation, which is known to be ac-
curate for all densities at not too low temperature.1 The ex-
act location of the transition points is found by looking for
intersections between the various μ(P) branches at constant
temperature or, equivalently, by the common-tangent con-
struction. Finally, the liquid-vapor binodal line can roughly
be located at the boundary of the (ρ, T) region where the
iterative procedure for solving the HNC equation fails to
converge.

An important difference with respect to the GCM is the
partitioning of the solid sector, which in the DGM comprises
as many as four crystalline phases (i.e., the same as those
quoted in Table I). Upon cooling, the VT predicts an abrupt
transition (close below T = 0.0015 ε/kB) from a situation

where the bcc crystal is metastable with respect to both the
liquid and fcc phases to a bcc-fcc equilibrium with no sta-
ble liquid phase on the low-density side (see Fig. 4). It goes
without saying that, on the specific question of the relative
stability between the liquid and the low-pressure bcc phase as
well as in all cases where tiny free-energy differences are in-
volved (e.g., the solid-solid equilibria), only numerical simu-
lation supplemented with “exact” free-energy calculations can
say a final word.

Looking retrospectively at the “exact” results (see
Fig. 9), the predictions of the VT are pretty good, even
though (i) it overestimates Tmax by about 20% (the errors are
even larger at higher pressures) and (ii) no hcp-liquid coexis-
tence locus is actually present in the DGM. As to the low-
pressure region of the phase diagram, where according to
our calculations a number of oddities occur for the DGM,
none of these features are anticipated by the VT for the
likely reason that the HNC approximation is poor at very low
temperatures.

In closing, we shortly outline the calculation of the
integral

Jk =
∫

d3r1d3rk exp{−(|r1 − rk| − ξ )2/σ 2} exp{−βc[(r1 − R1)2 + (rk − Rk)2]/2}∫
d3rd3r ′ exp{−βc(r2 + r ′2)/2}

≡
(

βc

2π

)3

Ik , (A5)

which occurs in the evaluation of the VT approximant
(A1). Upon changing integration variables from r1, rk to r
≡ r1 − rk, r′ ≡ r1 − R1 one readily obtains:

Ik =
∫

d3rd3r ′ exp{−(r − ξ )2/σ 2}

× exp{−βc[r ′2 + (r′ − r + R1 − Rk)2]/2},
(A6)

the Jacobian of the transformation being 1. Denoting Qk = r
− R1 + Rk, Ik can further be simplified to

Ik =
∫

d3r exp

{
− (r − ξ )2

σ 2
− 1

2
βcQ2

k

}
×

∫
d3r ′ exp{−βc(r ′2 − Qk · r′)} . (A7)

The inner integral in (A7) is the classical Gaussian integral;
its value is (βc/π )−3/2 exp{βcQ2

k/4}. Hence, we find:

Ik =
(

π

βc

)3/2 ∫
d3r exp

{
− (r − ξ )2

σ 2

}
× exp

{
−1

4
βc(r − R1 + Rk)2

}
. (A8)

This integral is best computed in spherical coordinates, choos-
ing the z axis in the direction of R1 − Rk. The calculation is
straightforward; using∫ ∞

0
dr re−ar2+br = 1

2a
+ b

4a

√
π

a
erfc

(
− b

2
√

a

)
exp

{
b2

4a

}
,

(A9)

the end result is (cf. Eq. (A5))

Jk = 1

8π

√
βc

π

(
4π

βc + 4/σ 2

)3/2 exp{−βc(R1 − Rk)2/4 − ξ 2/σ 2}
|R1 − Rk|

×
[(

2ξ

σ 2
+ βc

2
|R1 − Rk|

)
erfc

(
−2ξ/σ 2 + βc|R1 − Rk|/2√

βc + 4/σ 2

)
exp

{
(2ξ/σ 2 + βc|R1 − Rk|/2)2

βc + 4/σ 2

}

−
(

2ξ

σ 2
− βc

2
|R1 − Rk|

)
erfc

(
−2ξ/σ 2 − βc|R1 − Rk|/2√

βc + 4/σ 2

)
exp

{
(2ξ/σ 2 − βc|R1 − Rk|/2)2

βc + 4/σ 2

}]
, (A10)

which can also be presented as
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Jk = 1

2α

(
α

2 + α

)3/2

exp

{
−α

2

(
Xk

σ

)2

−
(

ξ

σ

)2
}

×
[(

2ξ

Xk

+ α

)
erfc

(
−2ξ/σ + αXk/σ√

2(2 + α)

)
exp

{
(2ξ/σ + αXk/σ )2

2(2 + α)

}

−
(

2ξ

Xk

− α

)
erfc

(
−2ξ/σ − αXk/σ√

2(2 + α)

)
exp

{
(2ξ/σ − αXk/σ )2

2(2 + α)

}]
(A11)

with Xk = |Rk − R1|. It is easy to check that Jk reduces to Ik

when ξ vanishes, as it should do.
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