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The metadynamics method, recently proposed by Laio and Parrinello as a general tool to map
multidimensional free-energy landscapes #A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A.
99, 12562 !2002"$, has been exploited with the aim of illustrating the properties of generalized
thermodynamic potentials across a discontinuous phase transition. Virtues and limitations of the
method are discussed in the exemplifying case of the freezing of a Lennard-Jones fluid in two
dimensions. © 2008 American Institute of Physics. #DOI: 10.1063/1.2841081$

I. INTRODUCTION

The liquid-solid transition is among the best known and
most widely studied first-order phase changes. A common
trait of such discontinuous transitions is the emergence of
hysteresis, a feature reflecting the existence of long-lived
metastable states. This phenomenon produces a dynamical
bottleneck on the observation of the ideal equilibrium behav-
ior, which sets in only after times that approach infinity for
vanishing deviations from two-phase coexistence. In fact, the
nucleation of a crystalline structure out of a liquid drop is an
activated phenomenon, which takes place only after the sys-
tem has eventually overcome a free-energy barrier. As a re-
sult, the freezing of a fluid is usually observed after super-
cooling the system to the extent that a solid cluster with a
radius larger than a critical size forms and grows. In a similar
way, the melting of the bulk crystal typically occurs when
the system is superheated up to the point where the lattice
becomes unstable. Hence, in spite of the fact that numerical-
simulation techniques, implemented with periodic boundary
conditions, are well suited for studying the freezing and
melting in a bulk system, owing to the elimination of surface
effects, the time scale over which such phase changes typi-
cally occur is not ordinarily accessible to currently available
computers.

For the earlier reasons, most of the old and even recent
numerical studies of liquid-solid equilibria explicitly avoid
considering coexisting states and just compute one-phase
properties along the stable/metastable branches of both
phases via some form of thermodynamic integration.1 One
then identifies the coexistence point as the thermodynamic
state that is characterized by equal values of the intensive
parameters !i.e., temperature T, pressure P, and chemical po-
tential !" in the two phases.

Recently, an entirely different method has been proposed
by Laio and Parrinello in order to cope with structural
changes of general type.2 Given an arbitrary coarse-grained
description of the system in terms of a few collective coor-
dinates, the so-called metadynamics !MD" method exploits
an artificial evolution which combines the steepest-descent

dynamics that is driven by the generalized free energy !GFE"
of the system with an antagonistic, history-dependent force.
This force is constructed from a fictitious potential VG, mod-
eled as a sum of Gaussian-shaped contributions centered
along the path traced by the collective variables. As time
goes by, VG fills the GFE valleys that are associated with
different arrangements of the system, until the sum of the
GFE and VG becomes roughly constant as a function of the
collective variables. In order for the method to work effi-
ciently, the MD algorithm requires the accurate evaluation,
step by step, of the GFE derivatives with respect to the col-
lective variables. The main virtue of the MD method lies in
the ability to drive the system throughout the macrovariable
space, this way allowing a thorough exploration of the exist-
ing basins.

In the present work, we apply the MD method to the
study of the liquid-solid transition undergone by a simple
fluid. As far as we know, the only previous attempts of a
similar kind are an analysis of the melting transition of hex-
agonal ice3 and a study of crystal nucleation in a Lennard-
Jones fluid in three dimensions.4 However, both these studies
significantly depart from the present treatment. The easiest
way to distinguish a liquid drop from a crystallite is through
the comparison of the relative number densities, though other
more sophisticated means could be conceived, such as the
structural order parameters that were originally proposed by
Steinhardt and co-workers5 or the concentration of the crys-
tal defects that are suspected to play a crucial role at
melting.3 All such indicators are particularly useful whenever
one wants to elucidate the underlying microscopic mecha-
nisms that trigger the freezing/melting transition or when
more than one candidate for the stable crystal structure is to
be taken into account. By contrast, if there is only one inter-
vening solid phase and the interest is just in the thermody-
namic aspects of the transition, using the density as the
single macrovariable that discriminates between the liquid
and the solid may prove sufficient. In order to deal with such
simpler cases, we set up in Sec. II the thermodynamic and
statistical-mechanical framework for a MD treatment of the
liquid-solid phase transition. Section III is devoted to a prac-
tical demonstration of the method. Some concluding remarks
are given in Sec. IV.
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II. THERMODYNAMIC FRAMEWORK

In an isolated system at equilibrium, entropy attains the
maximum value that is compatible with the given thermody-
namic constraints. Hence, for a closed N-particle system with
short-range interactions—e.g., a simple fluid—in contact
with a heat and volume reservoir, the generalized thermody-
namic potential,

G̃!E,V;T,P,N" = E − TS!E,V,N" + PV , !1"

attains its minimum value at equilibrium.6 In Eq. !1",
S!E ,V ,N" is the entropy of the fluid, while T and P are the
values of the temperature and pressure that are fixed by the
bath. At variance with T, P, and N, which are thermody-
namic control parameters !i.e., fixed numbers", the macrova-
riables E and V are to be adjusted in order for the fluid and
the bath to be in mutual equilibrium. When this condition is
fulfilled, the minimum value of G̃ yields the Gibbs free en-
ergy of the fluid, G!T , P ,N".

The earlier considerations are fully thermodynamic in
character and, as such, they are asymptotically valid for a
statistical-mechanical model of a fluid in the thermodynamic
limit. In this case, G̃ is a convex function of E and V—since
the microcanonical entropy of the fluid S!E ,V ,N" is a con-
cave function of the same variables—and shows a unique
minimum. Conversely, when N is finite, the function
S!E ,V ,N" may not be everywhere concave. In particular, in
the neighborhood of a discontinuous phase transition point,
G̃ develops another minimum, with a smaller depth than the
one corresponding to the stable equilibrium state. This sec-
ondary minimum is associated with a competing metastable
phase. Correspondingly, a whole region of energies and vol-
umes appears where G̃ has the “wrong” concavity.

For finite N, one can use the MD method to reconstruct
the profile of G̃ as a function of E and V, for fixed values of
T and P. To this aim, all that is needed is the computation of
the partial derivatives of G̃ with respect to E and V in the
region !"" of interest.7 Since

#G̃

#E
= 1 −

T

T!E,V,N"
,

!2"
#G̃

#V
= − T

P!E,V,N"
T!E,V,N"

+ P ,

the problem actually reduces to estimating T!E ,V ,N" and
P!E ,V ,N", i.e., the temperature and the pressure of the iso-
lated fluid. In a MD run, upon starting, say, from the values
of E and V that correspond to the equilibrium state for the
given T and P, the simulation algorithm generates a path
throughout " which, if sufficiently long, will pass many
times nearby each " point. In this case, the sum of Gaussians
which is updated at every step of the procedure will eventu-
ally match, though with a reversed sign, the profile of
G̃!E ,V".

To simplify things further, let us suppose that we are
only interested in the “slice” of the G̃!E ,V" surface where
the constraint T!E ,V ,N"=T is satisfied !this condition is ac-

tually equivalent to considering the equilibrium value of E
for the given values of T, V, and N". In this case, G̃ reduces
to

GT,P,N!V" % G̃!E!T,V,N",V;T,P,N"

= E!T,V,N" − TS!T,V,N" + PV

= F!T,V,N" + PV , !3"

and, in place of Eqs. !2", we get

dGT,P,N!V"
dV

= P − P!T,V,N" . !4"

In the earlier formula, P!T ,V ,N"% P!E!T ,V ,N" ,V ,N" is the
pressure of the fluid expressed as a function of T, V, and N.
This approach is similar in spirit to the method proposed by
Martoňák and co-workers for studying solid-solid
transitions.8

Note that any local extremum of G̃!E ,V" is such also for
G!V" since the condition #G̃ /#E=0 is equivalent to
T!E ,V ,N"=T. A straightforward calculation also yields

d2GT,P,N!V"
dV2 =

PETV − PVTE

TE
=

G̃EEG̃VV − G̃EV
2

G̃EE

, !5"

showing that the sign of the second derivative of G at an
extremal point is the same as that of G̃EE=−TSEE.

The earlier derivation implicitly assumes that TE#SEE
$0 for any !E ,V ,N", which in fact is verified in the thermo-
dynamic limit. However, for finite N, the entropy function
may have a convex intruder and one is not allowed to invert
locally T!E ,V ,N"=T at those points where S changes from
concave to convex as a function of E only. Even in this case,
Eqs. !3" and !4" remain well defined as long as F!T ,V ,N"
and P!T ,V ,N" are interpreted as the canonical Helmholtz
free energy and pressure of the fluid.

If, for instance, the fluid pressure is slightly less than the
liquid-solid coexistence pressure at temperature T, the deep-
est minimum of G is associated with the liquid phase and,
correspondingly, the isothermal compressibility attains nega-
tive values over a range of volumes !similar considerations
apply to the liquid-vapor transition as well". As is well
known, on approaching a discontinuous phase-transition
point, the profile of P!T ,V ,N" generally shows, when plotted
as a function of V, a van der Waals loop.9–12 By Eq. !4", this
feature suffices to generate a G profile with two minima.

At each MD step, the calculation of P!T ,V ,N" can be
carried out by a Monte Carlo !MC" simulation of the fluid in
the canonical ensemble. In practice, the calculation is fea-
sible for two-dimensional systems only since the MC deco-
rrelation time is enormously long in the transition region !all
the more so in three dimensions" and, as a result, the com-
puted P!T ,V ,N" will be affected by a huge error. This effec-
tively restrains the applicability of the present method to
fluids in two dimensions.

We can attach another meaning to GT,P,N!V". To this aim,
we consider the probability that the N-particle fluid has vol-
ume V at equilibrium, when the temperature and the pressure
are both held fixed
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$T,P,N!V" =
e−%PVZT,V,N

YT,P,N
, !6"

ZT,V,N and YT,P,N being the canonical and isothermal-isobaric
partition functions of the fluid. Then, if we define the auxil-
iary potential

&T,P,N!V" % −
1
%

ln $T,P,N!V"

= PV + F!T,V,N" − G!T,P,N" , !7"

we see that GT,P,N!V" and &T,P,N!V" do actually differ for an
“additive constant” only, i.e., G!T , P ,N". In the thermody-
namic limit, all statistical ensembles become equivalent for
systems with short-ranged potentials and one has

min
v

&f!T,v" + Pv' = min
e,v

&e − Ts!e,v" + Pv' = g!T,P" , !8"

where we have used lowercase letters to indicate the values
of the extensive quantities per particle !e.g., v=V /N". Hence,
we obtain

min
v

lim
N→'

&T,P,N!Nv"
N

= 0. !9"

In the thermodynamic limit, the minimum value of G /N
is exactly equal to the chemical potential of the stable phase.
For large but finite values of N, G shows two minima which
we are tempted to identify with the chemical potentials of the
two phases. In this case, the condition for phase coexistence
turns out to be the equality of the minima displayed by G,
which corresponds to a histogram $T,P,N!V" showing two
maxima with equal height. It is easy to see that the stated
prescription is nothing but Maxwell’s rule, which determines
the volumes V1 and V2 of the coexisting phases of a system
whose isotherms P!T ,V ,N" show a van der Waals loop in the
transition region. In fact, one has in general

(
V1

V2

dVP!T,V,N" = F!T,V1,N" − F!T,V2,N"

= − P!T,V1,N"V1 + !!T,V1,N"N

+ P!T,V2,N"V2 − !!T,V2,N"N . !10"

At coexistence, the two phases have the same pressure P and
chemical potential !. Hence, the following equation must
hold:

(
V1

V2

dVP!T,V,N" = P!V2 − V1" , !11"

which is precisely Maxwell’s rule

(
V1

V2

dV!P!T,V,N" − P" = 0. !12"

In the light of Eq. !4", Eq. !12" is completely equivalent to
GT,P,N!V1"=GT,P,N!V2", which is what we intended to show.

The equal-height rule for the peaks of $T,P,N!V" should
not be regarded as necessarily superior to the prescription of
equal areas under the same peaks, a criterion that is also
found in the literature, because one can rightly argue that, for

sufficiently large values of N, such areas are in fact in the
same ratio as the partition functions of the two phases, and
are equal, in turn, to the values, respectively, attained by
exp&−%GT,P,N'. In the thermodynamic limit, these quantities
coincide for coexisting phases.

We finally want to comment on the meaning of the
height of the barrier separating the two minima of GT,P,N!V"
when they have equal depth, viz., at coexistence. Let Vl be
the volume of the liquid and Vmix the abscissa of the maxi-
mum of GT,P,N!V". One has

(G % GT,P,N!Vmix" − GT,P,N!Vl" = P(V + (F . !13"

In turn, (F=F!T ,Vmix,N"−F!T ,Vl ,N" is the Helmholtz free-
energy difference between a liquid-solid mixture of volume
Vmix, with unspecified proportions NA and NB of the two
phases, and the liquid of volume Vl,

(F = Fmix − Fl

= − PVA − PVB + !NA + !NB + Fsurf + PVl − !N ,

!14"

where we have considered that the two competing phases
have the same pressure and chemical potential; Fsurf is the
contribution of the interface separating the liquid and the
solid components of the mixture. Since VA+VB=Vmix and
NA+NB=N, upon inserting Eq. !14" into Eq. !13", one
obtains

(G = Fsurf. !15"

Hence, the height of the barrier is just the Helmholtz free-
energy cost associated with the interface separating the two
phases. We note that, since Fsurf=O!N1/2" in two dimensions,
(G /N vanishes, as expected, in the infinite-size limit.

III. RESULTS

We applied the MD method, in the framework outlined
in the previous section, to the description of the freezing
transition of a Lennard-Jones !LJ" fluid in two dimensions.
The interaction potential,

uLJ!r" = 4))**

r
+12

− **

r
+6, , !16"

was truncated at a distance rc=21/6+2.5*. The system con-
sisted of N=256 particles moving in a rectangular box with
edge ratio Ly /Lx=-3 /2 and periodic boundary conditions.

In a typical NVT run the particles were initially arranged
at the vertices of a triangular lattice and then equilibrated for
at least 105 sweeps, one sweep corresponding to one at-
tempted Metropolis move per particle. However, whenever
possible, we preferred to choose as initial configuration the
last configuration produced in a well-equilibrated run carried
out at a nearby density, after properly rescaling all particle
coordinates. Equilibrium averages were computed over a tra-
jectory 106 to 2+107 sweeps long, depending on whether
the system was homogeneous or heterogeneous. At the be-
ginning of the production run the maximum shift of a par-
ticle from its position in a MC move was fixed so as to
ensure a fraction of accepted moves close to 50%. The pres-
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sure P!T ,V ,N" of the system was calculated as the average
of the virial of the interatomic forces. At the end, the pres-
sure and the excess energy per particle were corrected so as
to remedy the truncation of the potential, the corrections be-
ing, respectively, given by

Ptail = − 1
2,-2(

rc

Ly/2
drr2g!r"u!!r" ,

!17"

utail = ,-(
rc

Ly/2

drrg!r"u!r" ,

where -=N /V and g!r" is the radial distribution function of
the system with truncated interactions.

In order to calculate $T,P,N!V" we performed NPT simu-
lations of a LJ sample with similar specifications as in the
NVT case but for the choice of the potential cutoff which was
taken to be Ly /2. We employed the ordinary isothermal-
isobaric Metropolis algorithm as described, for instance, in
Ref. 1. The volume histogram was updated every single
sweep.

We first tried to reproduce the molecular-dynamics data
obtained by Toxvaerd !kBT /)=1".11 Our results for the pres-
sure, plotted as a function of the reduced density, are com-
pared with those obtained by Toxvaerd in Fig. 1. A neat van
der Waals loop is manifest in the transition region. However,
the agreement between the present results and Toxvaerd’s
data is rather poor in this region. We surmise that this dis-
crepancy may be due to insufficient equilibrium sampling in
Toxvaerd’s simulations. As seen from Fig. 1, the spinodal
region is confined in a range of pressures between, approxi-
mately, 5.3 and 5.6 !in units of ) /*2".

As far as the nature of the high-density phase is con-
cerned, one may wonder whether it is a solid or, rather, a
hexatic fluid. Actually, there is no way to distinguish be-
tween the two phases in a system with 256 particles. As a
matter of fact, exact free-energy calculations by Udink and
Frenkel13 indicate that the solid is stable against dislocation
unbinding down to the estimated liquid-solid coexistence

pressure. Yet, the “two-phase region” of the system is highly
unusual in that, apparently, a disclination-unbinding transi-
tion occurs within it.

We verified that very long MC simulations !viz., at least
107 sweeps long" are needed to ensure an efficient sampling
of the system in the coexistence region. On the other hand,
an accurate reconstruction of GT,P,N!V" carried out via meta-
dynamics would require, in a case like ours, some 500 MD
steps !this estimate follows from a MD calculation which
uses the “exact” pressure of Fig. 1 as an input". As a matter
of fact, we found that even a fast, “on-the-fly” sampling of
the system at each MD step gives the right result anyway,
provided one uses a sufficiently small amplitude for the
Gaussians. This unexpected shortcut in the MD calculation,
due to a very efficient cancellation of positive and negative
errors on the estimate of P!T ,V ,N", is probably the most
significant result of the present paper.

We run our MD code for P*2 /)=5.46. At this pressure,
one is close to coexistence for kBT /)=1, as indicated by the
double-peaked structure of $T,P,N!V". We used .v=0.002*2

as the step length of the volume dynamics and w=10−5) as
the amplitude of the Gaussians. For each MD step, we equili-
brated the LJ sample for 104 MC sweeps and computed equi-
librium averages over “only” 105 sweeps. We also performed
the algorithm modifications that are needed to cancel the
spurious volume correlations in the last part of the MD
trajectory.14 We show in Fig. 2 the values obtained for
P!T ,V ,N" along a MD trajectory of 5000 steps. Manifestly,
in the transition region, the data points do not fall along the
“true” isotherm of Fig. 1, the errors being evenly distributed
on both sides of the curve !see the inset in Fig. 2".

The MD estimate of G as a function of MD “time” is
shown in Fig. 3. The “liquid” minimum, from which the
simulation was started, was filled first, soon followed !start-
ing, approximately, from step No. 500" by the other mini-
mum. After about 3000 steps, the reconstruction of G was
practically completed and, from there onwards, there was
room for refinement, especially in the region of the barrier

FIG. 1. NVT equation of state of a Lennard-Jones fluid in two dimensions,
for N=256 and kBT /)=1; open circles: Present Monte Carlo results; tri-
angles: Toxvaerd’s molecular-dynamics data !see Table I of Ref. 11". A
spline interpolant !solid line" was drawn through the data points in order to
guide the eye.

FIG. 2. Equation of state of a Lennard-Jones fluid in two dimensions, for
N=256 and kBT /)=1; open circles: Present Monte Carlo results; crosses:
!P ,V" Data obtained along the metadynamics trajectory. The mean pressure
obtained by binning together adjacent crosses is plotted in the inset as a
function of the density !open squares" and compared with the spline inter-
polant of the Monte Carlo data.
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between the two minima. Since the exact G is perfectly
known #it can be inferred from our accurate NVT pressure
data through Eq. !4"$, we can safely judge, in this case, the
quality of the MD calculation. The MD prediction for G and
the corresponding & are reported in Fig. 4, together with the
real shape of G. Overall, the MD outcome is good, except for
the region of the maximum which would manifestly require a
yet smaller value of w. Conversely, the output of the NPT
simulation is far from the expected result, a disagreement
which we attribute to the choice, made in order to speed up
the simulation, of calculating the NVT pressure by first trun-
cating the tail of the potential and later correcting for the
finite cutoff.

In conclusion, a fairly accurate reconstruction of G by
the MD method is certainly at hand, at least for two-

dimensional fluids, though with a still significant computa-
tional effort. In fact, a better result can be obtained more
rapidly with a single !sufficiently long" NPT simulation or,
even, with a collection of NVT runs carried out in the liquid-
solid coexistence region. For three-dimensional systems, the
G profile near the freezing transition is definitely much
harder to obtain. The better way to do so is through the
histogram of volumes in the NPT ensemble, which could be
estimated with one of the many smart Monte Carlo methods
expressly suited for enhancing the occurrence of low-
probability configurations !such as the multicanonical-
ensemble method,15 the Wang–Landau method,16 or the
time-honored umbrella sampling technique17".

IV. CONCLUDING REMARKS

In this paper, we have revisited the solidification transi-
tion of a simple fluid as a case study in MD. We have shown
that the generalized Gibbs free energy of the system, which
signals the phase transition in a finite system through a cross-
ing of minima, can be reconstructed with a MD calculation
of moderate computational effort, at least in two dimensions.
For fixed temperature, the only quantity needed for carrying
out the steepest-descent dynamics that is part of the MD
procedure is the canonical pressure. We found out that it is
not strictly necessary to fully equilibrate the system at each
MD step, since the errors in the estimate of the pressure,
which turn out to be evenly distributed between positive and
negative values, have no sizable effect on the overall quality
of the final result.
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FIG. 3. Values of the quantity −VG!v", gathered after every 1000 steps of
metadynamics, for a Lennard-Jones fluid in two dimensions, for kBT /)=1
and P*2 /)=5.46. The depths of the minima increase with the number of
metadynamics steps. The curve progressively converges to the generalized
free energy of the fluid, GT,P,N!v".

FIG. 4. Comparison between GT,P,N!V" !dotted line" and &T,P,N!V" !dashed
line" for a Lennard-Jones fluid in two dimensions, for kBT /)=1 and
P*2 /)=5.46. The & curve was shifted vertically so as to coincide with G at
the absolute-minimum point. The real shape of G is also reported !solid
line". The & curve shows a neat deviation from the other two estimates that
is due to the slightly different methods employed for computing the pressure
in the NVT and NPT simulations, respectively.
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