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We study a two-dimensional fluid of particles interacting through a spherically symmetric and
marginally soft two-body repulsion. This model can exist in three different crystal phases, one of
them with square symmetry and the other two triangular. We show that, while the triangular solids
first melt into a hexatic fluid, the square solid is directly transformed on heating into an isotropic fluid
through a first-order transition, with no intermediate tetratic phase. In the low-pressure triangular and
square crystals, melting is reentrant provided the temperature is not too low, but without the neces-
sity of two competing nearest-neighbor distances over a range of pressures. A whole spectrum of
water-like fluid anomalies completes the picture for this model potential. © 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4749260]

I. INTRODUCTION

When confined to two-dimensional (2D) space, con-
densed matter behaves differently than in three dimensions
(3D). A striking example is the physics of the Kosterlitz-
Thouless transition in superfluid films, not to mention the
phenomenon of high-temperature superconductivity in the
cuprates, which is intimately related to the motion of elec-
trons within weakly-coupled copper-oxide layers. Another
example is provided by 2D crystals, where thermal fluctua-
tions are so strong as to rule out long-range translational (but
not orientational) order for non-zero temperatures, leaving it
open for the possibility of unconventional melting scenarios.
The celebrated Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) theory of 2D melting thereby predicts a continu-
ous two-stage melting from a crystalline to a hexatic phase
and, subsequently, from the hexatic to an isotropic liquid.1

The intermediate hexatic phase has short-range translational
order (i.e., it is fluid-like) but quasi-long-range orientational
order, characterized by a power-law decay of bond-angle
pair correlations. Other possibilities are a standard first-order
2D-melting transition (as in Chui’s theory2) or a stronger,
i.e., first-order hexatic-to-isotropic transition, as shown by
Bernard and Krauth to be the case for hard discs.3 In some
cases, melting is one-stage and first-order but the hexatic
phase can be accessed via a metastable route.4, 5

The KTHNY theory has been confirmed many times
in simulation and experiment, especially for particles with
long-ranged interactions, though in a few cases with some
controversy about the order of the two transition steps.6–17

From a computational point of view, the assessment of the
order of 2D melting in practical cases can be hard, due to
important finite-size effects and slow relaxation to equilib-
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rium. An extreme case is hard discs where the exact nature of
the melting transition could be established only recently, by
employing unprecedentedly large system sizes of the order
of a million particles in a box of fixed volume.3 Generally
speaking, working in the isothermal-isobaric ensemble
(rather than at constant volume) can ease the interpretation
of the simulation data, since one cannot incur in any of the
finite-size artifacts that harm constant-volume simulations.
Recently, we have provided unambiguous evidence of the
occurrence of continuous melting via a hexatic phase in the
2D Gaussian-core model (GCM).18 This system, taken as
a prototype of the phase behavior of “empty” polymers,19

has long been known to exhibit reentrant melting (i.e., solid
melting under isothermal compression) as well as water-like
anomalies in three dimensions.20–23 In two dimensions,
the GCM melting becomes two-staged, with an extremely
narrow hexatic region whose properties comply with the
predictions of the KTHNY theory. In particular, besides a
reentrant isotropic fluid, also a reentrant hexatic phase exists.
Recently, water-like anomalies have been reported even in
the one-dimensional GCM,24 where however no properly
defined thermodynamic transition occurs.

A class of systems which exhibit reentrant melting, solid
polymorphism, and other water-like anomalies is formed by
particles interacting via spherically-symmetric core-softened
(CS) potentials.25 For these systems, the strength of the re-
pulsive component of the interaction undergoes some sort
of weakening over a range of interparticle distances. The
effects of particle-core softening on thermodynamic behav-
ior were originally investigated by Hemmer and Stell,26 who
were interested in the possibility of multiple critical points
and isostructural solid-solid transitions in simple-fluid sys-
tems. A few years later, Young and Alder27 showed that the
phase diagram of the hard-core plus square-shoulder repul-
sion exhibits an anomalous melting line of the kind observed
in Cs and Ce. Later, Debenedetti28 showed that systems of
particles interacting via continuous CS potentials are capa-
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ble of contracting when heated isobarically (a behavior which
goes under the name of “density anomaly”). In the last decade
or so, there has been a renewal of interest in the phase be-
havior of CS potentials, which has led to the discovery of
many unusual properties such as multiple reentrant-melting
lines, polymorphism both in the fluid and solid phases, stable
cluster solids (for bounded interactions only), and a plethora
of thermodynamic and dynamic water-like anomalies.29–41 A
common feature of CS potentials is their ability to generate
two distinct length scales in the system, one related to the in-
ner core and the other associated with the milder component
of the repulsion.25 Due to this, CS fluids are characterized by
two competing, expanded and compact, local particle arrange-
ments. Such an interplay has a disruptive influence on crystal
order, the fluid phase being thus recovered upon compression.
This two-scale or two-fluid property mimics the behavior of
the more complex network-forming fluids, where the looser
and denser local structures arise from the incessant building
and breaking of the dynamic network generated by directional
bonds. As a result, a paradigm has been established whereby
the existence of two competing local structures is essential for
the occurrence of anomalous behaviors in simple fluids.

Unusual phase behavior has also been found in 2D sys-
tems. Scala and co-workers42 carried out molecular-dynamics
simulations of the 2D square-shoulder plus square-well
(SSSW) potential finding water-like anomalies and identi-
fying two different solid phases: a triangular crystal (low-
density phase) and a square crystal (high-density phase).
However, the observation of a hysteresis loop in their sim-
ulations suggested that the liquid-solid transition is actually
first-order, thus washing out the possibility of a continuous
melting to a hexatic phase. Wilding and Magee also stud-
ied the 2D SSSW potential and showed that the thermody-
namic anomalies of the model, rather than stemming from
a metastable liquid-liquid critical point as previously sur-
mised, were induced by the quasicontinuous nature of the 2D
freezing transition.43 Almudallal and co-workers44 contested
this result, showing by various free-energy techniques that
all transitions in the 2D SSSW model are in fact first-order.
Malescio and Pellicane studied a 2D system of particles inter-
acting through a potential consisting of an impenetrable hard
core plus a square shoulder. They found a variety of stripe
phases whose formation was imputed to the existence of two
characteristic length scales.45 All such investigations suggest
that the existence of two length scales would be a prerequisite
for observing water-like anomalies also in 2D.

In a series of recent papers the two-fluid picture has been
overthrown and a novel minimal scenario for the occurrence
of anomalies has been established.46–49 More specifically, it
has been shown that a weakly softened isotropic pair repul-
sion, with a single characteristic length which becomes more
loosely defined in a range of pressures, is able to give rise
to an unusual phase behavior. Our purpose here is to verify
whether anything similar occurs in 2D, where in addition an
interesting interplay with hexatic order may take place. Far
from being purely academic, the present study can be rel-
evant for many soft materials. For instance, one monolayer
of N-isopropylacrylamide (NIPA) microgel spheres confined
between two glass cover slips is an ideal system to study

2D melting because the effective interparticle potential is
short-ranged and repulsive, with a temperature-tunable vol-
ume fraction.11, 12, 14, 50, 51 Systems like this would be natural
candidates for detecting, by video optical microscopy or light
scattering, the kind of phenomena that we are going to illus-
trate below.

The plan of the paper is the following. After introducing
our 2D model and method in Sec. II, we sketch the model
phase diagram in Sec. III, highlighting the unconventional
structure of the fluid phase which, similarly to other instances
of CS repulsion, shows a number of water-like anomalies
without any interplay between two characteristic length
scales. The melting mechanism is studied in more detail in
Sec. IV, where we show the existence of a hexatic phase.
Section V is finally devoted to concluding remarks.

II. MODEL AND METHOD

We consider a purely repulsive pair potential in two di-
mensions, modelled through an exponential form which was
first introduced, about four decades ago, by Yoshida and Ka-
makura (YK):52

u(r) = ε exp

{
a

(
1 − r

σ

)
− 6

(
1 − r

σ

)2
ln

( r

σ

)}
, (1)

where ε and σ set the energy and length scales, respectively,
and a ≥ 0. The YK potential behaves as r−6 for small r, and
falls off very rapidly for large r. The smaller a the higher the
degree of softness of u(r), i.e., the flatter the repulsive “shoul-
der” around r = σ . Technically speaking,28 u(r) can be re-
garded as soft only for a � 2.3, since only in this range there is
an interval of distances where the local virial function −ru′(r)
decreases when the interparticle separation decreases. How-
ever, it is over the wider range a � 5.5 that the phase diagram
is expected to show a reentrant-fluid region.47, 53 We shall here
focus on the case a = 3.3 (Fig. 1), which was already shown to
possess a rich anomalous phase behavior in three dimensions
which cannot simply be explained by the existence of two dis-
tinct nearest-neighbor (NN) distances in the dense fluid.47

FIG. 1. YK potential with a = 3.3 (Eq. (1), black solid line), its negative
first-order derivative −u′(r) (dotted blue line), and the virial function −ru′(r)
(dashed red line).
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We now briefly describe the methodology of the present
investigation. After identifying the relevant crystal phases by
means of total-energy calculations at zero temperature (of the
type illustrated in, e.g., Ref. 54), we explore the phase dia-
gram by Monte Carlo (MC) simulation in the NPT ensemble.
As is common practice, we adopt periodic boundary condi-
tions and employ cell linked lists in order to speed up the
simulation. While systems of about 1000 particles are suit-
able for investigating bulk properties and for determining the
approximate location of phase boundaries, we consider larger
systems of about 6000 particles for the search and characteri-
zation of the hexatic phase at selected pressures. For the same
P values, we check the order of the melting transition inde-
pendently through thermodynamic integration combined with
exact free-energy calculations. For the fluid phase, a dilute
gas is used as a reference state, whose chemical potential is
calculated by the Widom method, whereas a low-temperature
crystal is chosen as the starting point of the simulation in the
solid region of the phase diagram. At this initial state, the ex-
cess Helmholtz free energy of the system is computed by the
Einstein-crystal method.55

III. FLUID STRUCTURE AND WATER-LIKE
ANOMALIES

For a = 3.3, the repulsive shoulder at σ , which is still
visible in the plot of u(r) for a � 2, has by then completely
faded out, surviving only in the form of a modest bump in the
otherwise monotonously decreasing profile of the virial func-
tion (see Fig. 1). Yet, this almost structureless potential shows
three distinct stable crystal arrangements at T = 0 in two di-
mensions, as it follows from the calculation of the chemical
potential μ as a function of the pressure P for all five Bra-
vais lattices and for the honeycomb lattice. Upon increasing
P, the sequence of phases is triangular-square-triangular, the
square crystal being thermodynamically stable in the pressure
range 2.27-4.36, in units of ε/σ 3 (from now on, pressure and
temperature will be given in reduced units).

Assuming that no other crystal phases come into play at
nonzero temperatures, we first sketched the overall phase di-
agram by the heat-until-it-melts (HUIM) method. In practice,
for selected P values we run a chain of MC simulations of the
solid stable at the given P, for increasing T values at regular
intervals of 0.0005, until we observe a clear jump in both the
particle-number density ρ = N/V and total energy per par-
ticle E/N, which signal the melting of the solid. The charac-
ter of this transition will be addressed in Sec. IV. The HUIM
method simply overlooks the possibility of solid overheating,
but this is usually a reasonable approximation if one is not
interested in very precise estimates of the melting tempera-
ture Tm (a posteriori, the typical error implied by the HUIM
method in determining the melting point of the present sys-
tem was about 10%, and smaller for the square crystal). The
outcome of this analysis is reported in Fig. 2 where the most
revealing feature is the reentrance of the fluid phase as the
system, already settled in the low-density triangular solid, is
further compressed at not too low temperatures. Fluid reen-
trance occurs even twice in a smaller range of temperatures
above 0.020.

FIG. 2. Phase diagram of the YK potential with a = 3.3. Two kinds of melt-
ing points are shown: those determined by the HUIM method (blue open
dots) and others (red-filled blue dots) marking either the onset of the hexatic
phase (P = 0.5, 2, and 5) or the crossing in temperature of solid and liquid
chemical potentials (P = 3 and 4), as discussed in Sec. IV. Statistical errors
are smaller than the symbols size. Another red dot is placed where the chem-
ical potential of the low-density triangular (T) solid takes over that of the
square (S) solid at T = 0.005. The black solid lines are schematic transition
lines. The hexatic-isotropic fluid transition lines are not shown. The extent of
the low-pressure hexatic region can be appreciated in the inset, which shows
a magnification of the P interval from 1 to 2. Of similar width is the high-
pressure hexatic region near P = 5. Further open symbols joined by straight
lines mark the boundaries of anomaly regions: isothermal −s2 maxima and
minima (left and right green squares); isothermal D minima and maxima (left
and right magenta triangles); isobaric ρ maxima (red squares). We checked
that the structural and diffusional anomalies are no longer present for T = 0.2
and T = 0.18, respectively; hence, we draw the dashed lines to mean that the
two branches of each anomaly are actually sewed in from the top.

As we already said in the Introduction, until very re-
cently the conventional wisdom on the origin of the reentrant-
melting phenomenon in CS systems with an unbounded in-
terparticle repulsion rested on a competition, with destabi-
lizing effects on crystal ordering, between two ways of ar-
ranging particles close to each other, which gives rise to
either an expanded or a more compact structure in the dense
fluid. This may only occur provided the pressure is strong
enough as to bring neighboring particles at distances close
to σ . Clearly, this explanation cannot work for a case like the
present one, where it is hard to maintain that there are two
different length scales in the potential. Rather, we may view
the question from a solid-state perspective and argue that a
succession of reentrant-melting lines in the phase diagram is
simply the outcome of the existence of multiple solid phases
at low temperature. On increasing pressure within the range of
stability of any of such solids, the crystal strength first grows
up to a maximum (and in parallel also Tm), but then it progres-
sively reduces on approaching the boundary of the next stable
solid at higher pressure. After all, this is exactly the rationale
behind the melting criterion discussed in Ref. 53, which in
fact is very effective for soft repulsive interactions.

We found confirmation that the present model shows only
one repulsive length scale by computing the fluid radial dis-
tribution function (RDF) along the isotherm at T = 0.1, i.e.,
just above the maximum Tm of the low-density triangular solid
(see Fig. 3). Looking at the position of the main RDF peak,
we see a systematic shift to lower and lower distances upon
compression, with a slight widening of the peak around P � 2,
i.e., next to the first reentrant-melting line. We interpret this as
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σ

FIG. 3. YK potential with a = 3.3: radial distribution function g(r) for var-
ious pressures and for T = 0.08. Successive lines correspond to P = 0.2,
0.8, 1.6, 2.4, 3.2, 4. The arrow marks the direction along which the pressure
increases.

the evidence of a unique NN characteristic distance in the sys-
tem, which becomes more loosely defined across the region of
reentrant melting. This should be contrasted with what occurs
for a more conventional CS repulsion, where the first RDF
maximum is twin-peaked, with two definite NN distances that
take turns at providing the absolute maximum for the RDF.

Aside from the existence of one repulsive length scale
rather than two, many water-like anomalies are also found in
the present system, starting with a line of ρ maxima in the
fluid close to the first reentrant-melting line (see Fig. 2). This
is a typical occurrence in systems with CS potentials, where
however the region of volumetric anomaly is usually more
extended. We checked that the line of the density anomaly
ceases to exist just before plunging into the solid region. An-
other type of anomaly is the so-called structural anomaly,
that is a non-monotonous pressure behavior of the amount
of “translational order” in the fluid, as measured through the
value of minus the pair entropy per particle (−s2)56 (see Fig. 2
and the left top panel of Fig. 4). Rather than monotonously in-

σ ε σ ε

ε ε

FIG. 4. Anomalous properties of the YK potential with a = 3.3. (Left, top
panel) Translational-order parameter −s2 (in units of kB) as a function of
pressure for T = 0.08. (Right, top panel) Self-diffusion coefficient D (units
of σ (ε/m)1/2, where m is the particle mass) for T = 0.08. (Left, bottom panel)
Isobaric specific heat CP (units of kB) as a function of temperature for P
= 2. (Right, bottom panel) Isothermal compressibility KT (units of σ 2/ε) for
P = 2. A clear minimum is seen in the plot of both response functions.

creasing with pressure at constant temperature, the degree of
spatial order reduces in the reentrant-fluid region, as a result
of a looser definition of the NN distance. A non-sharp average
separation between neighboring particles acts as a perturbing
factor for the local order, bringing about a slight decrease of
−s2 with pressure. In the same range of pressures where −s2

decreases, the self-diffusion coefficient D, which we measure
by a series of T V N molecular-dynamics runs, gets enhanced
with pressure (Fig. 2 and top right panel of Fig. 4). Both lines
of structural and diffusional anomalies appear to sprout out of
the point of maximum Tm for the low-density triangular solid
and roughly terminate at the point of maximum Tm for the
square solid. This is again similar to other CS systems, also
for what concerns the crossing of the anomaly lines (see, e.g.,
Fig. 11 of Ref. 57). Finally, we checked for just one pressure
value (P = 2) the existence of a temperature minimum in both
the isobaric specific heat CP and isothermal compressibility
KT (lower panels of Fig. 4), similarly to what found for water
at ambient pressure. Both minima fall in the high-temperature
fluid region, much far from the maximum-density point for
the same pressure.

IV. HEXATIC BEHAVIOR

The existence in our model of two solids with different
crystal symmetry, i.e., triangular and square, gives the oppor-
tunity to investigate the intriguing possibility of two distinct
intermediate phases (hexatic and tetratic) between the solid
and the normal fluid, with the further bonus of a yet-to-be-
observed hexatic-tetratic transition near the confluence point
between the two solids and the fluid.

In order to clarify the melting scenario for a given P, we
run our computer code along two simulation paths, one start-
ing from the solid phase at T = 0.005 and the other from
a high-temperature fluid state. We advance in steps of �T
= 0.005, equilibrating the system for long before generat-
ing an equilibrium trajectory of M sweeps (one sweep cor-
responding to N trial MC moves), with M ranging between 5
× 105 and 3 × 106, depending on how far we are from melt-
ing. Once a guess of the transition point is made, we restart
the simulation slightly ahead of it with a smaller �T and/or
a larger M in order to better discriminate between first-order
and continuous melting. Besides ρ and E/N, we measure two
order parameters (OP), ψT and ψO, which are sensitive to the
overall translational and orientational triangular/square order,
respectively. The precise definition of both quantities has been
given in Ref. 18, with obvious modifications for the square-
lattice case. Moreover, we keep track of the OP susceptibil-
ities χT and χO, defined as N times the variance of the re-
spective OP estimator. Finally, we calculate two orientational
correlation functions (OCF),18 h6(r) and h4(r), which inform
on the typical size of a space region in which NN-bond an-
gles are strongly correlated. The KTHNY theory predicts an
algebraic r−η(T) large-distance decay of the OCF in the hex-
atic phase, at variance with what occurs in an isotropic fluid
where the decay is much faster, i.e., exponential. According to
the same theory, η equals 1/4 at the transition point between
hexatic and isotropic fluid.
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FIG. 5. YK potential with a = 3.3 for P = 0.5: particle-number density (top)
and total energy per particle (bottom) for two different sizes (N = 2688, red,
green, and blue; N = 6048, black). Different colors denote different simula-
tion protocols (red: �T = 0.005 and M = 5 × 105; green: �T = 0.001 and
M = 5 × 105; blue: �T = 0.001 and M = 2 × 106; black: �T = 0.0002 and
M = 3 × 106). Open dots and triangles refer to a heating path and a cooling
path, respectively.

In Figs. 5–8, we report ρ and E/N for two different sys-
tem sizes and various simulation protocols, as a function of T
for P = 0.5, 2, 3, and 5. We clearly see that, while melting is
continuous for P = 0.5, 2, and 5, it is certainly first-order for
P = 3 (and 4, data not shown), as evidenced by the hystere-
sis loops. Based on our experience with the GCM,18 we can
conjecture that there is a narrow region of hexatic phase for P
= 0.5, 2, and 5 (to be confirmed later by the analysis of OPs

FIG. 6. YK potential with a = 3.3 for P = 2: particle-number density (top)
and total energy per particle (bottom) for two different sizes (N = 2688, red,
green, and blue; N = 6048, black and yellow-filled black). Different colors
denote different simulation protocols (red: �T = 0.005 and M = 5 × 105;
green: �T = 0.001 and M = 5 × 105; blue: �T = 0.001 and M = 2 × 106;
black: �T = 0.001 and M = 3 × 106; yellow-filled black: �T = 0.0003 and
M = 3 × 106). Open dots and triangles refer to a heating path and a cooling
path, respectively.

FIG. 7. YK potential with a = 3.3 for P = 3: particle-number density (top)
and total energy per particle (bottom) for two different sizes (N = 2704, red,
green, and blue; N = 6084, black). Different colors denote different simula-
tion protocols (red: �T = 0.005 and M = 5 × 105; green: �T = 0.001 and
M = 5 × 105; blue: �T = 0.001 and M = 2 × 106; black: �T = 0.0001 and
M = 3 × 106). Open dots and triangles refer to a heating path and a cooling
path, respectively.

and OCF), whereas no definite conclusion can be reached at
this point for P = 3, where a tetratic phase can in principle
exist even in presence of a first-order transition. A special re-
mark is due for P = 5, where, in contrast with what occurs for
smaller pressures, the crystal energy decreases upon heating,
which means that the increase in kinetic energy is more than
compensated for by the loss in potential energy, whose high
rate of decrease is due to a NN distance lying in the harsh part
of the potential core.

FIG. 8. YK potential with a = 3.3 for P = 2: particle-number density (top)
and total energy per particle (bottom) for two different sizes (N = 2688, red,
green, and blue; N = 6048, black). Different colors denote different simula-
tion protocols (red: �T = 0.005 and M = 5 × 105; green: �T = 0.001 and
M = 5 × 105; blue: �T = 0.001 and M = 2 × 106; black: �T = 0.0005 and
M = 2 × 106). Open dots and triangles refer to a heating path and a cooling
path, respectively. Inset, total energy per particle on a wider pressure range.
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FIG. 9. YK potential with a = 3.3 for P = 0.5: order parameters and sus-
ceptibilities in the T range across the melting transition. (Upper panels) The
orientational order parameter ψ6 and its susceptibility χ6. Dots and triangles
mark data obtained by heating and by cooling, respectively. (Lower panels)
The translational order parameter ψT and its susceptibility χT on heating.
All data from different protocols and sizes are reported, always preferring the
most accurate estimate when more than one is available.

For three pressures (0.5, 2, and 3), we plot the OPs and
related susceptibilities in Figs. 9–11. For the first two pres-
sures, we see that ψT vanishes at a slightly smaller tempera-
ture than ψO ≡ ψ6, which implies that the hexatic phase is
confined to a narrow T interval not wider than 0.0005 for P
= 0.5 (0.0015 for P = 2), as also witnessed by the maxima of
the two susceptibilities occurring at slightly different T values.
These temperature intervals compare well with the T range
of the bridging region between the solid and fluid branches
in Figs. 5 and 6. We thus confirm the same phenomenology
of the GCM, namely that the width of the hexatic region in-
creases with pressure. For P = 5, the findings are similar to
P = 2, with roughly the same width of the hexatic region and
comparable levels of orientational and translational order in
the hot solid (data not shown). Going to P = 3, the picture is

FIG. 10. YK potential with a = 3.3 for P = 2: order parameters and suscep-
tibilities in the T range across the melting transition. See the caption of Fig.
9 for notation.

FIG. 11. YK potential with a = 3.3 for P = 3: order parameters and sus-
ceptibilities in the T range across the melting transition. See the caption of
Fig. 9 for notation.

quite different since the two OPs now apparently vanish at the
same temperature; at that point, the orientational susceptibil-
ity shows a spike (rather than a critical peak) which is usually
associated with a first-order transition. All evidence suggests
that standard first-order melting is a plausible explanation for
P = 3, and the same conclusion can be made for P = 4 (data
not shown).

A more direct evidence of the existence of a bond-
angle ordered fluid (or a clue to its absence) comes from the
large-distance behavior of the OCF. We plot this function in

FIG. 12. Orientational correlation function h6(r) at selected temperatures
across the hexatic region for P = 0.5 (N = 6048). Top: log-log plot; bot-
tom: log-lin plot. Upon increasing T from 0.0598 to 0.0606 there is a qualita-
tive change in the large-distance behavior of h6(r), from constant (triangular
solid) to power-low decay (hexatic fluid), up to exponential decay (isotropic
fluid). Note that, consistently with the KTHNY theory, the decay exponent η

is less than 1/4 (which is the slope of the dashed straight line) in the hexatic
phase. The slight recovery of correlations which is observed near the largest
distance at which the OCF is computed (roughly corresponding to half of
the simulation-box length) is a finite-size effect due to the use of periodic
boundary conditions.
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FIG. 13. Orientational correlation function h6(r) at selected temperatures
across the hexatic region for P = 2 (N = 6048). Top: log-log plot; bottom:
log-lin plot. Upon increasing T from 0.0345 to 0.0360 there is a qualita-
tive change in the large-distance behavior of h6(r), from constant (triangular
solid) to power-low decay (hexatic fluid), up to exponential decay (isotropic
fluid). Moreover, the decay exponent η is less than 1/4 (which is the slope of
the dashed straight line) in the hexatic phase.

Figs. 12–14 for various temperatures across the relevant re-
gion, for P = 0.5, 2, and 3, respectively. It appears that, for P
= 0.5 and 2, h6(r) decays algebraically in a T region of lim-
ited extent, roughly corresponding to the bridging region in
Figs. 5 and 6. Moreover, the decay exponent in the hexatic re-
gion is smaller than 1/4, becoming larger only on transform-
ing to the isotropic fluid, and the same is found for P = 5 (data
not shown). On the contrary, for P = 3 and 4, h4(r) switches
directly from no decay at all to an exponential damping, show-
ing that there is no tetratic phase in our model.

The obvious question now arises as to why, at variance
with the hexatic one, the tetratic phase is not stable in our

FIG. 14. Orientational correlation function h4(r) at selected temperatures
across the melting point for P = 3 (N = 6084). Top: log-log plot; bottom:
log-lin plot. At variance with the triangular-lattice case, we assist to an abrupt
change of decay mode as T goes from 0.0262 to 0.0263, from constant (square
solid) directly to exponential (isotropic fluid).

model. This question is difficult to answer since it involves
the consideration of the delicate equilibrium between the en-
ergy and entropy of the two competing phases, in this case
the tetratic phase and the isotropic fluid phase. A possible
hint could be the level of orientational order that is found in
the two types of solid slightly before melting. If we look at
Figs. 9–11, we see that the value of ψO ≡ ψ4 for P = 3 is less
than a half of ψ6 (note that the same holds for P = 4), and
this would explain why, in the square-crystal case, long-range
orientational order does not survive (even in the weakened
form typical of a tetratic phase) the loss of quasi-long-range
positional order determined by melting.

Finally, we checked by an independent route the order of
the melting transition for P = 0.5, 2, 3, and 4. As anticipated,
for each pressure we carried out MC simulations along two
different paths, one beginning from a cold solid and the other
from a low-density fluid. Using thermodynamic integration in
combination with exact free-energy calculations at the initial
points of the paths, we were able to obtain the system chemi-
cal potential μ along the solid and fluid branches as a function
of T. For P = 0.5 and 2, we did not find any crossing of the two
μ(T) curves, thus confirming a continuous melting transition.
Notwithstanding the care we put in keeping under control any
source of statistical error, we nevertheless found a small dis-
crepancy (about 0.0005ε, practically constant in a 0.01 wide
T range across the melting transition) between the μ levels of
the solid and the fluid, which is presumably due to the not-so-
small �T employed along the paths far from melting. On the
contrary, for P = 3 and 4, we observed a clear crossing be-
tween the two μ(T) curves, respectively at T = 0.0269 and T
= 0.0176, which is consistent with the location of the density
and energy jumps (for P = 3, see Fig. 7), and suggestive of a
first-order transition.

Summing up, we collected multiple evidence of a con-
tinuous melting via a hexatic phase for the triangular crys-
tals, while the melting transition is certainly discontinuous
and “standard” for the square crystal. Notwithstanding the
“small” sizes of the investigated samples, we think that our
conclusions are robust since they result from many indepen-
dent indicators of the phase-transition order.

V. CONCLUSIONS

We have analyzed the phase behavior of purely-repulsive
2D particles with a weakly-softened core. The nature of this
repulsion is such as to determine a characteristic NN distance
in the fluid phase whose statistical precision, expressed by
the width of the main peak of the radial distribution func-
tion, shows a non-monotonous behavior with pressure at not
too high temperatures. Notwithstanding the fact that the two-
fluid paradigm of CS potentials does not apply here, we any-
way observe the same phenomenology as in conventional CS
systems, with solid polymorphism, multiple reentrant-melting
lines, and many other water-like anomalies. While this is sim-
ilar to the 3D case,47 the melting transition of the present
system is different, since it is continuous and occurs via an
(even reentrant) hexatic phase for the triangular solids while
being standard first-order for the intermediate square solid
(i.e., no parallel tetratic phase exists). The hexatic behavior
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appears to be consistent with the KTHNY theory, as wit-
nessed by the value of the decay exponent of the orientational
correlation function at the hexatic-to-isotropic fluid transition
temperature.

Our findings could be relevant for many real soft-matter
systems. Already nowadays, monodisperse colloidal suspen-
sions can be engineered in such a way as to exhibit a
temperature-modulated repulsion with some amount of soft-
ness. Probably, the day is not far when by appropriate func-
tionalization of the particle surface a colloidal system will be
shown to exhibit the kind of phase-transition phenomena that
we have illustrated here for a rather specific model potential.
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