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Phase diagram of Gaussian-core nematics
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The authors study a simple model of a nematic liquid crystal made of parallel ellipsoidal particles
interacting via a repulsive Gaussian law. After identifying the relevant solid phases of the system
through a careful zero-temperature scrutiny of as many as eleven candidate crystal structures, they
determine the melting temperature for various pressure values, also with the help of exact free
energy calculations. Among the prominent features of this model are pressure-driven reentrant
melting and the stabilization of a columnar phase for intermediate temperatures. © 2007 American

Institute of Physics. [DOIL: 10.1063/1.2737041]

I. INTRODUCTION

Since five decades now, numerical simulation stands out
as an invaluable tool for the determination of equilibrium
statistical properties of many-particle systems. Despite a
long history, however, a precise numerical evaluation of the
Helmholtz free energy of a simple model fluid in its solid
phase has resisted all attacks for many years until, in a re-
markable 1984 paper,I Frenkel and Ladd showed how a ref-
erence Einstein solid can be used right to this purpose. Since
then, it has become possible to trace a numerically accurate
and complete equilibrium phase diagram for simple-fluid
systems by Monte Carlo simulation methods. The only real
limitation of the Frenkel-Ladd method is the necessity of a
preliminary identification of all relevant solid structures. De-
pending on the complexity of the model potential, some
structure could be skipped, nor does it necessarily shows up
spontaneously in the simulation due to the effective fragmen-
tation of the system phase space into inescapable ergodic
basins.

In a series of papers,zf4 we have employed the Frenkel-
Ladd technique in combination with the standard
thermodynamic-integration method in order to trace the
phase diagram of some reference simple-fluid models. In
particular, we have provided the first accurate determination
of the phase diagram for the so-called Gaussian-core model,
which is meant to describe dilute solutions of polymer
coils.™® The thermodynamics of this model is ruled by the
competition between the fluid and two different, body-
centered-cubic (bcc) and face-centered-cubic (fec), crystal
structures; its peculiar features are reentrant melting by iso-
thermal compression and, in a narrow range of temperatures,
bee reentrance in the solid sector.

Following earlier simulational work by Frenkel and col-
laborators on hard ellipsoids and spherocylindersj"10 as well
as by other authors on hard dumbbells,” we aim here to
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provide another demonstration of the use of simulation for
the description of thermodynamic properties of elongated
particles. Such molecules can exist in a number of partially
ordered mesophases with long-range orientational order, pos-
sibly in combination with one- or two-dimensional transla-
tional order (as in smectic and in columnar liquid crystals,
respectively).lz’13 Liquid crystals do also usually give rise to
numerous solid phases which, as a rule, can hardly be antici-
pated from just a glance at the interaction potential between
the molecules.

Very recently, an interesting liquid-crystal model was in-
troduced by de Miguel and Martin del Rio'* whose phase
diagram shows a stable smectic phase as well as pressure-
driven reentrance of the nematic phase. The model consists
of equally oriented hard ellipsoids that are further equipped
with an attractive spherical well (there is no isotropic phase
in this model since the particles are artificially constrained to
stay parallel to each other, hence the fluid phase is a nematic
liquid crystal). Initially, we thought of this model as an ideal
candidate for a complete reconstruction of the phase dia-
gram. Unfortunately, the model potential turns out to be not
simple enough to allow for a straightforward identification of
the structure of its solid phase(s) and, in this respect, the
original paper is in fact reticent. We have made an attempt to
resolve the solid structure in terms of stretched cubic lattices
but a direct inspection of many equilibrated solid configura-
tions reveals more complicated, yet periodically repeated
patterns. Probably, this results from a difficult matching be-
tween the optimization requirements of the different pair-
potential components, i.e., a cylindrically symmetric hard-
core repulsion and a spherically symmetric steplike
attraction.

To retain nematic reentrance and, possibly, also the
smectic phase, we have considered a more tractable test case,
that is a uniaxial deformation of the repulsive Gaussian po-
tential, which we expect to provide a model nematic fluid
whose phase diagram can fully be worked out, also in its
solid region. It can plausibly be argued on symmetry grounds

© 2007 American Institute of Physics

Downloaded 18 May 2007 to 192.167.98.120. Redistribution subject to AIP license or copyright, see http:/jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1063/1.2737041
http://dx.doi.org/10.1063/1.2737041

194902-2 S. Prestipino and F. Saija

and also expected from the smoothness of the potential that
all solid phases of the model will now be found within the
class of uniaxially stretched cubic crystals.

The rest of the paper is organized as follows: In Sec. II,
we present our liquid-crystal model together with a catalog
of crystal structures that are possibly relevant to it. Next, in
Sec. III, we outline the numerical methods by which the
phase diagram of the model is being drawn. Results are ex-
posed in Sec. IV while further comments and conclusions are
deferred to Sec. V.

Il. MODEL

We consider a nematic fluid of N parallel ellipsoids of
revolution whose geometric boundaries are smeared out by a
pair interaction # that smoothly depends on the ratio between
the center-to-center distance r and the “contact distance” o,
which is the distance of closest approach in case of sharp
boundaries. o is a function of the angle 6 that the ray r
joining the two molecular centers forms with the direction Z
of the axis of revolution. Its closed-form expression is easily
found to be

LD

VL? sin® 6+ D? cos® 6

o(0) = (2.1)
D and L being the transversal (with respect to Z) and the
longitudinal diameters, respectively (we hereafter consider
only the prolate case L> D). For uniaxial particles, the func-
tional dependence of o is actually on cos 6, as exemplified
by Eq. (2.1). We also note that hard ellipsoids do correspond
to an interaction strength being +o for r<o(6) and zero
otherwise.

For the efficiency of numerical calculation, sufficiently
short-range interaction in all directions is highly desirable
and, among smooth interactions, a good choice is a
Gaussian-decaying two-body repulsion,

2
u(r,6) = eexpy — W ,

€>0 being an arbitrary energy scale. Equation (2.2) defines
the Gaussian-core nematic (GCN) fluid. It is evident that,
upon increasing the aspect ratio L/D, larger and larger sys-
tem sizes are needed in order to pull down any rounding-off
error that is implicit, e.g., in the numerical calculation of the
total energy.

Another crucial quantity to determine in a simulation is
the pressure. For a V-volume system of N parallel ellipsoids
in contact with a heat bath at temperature 7', the equilibrium
pressure P can be calculated from a virial theorem that gen-
eralizes the one valid for a simple fluid. Let the total poten-
tial energy of the system be of the general form U
=E,-<ju(|Ri—Rj ,cos 6;;), where R, is the center-of-mass po-
sition of particle 7 and cos 6;;=(R;~R})-Z. Upon switching to
scaled V-3R,; coordinates, one readily gets

(2.2)

1
P= kBTp— _<E R,-ju{(R,-j,COS 0”)>, (23)

3V i<j

where | is the u derivative with respect to its first argument,
p=N/V is the (number) density, and kj is Boltzmann’s con-
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stant. Clearly, (---) is a canonical-ensemble average. Upon
introducing the 7- and p-dependent, two-body distribution
function g,(R;,R,)=g(|R,;=R,|,cos 6;,), the system pres-
sure can also be expressed as

1 +00
P=kyTp- %szf drf dr Pg(r,Duy(r,7). (2.4)
-1 0

In particular, for a system of hard ellipsoids the pressure
reads

7TkBT

1
P=kzTp+ pzf dro(71)’g(o(D*, 7). (2.5)
-1

Anyway, a practical implementation of Eq. (2.4) and (2.5) in
a simulation requires a precise evaluation of the two-
argument function g which, ordinarily, is a difficult task to
accomplish with negligible statistical errors. A much better
solution is to switch to the isothermal-isobaric ensemble, by
simulating the system under constant-7" and constant-P con-
ditions, see Sec. III.

As was mentioned in Sec. I, one main inconvenience of
liquid-crystal simulations is the correct identification of the
solid phase(s) of the system, since a plethora of such phases
is conceivable and there is no unfailing criterion for choosing
those that are really relevant to the specific model under
investigation. The actual importance of a given crystal phase
can only be judged a posteriori, after proving its mechanical
stability in a long simulation run and, ultimately, on the basis
of the calculation of its Gibbs free energy, but nothing can
nevertheless ensure that no important phase was skipped.
Besides these vague indications, we adopted a more stringent
test in order to select the phases for which it is worth per-
forming the numerically expensive calculation of the free
energy. With specific reference to the model [Eq. (2.2)], we
did a comprehensive T=0 study of the chemical potential w
as a function of the pressure for many stretched cubic and
hexagonal phases, in such a way as to identify the stable
ground states and leave out from further consideration all
solids with a very large u at zero temperature. In fact, it is
unlikely that such phases can ever play a role for the ther-
modynamics at nonzero temperatures.

For the interaction potential describing the GCN model,
we surmise that all of its stable crystal phases are to be
sought among the structures obtained from the common cu-
bic and hexagonal lattices by a suitable stretching along a
high-symmetry crystal axis, with optimal stretching ratios «
that are probably close to L/D. Take, e.g., the case of bcc.
We can stretch it along [001], [110], or [111], this way de-
fining new bcc001(w), becl10(w), and beelll(a) lattices
(the number within parentheses is the stretching ratio; for
instance, bcc001(2) is a bee crystal whose unit cell has been
expanded by a factor of 2 along z). The same can be done
with the simple-cubic (sc) and fcc structures. We further con-
sider hexagonal-close-packed (hcp) and simple-hexagonal
(sh) lattices that are stretched along [111], this way arriving
at a total of eleven potentially relevant crystal phases.
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lll. METHOD

For fixed T and P values, the most stable of several
thermodynamic phases is the one with lowest chemical po-
tential u (Gibbs free energy per particle). At T=0, only crys-
tal phases are involved in this competition and, once a list of
relevant phases has been compiled, searching for the optimal
one at a given P becomes a simple computational exercise.
An exact property of the Gaussian-core model (which is the
L/D=1 limit of the GCN model) is that, on increasing pres-
sure, the bce crystal takes over the fcc crystal at P
= PD3/€e=0.055." Hence, in the GCN model with L/D>1 a
leading role is naturally expected for the stretched fcc and
bce crystals.

For an assigned crystal structure, we calculate the 7=0
chemical potential u(P) of the GCN model for a given pres-
sure P by adjusting the stretching ratio a(P) and the density
p(P) until the minimum of (U+PV)/N is found. Once the
profile of wu as a function of P is known for each structure, it
is straightforward to draw the 7=0 phase diagram for the
given L/D.

The known thermodynamic behavior at zero temperature
provides the general framework for the further simulational
study at nonzero temperatures. In fact, it is safe to say that
the same crystals that are stable at T=0 also give the under-
lying lattice structure for the stable solid phases at 7>0. As
we shall see in more detail in the next section, the only
complication is the existence of three degenerate 7=0 struc-
tures for not too small pressures, which obliged us to con-
sider each of them as a potentially relevant low-temperature
GCN phase.

We perform a Monte Carlo (MC) simulation of the GCN
model with L/D=3 in the isothermal-isobaric ensemble, us-
ing the standard METROPOLIS algorithm with periodic bound-
ary conditions and the nearest-image convention. For the
solid phase, four different types of lattices are considered,
namely, fcc001(3), bec110(3), beel11(3), and bec001(3) (see
Sec. IV). The number of particles in a given direction is
chosen so as to guarantee a negligible contribution to the
interaction energy from pairs of particles separated by half a
simulation-box length in that direction. More precisely, our
samples consist of 10X20X8=1600 particles in the
fcc001(3) phase, of 8 X24X6=1152 particles in the fluid
and in the solid bee110(3) phase, of 10X 12X 18=2160 par-
ticles in the beel11(3) phase, and of 12X 12X 10=1440 par-
ticles in the bcc001(3) phase. Considering the large system
sizes employed, we made no attempt to extrapolate our
finite-size results to infinity.

At given T and P, equilibration of the sample typically
took a few thousand MC sweeps, a sweep consisting of one
average attempt per particle to change its center-of-mass po-
sition plus one average attempt to change the volume by an
isotropic rescaling of particle coordinates. The maximum
random displacement of a particle and the maximum volume
change in a trial MC move are adjusted once a sweep during
the run so as to keep the acceptance ratio of moves close to
50% and 40%, respectively. While the above setup is suffi-
cient when simulating a (nematic) fluid system, it could have
harmful consequences on the sampling of a solid state to
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operate with a fixed box shape since this would not allow the
system to release the residual stress. That is why, after a first
rough optimization with a fixed box shape, the equilibrium
MC trajectory of a solid state is generated with a modified
(so-called constant-stress) METROPOLIS algorithm which
makes it possible to adjust the length of the various sides of
the box independently from each other (see, e.g., Ref. 8).
Ordinarily, however, the simulation box will deviate only
very little from its original shape. When the opposite occurs,
this indicates a mechanic instability of the solid in favor of
the fluid, hence it gives a clue as to where melting is located.
We note that MC simulations with a varying box shape are
not well suited for the fluid phase since in this case one side
of the box usually becomes much larger or smaller than the
other two, a fact that seriously prejudicates the reliability of
the simulation results.

In order to locate the melting point for a given pressure,
we generate separate sequences of simulation runs, starting
from the cold solid on one side and from the hot fluid on the
other side. The last configuration produced in a given run is
taken to be the first of the next run at a slightly different
temperature. The starting configuration of a “solid” chain of
runs was always a perfect crystal with =3 and a density
equal to its 7=0 value. Usually, this series of runs is carried
on until a sudden change is observed in the difference be-
tween the energies/volumes of solid and fluid, so as to pre-
vent us from averaging over heterogeneous thermodynamic
states. Thermodynamic averages are computed over trajecto-
ries 10* sweeps long. Much longer trajectories are con-
structed for estimating the chemical potential of the fluid (see
below).

Estimating statistical errors is a critical issue whenever
different candidate solid structures so closely compete for
thermodynamic stability. To this aim, we divide the MC tra-
jectory into ten blocks and estimate the length of the error
bars to be twice as large as the standard deviation of the
block averages. Typically, the relative errors affecting the
energy and the volume of the fluid are found to be very
small, a few hundredths percent at the most (for a solid, they
are even smaller).

A more direct clue about the nature of the phase(s) ex-
pressed by the system for intermediate temperatures can be
got from a careful monitoring across the state space of a
“smectic” order parameter (OP) and of two different, trans-
versal and longitudinal (with respect to z), distribution func-
tions (DFs). The smectic OP is defined as

7(\) = ‘ 12 exp{iZWDZi} ‘ )

N% A

(3.1)

This quantity is able to notice the existence of a layered
structure along Z in the system, be it solidlike or smecticlike.
In particular, the N at which 7 takes its largest value gives the
nominal distance A, between the layers. A large value of 7
at N\ .x signals a strong layering along z with period A, In
order to discriminate between solid and smectic (fluid) lay-
ers, we can rely on the in-plane DF g (r ), with r =r
—(r-Z)z, which informs on how much rapid is the decay of
crystal-like spatial correlations in directions perpendicular to
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TABLE I. GCN model for L/D=3: T=0 chemical potential u(P) for eleven different solids and two values of
P*, 0.05 and 0.20, N,, Ny, N_ are the number of lattice points along the three spatial directions, p=N,N,N,/V is
the density, and « is the stretching ratio (for the sh111 lattice, « is the so-called c/a ratio). N,, Ny, N, have been
chosen so large that the rounding-off error on the total potential energy per particle, U/N, due to the finite lattice
size is negligible. The numerical precision on p and « is of one unit on the last decimal digit. Looking at the
table, the most stable structures at both pressures are five degenerate crystals, actually belonging to three
distinct types which are exemplified by bcc001(3) [equivalent to fcc001(2.12) up to a dilation], bec110(3), and
beel11(3) [equivalent to sc111(1.5)]—within brackets is the value of a.

Crystal N.N, N,  p0.05)  «0.05) 2(0.05) p(020)  a(0.20) 1(0.20)

foc001 10,20,10 0.086 2.12 0.855 724 0.157 2.12 2.093 695
bec001 14,14,10 0.086 3.00 0.855 724 0.157 3.00 2.093 695
5c001 20,20,8 0.086 3.00 0.881 586 0.158 3.00 2.105 241
focl10 16,12,12 0.086 3.00 0.856 391 0.157 3.00 2.094 368
beel10 10,28,8 0.086 3.00 0.855 724 0.157 3.00 2.093 695
scl10 14,18,10 0.086 3.00 0.881 586 0.158 3.00 2.105 241
feelll 16,18, 0.086 3.00 0.856 391 0.157 3.00 2.094 368
beelll 12,12,18 0.086 3.00 0.855 724 0.157 3.00 2.093 695
sclll 12,12,18 0.086 1.50 0.855 724 0.157 1.50 2.093 695
hepl1l 18,20,10 0.086 3.00 0.856 429 0.157 3.02 2.094 474
shill 18,20, 0.086 275 0.870 014 0.158 2.69 2.099 565

Z. The persistence of crystal order along z is measured
through another DF, g(z), which gives similar indications as
7(\). A liquidlike profile of g, along with a sharply peaked 7
or g, will be a faithful indication of a smectic phase. Con-
versely, a sharply peaked g, along with a structureless g
will be the imprints of a columnar phase. Both g, (r,) and
g(z) are normalized in such a way as to approach 1 at large
distances in case of fully disordered center-of-mass distribu-
tions in the respective directions. Slight deviations from this
asymptotic value may occur as a result of the variation of
box side lengths during a simulation run. The two DFs were
constructed with a spatial resolution of Ar, =D/20 and Az
=L/20, respectively, and updated every 10 MC sweeps.

We compute the difference in chemical potential be-
tween any two equilibrium states of the system—say, 1 and
2—within the same phase (or even in different phases, pro-
vided they are separated by a second-order boundary) by the
standard thermodynamic-integration method as adapted to
the isothermal-isobaric ensemble, i.e., via the combined use
of the formulas

Py
(T, Py) — w(T.Py) = f dPu(T,P) (3.2)
Py
and
ooy
p(ToP)  w(T,P) f TR PP

Ty

To prove really useful, however, the above equations require
an independent estimate of w for at least one reference state
in each phase. For the fluid, a reference state can be any state
characterized by a very small density (a nearly ideal gas),
since then the excess chemical potential can be estimated
accurately through Widom’s particle-insertion method."” The
use of this technique for small but finite densities avoids the
otherwise necessary extrapolation to the ideal gas limit as a
reference state for thermodynamic integration.

In order to calculate the excess Helmholtz free energy of
a solid, we resort to the method proposed by Frenkel and
Ladd,' based on a different kind of thermodynamic integra-
tion (see Ref. 4 for a full description of this method and of its
implementation on a computer). We note that the ellipsoidal
symmetry of the GCN particles is not a complication at all,
since the particle axes are frozen and the only degrees of
freedom being left are the centers of mass. The solid excess
Helmbholtz free energy is calculated through a series of NVT
simulation runs, i.e., for fixed density and temperature. As
far as the density is concerned, its value is chosen in a way
such that it complies with the pressure of the low-
temperature reference state, that is the one from which the
NPT sequence of runs is started. We wish to emphasize that,
thanks to the large sample sizes employed, the density histo-
gram in a NPT run always turned out to be sharply peaked,
indicating very limited density fluctuations (hence, negligible
ensemble dependence of statistical averages).

IV. RESULTS
A. Zero-temperature calculations

For various L/D values in the interval between 1.1 and
3, we have calculated the T=0 chemical potential w(P) for
our eleven candidate ground states, with P ranging from O to
0.20. We report in Table I the results relative to L/D=3 for
two values of P, 0.05 and 0.20. An emergent aspect of this
table is the existence of a rich degeneracy that is only partly
a result of the effective identity of crystal structures up to a
dilation. Take, e.g., the five structures with the minimum w
(and with the same density). While the bec0OO1 lattice with
a=3 is obtained from the fccO01 lattice with a=3/ VE
=2.12--- by a simple VE dilation, there is no homothety
transforming bcc001(3) into bee110(3) or into beel111(3) [in
turn equivalent to sc111(1.5)]: Points in these three lattices
have different local environments, as can be checked by
counting the nth-order neighbors for n up to 4, yet the three
stretched bcc crystals of minimum o share the same U/N.
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FIG. 1. T=0 equilibrium behavior of the GCN model with L/D=3. Left:
T=0 chemical potential u(P") of various crystals relative to bcc110(3),
which thus serves as the zero or reference level. The reduced pressure P” is
incremented by steps of 0.01. Note that, for all P, the five crystals
fcc001(2.12), bec001(3), bec110(3), beel11(3), and scl111(1.5) are degener-
ate (Au=0). Other data points are for fcc001 (continuous line; a=3 for
P"=0.01, being @=2.12 otherwise), fcc110(3) and fcc111(3) (dotted line),
hepl1l (open dots), shl1ll (open squares), sc001(3) and sc110(3) (dashed
line). Right: Resulting equation of state in the pressure range from 0 to 0.30.
fcc001(3) (open triangle) is stable at very low pressure, up to slightly less
than 0.02, while fcc001(2.12), bec001(3), ete. (open dots) prevail for higher
pressures.

Also the pairs fecl10(3), fecl11(3) and sc001(3), sc110(3)
consist of topologically different degenerate structures. This
fact is an emergent phenomenon whose deep reason remains
unclear to us; it should deal with the dependence of u on the
ratio r/ a(#6), since the same symmetry holds with a polyno-
mial, rather than Gaussian, dependence.

For the case of L/D=3, we show in Fig. 1 the overall P
dependence at 7=0 of the chemical potential u for the vari-
ous solids. The solid with the minimum u is either of the
type fcc001 (with a=3) or, say, of the type bec001 (with «
=3), a fact that holds true, but with a=L/D, for all 1
<L/D<3. Other solids are definitely ruled out, and the
same will probably hold for 7>0. On increasing L/D, the
transition from a fcc-type to a bee-type phase occurs at lower
and lower pressures, whose reduced value is slightly less
than 0.02 for L/D=3.

B. Monte Carlo simulation

In order to investigate the thermodynamic behavior of
the GCN model at nonzero temperatures, we have carried out
a number of MC simulation runs for a GCN system with
L/D=3, which is the system with the strongest liquid-
crystalline features that we can still manage numerically.

We have effected scans of the phase diagram for six
different pressure values, P*=0.01, 0.02, 0.03, 0.05, 0.12,
and 0.20. With all probability, fcc001(3) is the stable system
phase only in a very small pocket of the 7-P plane nearby
the origin. However, we decided not to embark on a free-
energy study of the relative stability of fluid, fcc001(3), and
bee-type phases at such low pressures since this would re-
quire a numerical accuracy that is beyond our capabilities. To
a first approximation, the boundary line between fcc001(3)
and, say, bcc111(3) can be assumed to run at constant pres-
sure. For relating data obtained at different pressures, we
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FIG. 2. GCN model with L/D=3, chemical-potential results for T°=0.002.
In the picture, we plot the reduced chemical potential of the three 7=0
degenerate structures that exist for not too low pressure, taking beel11(3)
for reference. The latter phase gives the most stable solid for any P in the
range from 0.05 to 0.20 (and, most likely, even further). The w curves are
obtained by thermodynamic integration of volume MC data, using as initial
conditions those specified by the Frenkel-Ladd calculations that were carried
out at P*=0.05. Though the reported u values for the bee-type solids are
very close to each other and also affected by some numerical noise, the
higher stability of bcc111(3) cannot be truly called into question—a regular
pattern is clearly seen behind each curve.

have carried out two further sequences of MC runs along the
isothermal paths for 7°=0.002 (solids) and 7°=0.015 (fluid).

The Frenkel-Ladd computation of the excess Helmholtz
free energy per particle f., confirms that the bcc001(3),
beel10(3), and beel11(3) solids are nearly degenerate at low
temperature. We take 7°=0.002, P*=0.05 as a reference state
for the calculation of solid free energies. With the density
fixed at p=0.08562D73, in every case corresponding to P
=0.05, we find pBf,=144.461(2), 144.470(2), and
144.453(3), for the three above solids, respectively, implying
a weak preference for the beel11(3) phase. Then, using ther-
modynamic integration along the 7°=0.002 isotherm [see
Eq. (3.2)], we have studied the relative stability of the three
solids as a function of pressure, up to P*=0.20. The results,
depicted in Fig. 2, suggest that bcc111(3) is the stable phase
throughout the low-temperature region, the other solids be-
ing very good solutions anyway with near-optimal chemical
potentials.

We then follow the thermal disordering of the bcc-type
solids for fixed pressure (with three cases considered, P”
=0.05, 0.12, and 0.20) through sequences of isothermal-
isobaric runs, all starting from 7" =0.002, with steps of
0.001. Any such sequence is stopped when the values of
potential energy and specific volume have collapsed onto
those of the fluid, thus informing that the ultimate bounds of
solid stability are reached (usually, a solid can hardly be
overheated). The stability thresholds detected this way are
fairly consistent with the indication coming from the DF
profiles which, upon increasing temperature, will eventually
show a fluidlike appearance. Thermodynamic integration
[see Eq. (3.3)] is used to propagate the calculated w for T
=0.002 to higher temperatures.

As far as the (nematic) fluid is concerned, we have first
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FIG. 3. GCN model with L/D=3, chemical-potential results for P*=0.05:
Chemical potential of the fluid phase (dotted line) as compared with those of
the competing solid phases for that pressure [bcc001(3), long-dashed line;
bec110(3), dashed line; and beclll(3), continuous line]. While the
beell1(3) solid is stable at low temperature, the fluid phase overcomes it in
stability for higher temperatures. This is more clearly seen in the inset,
where chemical-potential differences are reported, taking the fluid w for
reference. The melting temperature for P*=0.05, which is where the con-
tinuous line crosses zero, is estimated to be 7% =0.0073.

generated a sequence of NPT simulation runs for P*=0.05,
starting from 7°=0.015. At this initial point, the excess
chemical potential u., was estimated by Widom’s insertion
method, obtaining u.,=0.986(5). It is worth noting that, in a
long simulation run of as many as 5X 10* MC sweeps at
equilibrium, the chemical-potential value relaxed very soon,
with small fluctuations around the average and no significant
drift observed. Our analysis of the fluid phase is completed
by further simulation runs along the isobaric paths for P*
=0.12 and 0.20, for which we did not have the need to com-
pute the chemical potential again since this could be deduced
from the volume data along the 7°=0.015 isotherm.
Chemical-potential results along the three isobars on
which we focused are reported in Figs. 3-5. As is clear, with
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FIG. 4. GCN model with L/D=3, chemical-potential results for P*=0.12.
Same notation as in Fig. 3, except for the absence of data for bcc001(3),
which were not computed. Despite this, a look at the results in Figs. 2 and 3
gives us confidence that the chemical potential of bec001(3) will be closer to
that of bec110(3) than is for P*=0.05.
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FIG. 5. GCN model with L/D=3, chemical-potential results for P*=0.20.
Same notation as in Figs. 3 and 4.

increasing temperature the fluid eventually takes over the
solids. Among the solids, the becl11(3) phase is the pre-
ferred one for any temperature and pressure, although the
chemical potential of the other solid phases is only slightly
larger. On increasing pressure, the melting temperature goes
down, like in the Gaussian-core model. The necessity of a
matching with the zero-temperature melting point for P=0
will then imply reentrant melting in the GCN model too. The
maximum error on the melting temperature 7,,, which we
estimate to be about 0.003 (hence not that small), entirely
depends on the limited precision of the fluid u.,, which then
constitutes a major source of error on 7,

The only conclusion we can draw from the above
chemical-potential study is that bcc111(3) is the most stable
solid phase of the system (provided the pressure is not too
low). However, a closer look at the DF profiles obtained
from the simulation of bcc111(3) raises some doubts about
the absolute stability of this phase at intermediate tempera-
tures, whatever the pressure, calling for a different interpre-
tation of the hitherto considered as bcc111(3) MC data. Take,
for instance, the case of P=0.05. Upon increasing tempera-
ture, while g, keeps strongly peaked all the way to melting,
the solidlike oscillations of g, undergo progressive damping
until they are washed out completely, suggesting a second-
order (or very weak first-order at the most) transformation of
beel11(3) into a columnar phase before melting. This is il-
lustrated in Figs. 6 and 7, where the DFs are plotted for a
number of temperatures. A similar indication is got from the
behavior of the smectic OP, see Fig. 8, whose highest maxi-
mum eventually deflates at practically the same temperature,
T"=0.005, at which the oscillations of g, disappear. Note
that no appearance of a columnar phase is seen during the
simulation of either becc110(3) or bec001(3), nor in the simu-
lation of fcc001(3) for P*=0.01. A slice of the columnar
phase is depicted in Fig. 9 (right panels). In this phase, col-
umns of stacked particles are arranged side by side, tightly
packed together so as to project a triangular solid on the x-y
plane. Neighboring columns are not commensurate with each
other, as implied by a completely featureless g.

The probable reason for the instability of the smectic
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FIG. 6. GCN model with L/D=3, distribution functions of bccl11(3) for
P"=0.05. Left: T"=0.002. Right: T"=0.003. The strength of crystalline order
along Z, as measured by the amplitude of g, oscillations, reduces with in-
creasing temperature, until complete disorder is left above T°=0.005 (see
next, Fig. 7). Considering that the crystallinity within the x-y plane persists
well beyond T°=0.005 (the spatial modulation of g, remains solidlike be-
yond this temperature and up to melting), we conclude that the GCN system
is found in a columnar phase for 0.005<7<T,,.

phase in the GCN model is the absence of an ad hoc mecha-
nism for lateral attraction between the molecules, which is
present instead in the model of Ref. 14. By the way, hard
ellipsoids do not show a smectic phase also,7 at variance with
(long) hard spherocylinders where particle geometry alone
proves sufficient to stabilize a periodic modulation of the
number density along Z. 10

Given the compelling evidence of a columnar phase in
the GCN model, one may now ask whether the conclusions
drawn from the chemical-potential data are all flawed. In
particular, the u curves that are tagged as becl11(3) in Figs.
3-5 would be meaningless beyond a certain temperature 7.
<T,. In fact, they are not, i.e., they retain full validity up to
melting since the (nearly) continuous character of the transi-
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FIG. 7. GCN model with L/D=3, distribution functions of becl11(3) for
P"=0.05. Left: T"=0.004. Right: T"=0.005.
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FIG. 8. GCN model with L/D=3, smectic order parameter 7(\) of
becl11(3) for P*=0.05. The behavior of 7(\) faithfully reproduces that seen
for g/(z) (cf. Figs. 6 and 7): The deflating of the highest 7(\) maximum with
increasing temperature closely follows the thermal damping of g(z)
oscillations.

tion from becll1(3) to columnar allows one to safely con-
tinuate thermodynamic integration across the boundary, with
the proviso that what previously treated as the bccll1(3)
chemical potential beyond 7, is to be assigned instead to the
columnar phase.

As pressure goes up, the transition from beclll(3) to
columnar takes place at lower and lower temperatures. In
order to exclude that the columnar phase too, likewise the
fluid, will show reentrant behavior at low pressure, we have
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FIG. 9. GCN model with L/D=3, some snapshots of the particle configu-
ration taken at low temperature [T"=0.002, bcc111(3) solid phase] and at
intermediate temperature (7°=0.006, columnar phase). The reduced pressure
is P"=0.05 in both cases. Above: side view, i.e., projection of particle co-
ordinates onto the x-z plane. Below: top view, i.e., projection of particle
coordinates onto the x-y plane. For clarity, in spite of their mutual interac-
tion being soft, the particles are given sharp ellipsoidal boundaries, corre-
sponding to a unitary short axis (D) and a long axis of L=3D. While the
crystalline order along z is lost already at 7"=0.005 (hence, it is there in the
top-left panel while it is absent in the top-right panel), the triangular order
within the x-y plane is maintained up to the melting temperature (here, 7,,
=0.0073).
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FIG. 10. GCN model with L/D=3, sketch of the phase diagram on the 7-P
plane. The full dots mark the location of the melting transition as extracted
from our free-energy calculations. Open symbols refer instead to the transi-
tion thresholds as given by a visual inspection of the DF profiles. Though
the latter melting-point estimates are more easily obtained than the former,
the free-energy study was essential to identify the correct solid structure of
the GCN model at not too low pressure. To help the eye, tentative phase
boundaries are drawn as continuous (i.e., first-order) and dashed (nearly
second-order) lines through the transition points. In the low-pressure region,
the solid-solid boundary is highly hypothetical since we have no data there.

simulated the disordering of a bcc111(3) solid also for P
=0.02 and 0.03 (in fact, no reentrance of the columnar phase
is observed). Further points on the melting line for P=0.01,
0.02, and 0.03 are fixed through the behavior of g, as a
function of temperature. All in all, the overall GCN phase
diagram appears as sketched in Fig. 10. This is similar to the
phase portrait of the Gaussian-core model, see Fig. 1 of Ref.
4, with the obvious exception of the columnar phase. There
is a small discrepancy between the melting points as located
through free-energy calculations (full dots in Fig. 10) and
those assessed from the evolution of g, (open dots). In our
opinion, this would mostly be attributed to the statistical er-
ror associated with the u., of the fluid in its reference state.
Notwithstanding their limited precision, however, free-
energy calculations are all but useless in identifying the
structure of the solid phase. In conclusion, although some
aspects of the equilibrium behavior of the GCN model re-
main still uncertain, especially with regard to the exact loca-
tion of the solid-solid transition at low pressure, we are con-
fident that the main features of the GCN phase diagram are
correctly accounted for by Fig. 10.

Summing up, there are at least two conceivable and mu-
tually exclusive paths for the thermal disordering of a liquid-
crystal solid (aside from a direct transformation of it into a
nematic phase). One is through the formation of a smectic
phase, which eventually transforms into a nematic fluid. A
second possibility is a more gradual release of crystalline
order by the appearance of a columnar phase as an interme-
diate stage between the solid and the nematic phase. Our
study showed that it is this second scenario that occurs in the
GCN model, with no evidence whatsoever of a smectic
phase.

J. Chem. Phys. 126, 194902 (2007)

V. CONCLUSIONS

We have introduced a liquid-crystal model of softly re-
pulsive parallel ellipsoids, named the Gaussian-core nematic
(GCN) model, aiming at a complete characterization of its
phase behavior, including the solid sector. This requires a
preliminary identification of all relevant solid structures,
which is generally a far-from-trivial task to be accomplished
for model liquid crystals.16 Through a careful scrutiny of as
many as eleven uniaxially deformed cubic and hexagonal
phases, we obtained a thorough description of the 7=0 equi-
librium phase portrait of the GCN model, identifying its
ground state at any given pressure. In doing so, we discov-
ered a rich and absolutely unexpected structural degeneracy,
which is only lifted by going to 7>0. At low temperature,
and for not too low pressures, our free-energy calculations
indicate that a GCN system with an aspect ratio of 3 is found
in just one solid phase, i.e., a stretched bcc solid with the
molecules oriented along [111]. Only near zero pressure, the
stable phase becomes a stretched fcc solid. With increasing
temperature, the bee-type solid first undergoes a weak tran-
sition into a columnar phase, which still retains partial crys-
talline order, before melting completely into the nematic
fluid.

It is worth emphasizing that our interest in the GCN
model is purely theoretical, hard-core ellipsoids providing a
more physically realistic model liquid crystal. One could
even argue that a Gaussian repulsion is highly unrealistic for
a liquid crystal. In real atomic systems, superposition of par-
ticle cores is strongly obstructed, whence the consideration
of hard-core or steep inverse-power repulsion in the more
popular models. However, unless the system density is very
high, higher than considered in our study, repulsive Gaussian
particles would effectively be blind to an inner hard core,
which thus may or may not exist, as evidenced, e.g., in the
snapshots of Fig. 9 where particles appear well spaced out.

The GCN model is a ‘“deformation” of Stillinger’s
Gaussian-core model, well known for exhibiting a reentrant-
melting transition. Various instances of reentrant behavior
are also known for nematics'’ and indeed one of the original
motivations for the present work was searching for a new
kind of reentrance, i.e., reappearance of a more disordered
phase with increasing pressure. With this study, we provide
yet another example of reentrant behavior in a model nem-
atic: While this is nothing but the analog of fluid-phase re-
entrance in the Gaussian-core model, the absolute novelty of
our findings is in the nature of the intermediate phase, this
being surprisingly columnar in a range of pressures rather
than genuinely solid.
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