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I employ the van der Waals theory of Baus and co-workers to analyze the fast, adiabatic decay of a
supercooled liquid in a closed vessel with which the solidification process usually starts. By imposing
a further constraint on either the system volume or pressure, I use the maximum-entropy method to
quantify the fraction of liquid that is transformed into solid as a function of undercooling and of
the amount of a foreign gas that could possibly be also present in the test tube. Upon looking at
the implications of thermal and mechanical insulation for the energy cost of forming a solid droplet
within the liquid, I identify one situation where the onset of solidification inevitably occurs near the
wall in contact with the bath. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4801864]

I. INTRODUCTION

Liquid freezing is a widely studied phenomenon, espe-
cially under equilibrium conditions where the temperature
T and the pressure P of the system are kept fixed through
the contact with a bath. Considerable attention has also been
(and still currently is) devoted to the kinetic aspects of freez-
ing, which in a moderately supercooled liquid is initiated by
the spontaneous nucleation and growth of a sizable crystal
droplet. The usual setting where the initial stages of freez-
ing are studied is again isothermal-isobaric, which assumes a
prompt release of the latent heat of solidification to the system
environment. In the present study, I keep distinct the two steps
by which the freezing process actually develops for a super-
cooled liquid,1, 2 namely a rapid return to the solid-liquid equi-
librium temperature (this stage occurs so quickly that there
would be no time for a significant transfer of heat to the
bath), followed by the slower, diathermal solidification pro-
cess governed by heat conduction to the bath, which, in effec-
tive terms, begins in a later moment. While the late freezing
stage has been the focus of many studies (inspiring a whole
branch of mathematical physics which goes under the name
of “Stefan problem,” see, e.g., Ref. 3), the initial adiabatic-
freezing process has received less attention in the literature,
being confined to applied-research areas like atmospheric sci-
ence (where it is studied in connection with the physics of ice
accretion and chemicals uptake in hydrometeors4–7) and met-
allurgy (bearing here the name of “recalescence,” see, e.g.,
Refs. 8 and 9).

Clearly, the initial adiabatic transformation to a two-
phase state can only be observed if the process of solid growth
takes a time teq much smaller than the time tdia that would be
needed to transfer (essentially by conduction) an energy equal
to the latent heat of complete freezing to the surroundings
– differently, solidification would occur without this interme-

a)Electronic mail: sprestipino@unime.it

diate two-phase state. This can be represented as

teq ≈ V 1/3/G � tdia , (1.1)

where V is the system volume, G is the long-term growth
rate of the solid inside the liquid (measured, e.g., in cm/s
and likely proportional to the liquid supersaturation for small
undercoolings), and tdia is the diathermal-freezing time (see
Eq. (2) of Ref. 6 for an estimate). Whether Eq. (1.1) is satis-
fied or not in a concrete case, it would not be easy to say (see,
however, below concerning the consequences of thermal insu-
lation for the energetics of droplet formation and the kinetics
of crystallization).

At the end of the adiabatic stage, a microsegregated solid-
liquid mixture with definite proportions of the two phases
is formed, which later undergoes complete crystallization
through the exchange of energy and possibly volume with the
colder bath.10–13 A fine-grained, uniform distribution of the
solid within the liquid is a frequent outcome of recalescence
(see, e.g., the discussion in Ref. 14), as confirmed experimen-
tally for water by Hindmarsh et al.2 and well known to met-
allurgists. When a molten alloy (or a multicomponent liquid
whatsoever) is cooled, the growing solid phase usually forms
a porous matrix through which the residual liquid can flow.
The reactive medium made of the solid matrix and the residual
liquid is called a mushy zone. This type of semisolid, solid-
liquid mixture occurs for many freezing conditions forming
dendrites, see, e.g., Ref. 15. The full conversion of the mushy
zone into a compact solid occurs through a coarsening mech-
anism (also called Ostwald ripening), involving mass and heat
diffusion, and requires some time during which the tempera-
ture of the system stays constant at the equilibrium freezing
temperature.

From a thermodynamic point of view, the driving force
of the return of the metastable liquid to equilibrium is en-
tropy maximization, insofar as the system and (when present)
the volume reservoir are treated as parts of a larger ther-
mally isolated system. For this system, the final equilibrium
state is the one with the maximum entropy under the given
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internal constraints.16 In the mushy zone, however, entropy
is not yet at a maximum because of the large amount of in-
terfacial energy trapped in the interstices of the solid matrix.
Hence, the state of the system immediately after recalescence
is not the one prescribed by thermodynamics but rather a com-
promise dictated by kinetic considerations. While not being
completely realistic, a study of adiabatic freezing solely based
on the maximum-entropy principle will anyway help to ana-
lyze general trends of thermodynamic variables with super-
cooling. This would be especially true for rare-gas fluids, hav-
ing a weakly anisotropic solid-liquid interface tension, and in
the low-supercooling regime where, due to a low nucleation
rate, the size attained by solid grains before impinging other
grains will be larger.

In maximizing entropy, besides the adiabaticity of the
system boundaries, additional constraints to be accounted for
may regard the total system mass (which is here assumed
to be conserved) and its volume or pressure, depending on
the physical context. To make progress, I shall represent the
system characteristics by a specific model of simple-fluid
thermodynamics, viz., the phenomenological theory of Baus
and co-workers,17, 18 which, though being of little quantitative
value, at least provides a reasonable close-form entropy func-
tion for each phase. With this tool at hand, I shall demonstrate
that the equilibrium state eventually attained after completion
of the adiabatic process is indeed inhomogeneous, with both
solid and liquid present in calculable proportions.

This paper is organized as follows. After introducing
the model and the method in Sec. II, I analyze three dif-
ferent physical situations of adiabatic freezing in Sec. III,
for each deriving a number of numerical results. Then, in
Sec. IV, these results are exploited to see whether the energy
cost associated with the formation of the solid-liquid inter-
face could be a stumbling block to crystallization under iso-
lated conditions. Some concluding remarks are presented in
Sec. V.

II. MODEL AND METHOD

The simplest setup for the study of adiabatic freezing
is the following. Consider a N-particle liquid which com-
pletely fills a closed rigid container of volume V . The liq-
uid, initially in stable equilibrium at the melting/freezing tem-
perature Tm, is then gently cooled until the temperature Tin

< Tm is reached. At this point, the pressure and energy of
the liquid (Pin and Ein) can be accessed, at least in princi-
ple, from the metastable branches of its mechanical and ther-
mal equations of state. Now imagine to remove the contact
with the thermostat and to induce then (e.g., by a mechanical
shock) the irreversible decay of the system to equilibrium (this
transformation is both adiabatic and isochoric, hence energy-
conserving). We want to determine in which equilibrium state
the system will eventually settle down. This question may
be answered by appealing to the maximum-entropy princi-
ple. Envisaging the possibility that part of the system could
remain liquid, I denote by El, Vl , and Nl the energy, volume,
and particle number of the liquid fraction. If the fundamental
relations (entropy functions) of the liquid and solid phases are

known, the total system entropy reads

Stot = Sl(El, Vl, Nl) + Ss(Ein − El, V − Vl,N − Nl) ,

(2.1)
assuming weak coupling between the phases and taking the
internal constraints into account. The necessary conditions for
the maximum of Stot are three, one for each liquid state vari-
able, and are equivalent to requiring that the temperature, the
pressure, and the chemical potential of the solid and liquid
components be equal. We then see that (unless Nl = 0 or N
at the point of maximum of (2.1)) the final equilibrium state
lies on the solid-liquid coexistence locus, as empirically ob-
served. In order for Eq. (2.1) to be really useful, however, the
functions Sl and Ss are to be made explicit.

The mean-field theory by Baus and co-workers17, 18 pro-
vides a convenient framework for discussing adiabatic freez-
ing at a semiquantitative level. It is meant for a system of
particles interacting through a spherically symmetric poten-
tial u(r) given by the hard-sphere potential plus a short-range
attractive tail,

u(r) =
{+∞ , r < σ

−ε φ(r/σ ) , r ≥ σ
, (2.2)

where σ is the particle-core diameter, ε is the depth of the at-
tractive well, and φ(x) > 0 gives the shape of the well in terms
of the scaled interparticle distance x = r/σ . In the same spirit
of the van der Waals theory, the repulsive and attractive poten-
tial terms separately concur to build up the system Helmholtz
free energy, which is taken to be

F (T , V,N ) = FR(T , V,N ) + FA(T , V,N ) , (2.3)

where FR(T , V,N ) ≡ Fid (T , αV,N) is the free energy of N
fictitious non-interacting particles in a fraction α of the total
system volume, and

FA(T , V,N ) = N

2

∫
V

d3r ρ(r)uA(r) , (2.4)

where ρ(r) is the local number density experienced by a ref-
erence particle in the origin and uA is the attractive potential.
The description of the model is complete after specifying α

and ρ(r) for each phase. For a fluid phase, one assumes

α = 1 − ρ

ρ0
and ρ(r) = N

V
≡ ρ , (2.5)

with ρ0σ
3 = 1/

√
2 + 3/(4π ) being a rough estimate of the

maximum density accessible to a disordered system.18 For a
solid phase, the choice goes to

α =
[

1 −
(

ρ

ρCP

)1/3
]3

and ρ(r) =
∑
j>1

δ3(r − Rj ) ,

(2.6)
where ρCP is the number density at close packing (ρCP σ 3

= √
2 for a FCC crystal) while {Rj} are the lattice sites. Upon

making the further approximation of discarding the contribu-
tions to FA from particles beyond the first coordination shell,
one arrives at the following expression for the free energy per
particle:
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f (T , ρ) =
⎧⎨⎩ kBT [ln(ρ	3) − 1] − kBT ln (1 − ρ/ρ0) − 2περσ 3

∫ +∞
1 dx x2φ(x) , for a fluid

kBT [ln(ρ	3) − 1] − 3kBT ln[1 − (ρ/ρCP )1/3] − (z1/2)ε φ[(ρCP /ρ)1/3] , for a solid
, (2.7)

where 	 ∝ T−1/2 is the thermal wavelength and z1 is the lattice coordination number. It is now straightforward to derive the
entropy functions of the solid and fluid phases from Eq. (2.7). By eliminating T in favor of e, we obtain (up to an overall
constant):

s(e, v) =
⎧⎨⎩ kB ln(v − v0) + (3/2)kB ln (e + a/v) , for a fluid

3kB ln
(
v1/3 − v

1/3
CP

) + (3/2)kB ln{e + (z1/2)ε φ[(v/vCP )1/3]} , for a solid
(2.8)

with a = 2πεσ 3
∫ +∞

1 dx x2φ(x).
In order to single out at a given T the most stable phase

as a function of ρ, we should plot the two free energies in
Eq. (2.7) vs. v = ρ−1 and then use the common-tangent con-
struction. Alternatively, we may plot μ as a function of P for
fixed T and then look for (i) the crossing between the solid and
fluid branches, and (ii) the “swallowtail” accompanying any
isostructural phase transition if present. A typical outcome of
this procedure can be seen in Fig. 1, showing the phase dia-
gram for φ(x) = x−6 and z1 = 12 (the solid is a FCC crystal).
We see that a phase diagram of the standard simple-fluid type

FIG. 1. Theoretical phase diagram for a system of particles interacting
through the potential (2.2) with φ(x) = x−6 and z1 = 12. Tc is the criti-
cal temperature and βc = (kBTc)−1. The critical-point coordinates, ρc and
Tc, follow from requiring that the first- and second-order density deriva-
tives of the fluid pressure be simultaneously zero. One thus finds ρc = ρ0/3
and kBTc = (8/27)aρ0, with a = (2π /3)εσ 3. Top: phase diagram on the
density-temperature plane, showing the extent of the coexistence regions;
the triple temperature is between 0.6 and 0.65 of Tc. Bottom: phase diagram
on the temperature-pressure plane, reporting as blue crosses also the (T, P)
points characterizing the solid-liquid coexistence states borne out of the de-
cay of the metastable-liquid states at various Tin values, for xg = 0.001 (see
Sec. III B).

emerges in this case, which is enough for characterizing adi-
abatic freezing by the maximum-entropy method.

Finally, I describe the procedure by which the minimum
of a convex multivariate function, here minus a total entropy,
is computed. First a rough minimization of the objective func-
tion is attempted by the simulating-annealing algorithm,19

which generates a random walk in state space which even-
tually brings to the sought minimum. For a convex function,
this method is guaranteed to give the absolute minimum, that
is the only minimum present, up to an error which decreases
with the number of steps in the walk. Next, assuming that
we got close to the extremum, a second optimization cycle is
started with the gradient-descent method,20 which eventually
leads to the desired target state with high precision.

III. RESULTS

In this section, I report and carefully analyze the prop-
erties of the inhomogeneous state attained by a supercooled
liquid after its adiabatic relaxation to equilibrium, assuming
the theory sketched in Sec. II. Two different experimental sit-
uations are discussed, depending on whether a constraint is
put on the system volume or pressure. In the constant-volume
case, I consider the further possibility that a fixed amount of
a foreign gas is present in the container. These cases are ana-
lyzed separately in the following.

A. Constant volume

Consider first a N-particle liquid filling completely a
closed rigid vessel of volume V . Initially at coexistence con-
ditions, the liquid is subsequently driven metastable by slow
cooling and then, after removal of the bath, violently per-
turbed in order to bring it to equilibrium. The final equilib-
rium state will maximize the total entropy (2.1) (assuming no
role for the vapor in the process, which is correct as long as
the final pressure is larger than the triple-point value). Now,
we specialize to a system described by Eq. (2.8), with φ(x)
= x−6 and z1 = 12. Initially, the liquid temperature and pres-
sure are Tm and Pm, defining a point on the solid-liquid co-
existence locus. In this state, the specific volume vm ≡ V/N

can be obtained from

kBTm

vm − v0
− a

v2
m

= Pm . (3.1)
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When the liquid is brought to Tin < Tm at constant volume, its
energy changes to

ein = 3

2
kBTin − a

vm

. (3.2)

With these starting conditions, the state eventually reached
by the system after disconnecting the bath and inducing solid
nucleation is the one yielding the maximum of

Stot

NkB

= nl

[
ln(vl − v0) + 3

2
ln

(
el + a

vl

)]

+ (1 − nl)

{
3 ln

[(
vm − nlvl

1 − nl

)1/3

− v
1/3
CP

]

+ 3

2
ln

[
ein − nlel

1 − nl

+ 6ε

(
vCP (1 − nl)

vm − nlvl

)2
]}

,

(3.3)

where el = El/N, vl = Vl/N , and nl = Nl/N. The outcome of
the maximization procedure are the thermodynamic variables
characterizing the liquid fraction of the system in the final
state. Any 0 < nl < 1 testifies of a partial crystallization of
the liquid, hence of the stable coexistence of solid and liquid
at equilibrium. Indeed, one easily derives from (2.1) that the
necessary conditions for the maximum of Stot are the equality
of T, P, μ between the phases, as it may be checked a pos-
teriori from the values of the temperature, the pressure, and
the chemical potential of the solid and liquid fractions in the
computed equilibrium state.

I studied in detail the case Tm = 0.8 Tc. In Fig. 2 the final
values (Tfin and Pfin) of the system temperature and pressure
are reported as a function of Tin. Both quantities are smaller

FIG. 2. Final equilibrium state after the adiabatic decay of the metastable
liquid under constant-volume conditions, for Tm = 0.8 Tc. Top: temperature;
bottom: pressure.

than the respective initial-state values, Tm and Pm; however,
they too provide coordinates of points on the solid-liquid co-
existence line. We also see that Tfin > Tin, i.e., the liquid heats
up during the transformation, and the energy needed to the
purpose clearly comes from the latent heat of freezing re-
leased during solidification. The solid fraction grows practi-
cally linearly with Tm − Tin (data not shown), up to about
20% for Tin = 0.1 Tm (note that there is no lower limit to un-
dercooling in the present theory). As expected, the entropy
increase in the transformation is larger the smaller Tin.

B. Constant volume with a foreign gas in the vessel

Let us now suppose that the liquid is prepared at Tm and
Pm by exposure to a gaseous atmosphere (e.g., air), and that
a small amount of gas gets trapped in the rigid vessel when
sealing it. We then have a liquid in equilibrium with an im-
miscible gas in a container of fixed volume. For simplicity, I
describe the gas as ideal and monoatomic, composed of Ng

= xgN particles. The initial specific volume of the liquid, vm,
is still given by Eq. (3.1) but we now have vm < V/N ≡ vtot.
Specifically,

vtot = vm + xgkBTm

Pm

. (3.4)

As before, we imagine that the liquid and the gas are cooled
very slowly until Tin is reached. At this point, the volume vin

of the liquid is determined by minimizing the total Helmholtz
free energy. This leads to the equation

kBTin

vin − v0
− a

v2
in

= xgkBTin

vtot − vin
, (3.5)

which just represents the equality of pressures between the
liquid and the gas. After removing the bath, we induce solid
nucleation by a mechanical shock, and wait for the system to
reach equilibrium. The state eventually attained is such as to
maximize the total entropy

Stot

NkB

= nl

[
ln(vl − v0) + 3

2
ln

(
el + a

vl

)]
+ (1 − nl)

{
3 ln

(
v1/3

s − v
1/3
CP

)
+ 3

2
ln

[
es + 6ε

(
vCP

vs

)2 ]}
+ xg

{
ln

[
vtot − nlvl − (1 − nl)vs

xg

]
+ 3

2
ln

[
ein − nlel − (1 − nl)es

xg

]}
(3.6)

with

ein = 3

2
(1 + xg)kBTin − a

vin
. (3.7)

Upon maximizing Stot, one obtains the values of el, vl, nl,

es, vs which provide a complete description of the equilib-
rium state. The five conditions for the maximum of (3.6)
are equivalent to requiring the same temperature and pres-
sure for the liquid, the solid, and the foreign gas in the
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FIG. 3. Final equilibrium state after the adiabatic decay of the metastable
liquid under constant-volume conditions, for Tm = 0.8 Tc and for two dif-
ferent amounts of foreign gas in the vessel (crosses, xg = 0.001; squares,
xg = 0.1). Top: temperature; bottom: pressure.

final state (namely, Tl = Ts = Tg ≡ Tfin and Pl = Ps

= Pg ≡ Pfin); furthermore, also the chemical potentials
of the liquid and solid fractions should be the same (i.e.,
μl = μs), indicating that the adiabatic decay of the metastable
state eventually results in a stable coexistence between solid
and liquid.

In order to characterize adiabatic freezing, useful quanti-
ties to be monitored as a function of Tin are: the temperature
and pressure of the solid-liquid mixture at equilibrium, Tfin

and Pfin; the volume of the mixture, vmix = nlvl + (1 − nl)vs ,
as compared to vin; and the entropy of the mixture, in
comparison with the entropy of the supercooled liquid. For
Tm = 0.8 Tc, I examined a number of xg values in the range
from 0.0001 to 1. For example, in Fig. 3 the values of Tfin and
Pfin are plotted for xg = 0.001 and 0.1. Compared to the case
where no gas is present, we see little differences for small to
moderate undercoolings. However, below T̃ 	 0.45Tm and as
far as xg � 1, we see a sharp change of slope in all curves,
which is related to an abrupt crossover in the gas pressure
at Tin (i.e., the right-hand side of Eq. (3.5)), from large to
very small values. The crossover temperature T̃ is roughly
obtained by putting the left-hand side of Eq. (3.5) to zero for
vin = vtot (i.e., only below T̃ , the gas volume at Tin is a signif-
icant portion of the total volume). It would be interesting to
see whether a similar behavior is observed in a real liquid in
the deeply supercooled regime. The pairs (Tfin, Pfin) for vari-
ous Tin values and for xg = 0.001 were reported on the phase
diagram in Fig. 1, so as to confirm that the final equilibrium
states are indeed coexistence states. In the top panel of Fig. 4,
the solid fraction ns = 1 − nl is plotted for xg = 0.001 and 0.1.
It steadily increases with Tm − Tin, at an almost constant rate

FIG. 4. Top: Solid fraction in the equilibrium state resulting from the adia-
batic decay of the metastable liquid under constant-volume conditions, for Tm

= 0.8 Tc and for two different amounts of foreign gas in the vessel (crosses,
xg = 0.001; squares, xg = 0.1). Bottom: Entropy of the solid-liquid mixture
at Tfin (solid lines) vs. entropy of the supercooled liquid at Tin (dotted lines).

only provided xg is not too small. In the panel below, the en-
tropies of the mixture and the supercooled liquid are reported.
For the same two xg values, Fig. 5 shows the final volume of
the solid-liquid mixture, in comparison with the volume of
the supercooled liquid. A clear crossing between the curves is

FIG. 5. Final equilibrium state after the adiabatic decay of the metastable
liquid under constant-volume conditions, for Tm = 0.8 Tc and for two differ-
ent amounts of foreign gas in the vessel (top panel, xg = 0.001; bottom panel,
xg = 0.1). Volume of the solid-liquid mixture (solid lines) vs. volume of the
supercooled liquid at Tin (dotted lines).
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found for a certain xg-dependent value T× of Tin. While above
T× the decay of the metastable state is accompanied with the
system contraction, the opposite (i.e., an expansion) occurs
below T×.

C. Constant pressure

As a third example, I consider a supercooled liquid which
relaxes to equilibrium under conditions that are simultane-
ously isobaric and adiabatic. This can be realized by conceiv-
ing a non-rigid and adiabatic boundary between the system
and an environment characterized by the same pressure in all
states (i.e., a volume reservoir).

The energy function of the reservoir is clearly
Er (Sr, Vr ,Nr ) = −PVr + f (Sr,Nr ), where P is a constant
and f is an unknown function. This is tantamount to say that
the entropy function is of the form

Sr (Er, Vr,Nr ) = g(Er + PVr,Nr ) , (3.8)

for a convenient function g. When a system with entropy
S(E,V,N) is in contact with a volume reservoir, the equi-
librium state of the composite system is such as to maximize
the total entropy

Stot = S(E,V,N) + g(Etot − E + P (Vtot − V ), Nr ) .

(3.9)
It is easy to check from the latter equation that a necessary
condition for equilibrium is that the system pressure be also
P. If, moreover, the system boundary is adiabatic, the only
way the system can exchange energy with the reservoir is
pressure work, that is �E = −P�V . We now ask what is
the total-entropy variation �Stot resulting from the transition
of the system of interest from an initial state, (Ein, Vin, N),
to a final state, (Efin, Vfin, N). Considering that Efin + PVfin

= Ein + PVin, we end up with

�Stot = S(Efin, Vfin, N) − S(Ein, Vin, N) ≡ �S , (3.10)

meaning that the final equilibrium state would also max-
imize the entropy increase of the system alone. The only
residual variable in (3.10) is, e.g., Vfin, while Efin = Ein

− P (Vfin − Vin).
For a two-phase system in contact with a volume reser-

voir, the total entropy reads

Stot = Sl(El, Vl, Nl) + Ss(Es, Vs,N − Nl)

+ g(Etot − El − Es + P (Vtot − Vl − Vs), Nr ), (3.11)

prescribing the same pressure P for both phases at equilib-
rium. Assuming an initial state where only the liquid phase
is present, and using the first law of thermodynamics to
prove that El,fin + Es,fin + P (Vl,fin + Vs,fin) = El,in + PVl,in,
the total-entropy increase is again reduced to the system-
entropy increase, in turn given by

�S = Sl(El,fin, Vl,fin, Nl) + Ss(El,in + PVl,in − El,fin

−PVl,fin−PVs,fin, Vs,fin, N−Nl)−Sl(El,in, Vl,in, N).

(3.12)

If we now write the necessary conditions for the maxi-
mum of (3.12), which eventually yield the unknowns El,fin,

Vl,fin, Nl, Vs,fin, we find that they prescribe the same
temperature and chemical potential for each phase (i.e.,
Tl = Ts and μl = μs), as well as the equality of both pres-
sures with P (Pl = Ps = P). In explicit terms, the function to
be maximized is

Stot

NkB

= nl

[
ln(vl − v0) + 3

2
ln

(
el + a

vl

)]
+ (1 − nl)

{
3 ln

(
v1/3

s − v
1/3
CP

)
+ 3

2
ln

[
ein+Pvin−nl(el+Pvl)

1 − nl

−Pvs +6ε

(
vCP

vs

)2]}
, (3.13)

where vin and ein are the specific volume and energy of the
supercooled liquid at Tin,

kBTin

vin − v0
− a

v2
in

= Pm and ein = 3

2
kBTin − a

vin
. (3.14)

As before, the choice was made that Tm = 0.8 Tc. At vari-
ance with the previous case where V was a fixed constant,
an isobaric-adiabatic relaxation of the supercooled liquid to
equilibrium now brings the system invariably to the original
phase-diagram point, i.e., Tfin = Tm and Pfin = Pm, but in
the modified form of a solid-liquid mixture, whose specific
volume vmix is different from vm and always larger than vin

(Fig. 6, upper panel). Once more, the solid fraction in the mix-
ture is found to increase, to all practical purposes, linearly in
Tm − Tin (Fig. 6, lower panel). I finally observe that the above

FIG. 6. Final equilibrium state after the adiabatic decay of the metastable
liquid at constant pressure, for Tm = 0.8 Tc. Top: volume of the solid-liquid
mixture at Tm (solid line) vs. volume of the liquid at Tin (dotted line); bottom:
solid fraction in the mixture.
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results were successfully checked against the method for isen-
thalpic freezing described in Ref. 1.

IV. DISCUSSION

Using a mean-field theory for illustrative purposes, I have
shown that, under adiabatic conditions, a supercooled liquid
transforms into a stable mixture of solid and liquid just for
entropic reasons. However, until now thermal insulation was
a mere hypothesis, and the question remains as to what condi-
tions should be met in order that the decay of the metastable
state can be treated as adiabatic also in the presence of the
bath. Clearly, a two-stage freezing scenario could only be vi-
able provided the alleged adiabatic step is guaranteed to con-
clude very quickly after the appearance of the first solid nu-
cleus. Hence, there is no way a thorough analysis of adiabatic
freezing can get around genuinely kinetic issues (rate of nu-
cleation, growth velocity, etc.), which however lie outside the
scope of a pure equilibrium theory (and of the present study
as well).

Possible hindrances to effective adiabaticity are of at least
two kinds, one system-specific and another of a more gen-
eral type. The inability to grow the solid phase rapidly would
be typical of good glass formers, i.e., systems with sawtooth-
like potential-surface topographies. If such a system is under-
cooled down to a temperature Tin which is only slightly above
the glass-transition temperature, we expect that the adiabatic-
freezing stage of solidification will be skipped altogether and
conventional diathermal freezing (directed from the surface
inward) will occur instead. A different and more basic form
of kinetic bottleneck to adiabatic crystallization will be de-
scribed below, after including in the description also the en-
ergy cost of the interface between the phases.

For a two-phase equilibrium system which is both ther-
mally and mechanically isolated from the environment, the
total entropy can be written in the setting – originally devised
by Gibbs himself21 – where thermodynamic properties are at-
tached also to the dividing surface σ between the phases (see,
e.g., Refs. 22 and 23). The energy of a planar interface of area
A can generally be written as Eσ = TSσ + γ A + μNσ , where
T and μ are those of the coexisting phases and γ is the in-
terface free energy (surface tension). By the Gibbs adsorption
equation,

Sσ dT + Adγ + Nσ dμ = 0 , (4.1)

Eσ is reduced to just γ A when the surface tension is inde-
pendent of T and μ. Now switching to a spherical inclu-
sion or droplet of the β phase in the metastable mother α

phase, I make the further approximation that γ is radius-
independent, indeed a fair assumption only sufficiently close
to coexistence (see, e.g., Ref. 24); moreover, I shall neglect
surface-tension anisotropy, which is a small effect anyway for
many crystals.25 With these simplifications, the entropy of the
α + β system becomes equal to

Stot(eβ, vβ,Nβ ; E,V,N) = (N − Nβ)sα(eα, vα)

+Nβsβ(eβ, vβ), (4.2)

where eβ and vβ are the specific energy and volume of the
nucleating phase, and Nβ is the number of particles in the
droplet. In Eq. (4.2), the energy and volume of the mother
phase are given by Eα = E − Eβ − Eσ and Vα = V − Vβ ,
respectively, or

eα = Eα

Nα

= E − Nβeβ − (36π )1/3γ (Nβvβ)2/3

N − Nβ

and

vα = Vα

Nα

= V − Nβvβ

N − Nβ

, (4.3)

E,V,N being the state variables of the composite system.
For γ = 0, the absolute maximum of (4.2) and (4.3) clearly
coincides with the maximum of (3.3) for the given Tin.

The values of the internal variables eβ, vβ,Nβ in a (pos-
sibly unstable) equilibrium state are obtained from equating
the three partial derivatives of Stot to zero. It is then a simple
matter to show that these conditions are equivalent to:

Tβ(eβ, vβ) = Tα(eα, vα),

Pβ(eβ, vβ) = Pα(eα, vα) + 2γ

rβ

, (4.4)

μβ(eβ, vβ) = μα(eα, vα),

where rβ = (3Nβvβ/(4π ))1/3 is the droplet radius. Hence, any
cluster of the β phase which is in equilibrium with the α phase
should have the same temperature and chemical potential as
α, while the two pressures are different and related by the
Laplace equation. In particular, Eqs. (4.4) would hold for the
cluster of β phase in the inhomogeneous equilibrium state,
associated with the absolute maximum of Stot.

Now take α to be the liquid (l) and β the solid (s), and
assume these phases are described by Baus’ theory. As far as
the value of γ is concerned, anything reasonable is good, for
example the orientationally averaged interfacial free energy
of hard spheres,26 γ = 0.561 kBTm/σ 2. I first checked that,
upon maximizing (4.2) and (4.3) for a number of Tin values
by the same numerical method as employed before, the con-
ditions (4.4) are fulfilled. For small enough supersaturation,
however, the maximum of the total entropy is invariably found
at Ns = 0. In order to see what is going on, it is worth looking
at the graph of the function �S = Stot(es, vs, Ns ; E,V,N)
− Nsl(E/N,V/N ), which represents the entropic advantage
of the inhomogeneous system over the supercooled liquid. To
simplify it further, �S is projected onto the one-dimensional
subspace where es and vs are given the same values as in the
point of absolute maximum of Stot. We are thus left with a
function of Ns only, which is reported in Fig. 7 for two small
values of N (103 and 104) and a few undercooling tempera-
tures. A glance at Fig. 7 immediately reveals the existence of
a sharp �S maximum for a non-zero Ns value, correspond-
ing to a two-phase equilibrium state. However, a satellite
maximum also exists at the origin, which is separated from
the former one by an entropic “barrier” (the valley between
the two peaks), and when the supersaturation becomes suffi-
ciently small the absolute maximum of �S jumps to Ns = 0.
Therefore, solid formation is thermally activated (i.e., it ne-
cessitates a favorable density fluctuation) and, for any fixed N,
there is a minimum undercooling threshold (which however is
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FIG. 7. Difference in specific entropy between the droplet-liquid mixture
at Tfin and the original metastable liquid at Tin, as a function of the droplet
“radius,” N

1/3
s . Two values of N are considered, 1000 (red curves, left) and

10 000 (blue curves, right), for Tm = 0.8 Tc. For each N, various Tin/Tc values
were considered: from top to bottom, 0.57, 0.60, 0.63 for N = 103; and 0.60,
0.65, 0.70 for N = 104.

negligible for macroscopic N) to overcome in order that solid-
ification may occur. Below this threshold, the assumption of
a rapid yet partial solidification of the liquid, which is at the
heart of the present calculation, should be rejected – since no
solid component, here modeled for simplicity as consisting
of one single block, is found in the equilibrium state – and
the onset of solidification is necessarily at the system surface
in contact with the bath. Upon reducing the supersaturation
further, the relative maximum for Ns > 0 disappears and no
solid cluster, even only a metastable one, can form. A similar
scenario is at work in the canonical-ensemble description of
liquid nucleation from vapor.27

Summarizing, the calculations in this section were aimed
at checking whether the assumption of adiabaticity, which is
at the basis of the results of Sec. III, can survive the inclusion
of the interface-energy contribution in the treatment. A nec-
essary condition for that is a positive maximum of �S, which
however only appears beyond a certain N-dependent under-
cooling threshold, negligible in the large-size limit. This im-
plies that small-sized liquids must be cooled sufficiently deep
in order that freezing may start from the system interior; oth-
erwise, homogeneous solid nucleation is obstructed (not sim-
ply activated!) and freezing will proceed diathermally from
the outset, i.e., directly from the system boundaries.

V. CONCLUSIONS

Adiabatic freezing is the first lap of conventional freez-
ing. It is observed whenever the energy released during solid
nucleation in the very early stages of crystallization does not
reach the thermostat but is almost completely spent in the

heating up of the system, whose temperature raises quickly
until solid-liquid coexistence is established at the equilibrium
freezing temperature. Only later will crystallization proceed
diathermally.

I have studied the adiabatic freezing of a supercooled liq-
uid using the van der Waals theory of Refs. 17 and 18, con-
sidering three possible experimental arrangements (constant
volume, constant volume with an entrapped foreign gas, and
constant pressure). I have clarified that, when heat transfer to
the external bath is kinetically hindered, the liquid undergoes
partial crystallization just for thermodynamic reasons, i.e., as
a result of total-entropy maximization. Although the first out-
come of recalescence is not usually the state of maximum en-
tropy, due to the formation of a mushy zone which very slowly
evolves to stable equilibrium, at least the trends exhibited by
various system quantities with supercooling could roughly be
predicted by simple thermodynamic arguments.

In the attempt to unearth hidden hypotheses behind the
modeling of the early stages of freezing as effectively adia-
batic, I was finally led to consider the entropy of a liquid with
a solid droplet inside. I have thus documented the existence,
for a small-sized liquid system, of a minimum supersatura-
tion to achieve in order that adiabatic freezing may occur un-
der constant-volume conditions. I defer to a future publication
the real-life illustration of some of the features of adiabatic
freezing that were highlighted in the present study.
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