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Scaling of local density correlations in a fluid close to freezing
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We simulated the equilibrium properties of some reference model fluids, with hard-core, Yukawa
and Lennard-Jones interactions, and compared their local density profiles in thermodynamic states
where the residual multiparticle entropy~RMPE!, an established and rather sensitive indicator of the
incipient ordering of the fluid into a more structured phase, happens to vanish. We found that, once
interparticle distances have been referred to the average separation between nearest-neighbor
particles, the radial distribution functions~RDF! coalesce—from the second coordination shell
onwards—onto nearly the same spatial profile. This property was ascertained for different model
systems in different thermodynamic conditions but for the shared zero-RMPE constraint. The
emergence of a scaling relation for the RDF’s in the fluid phase further enlightens the nature of the
structural condition that is singled out by the vanishing of the RMPE. ©2001 American Institute
of Physics. @DOI: 10.1063/1.1406528#
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I. INTRODUCTION

Recently, Saija and co-workers,1 while investigating the
ordering properties of hard-core and Lennard-Jones~LJ! par-
ticles in two dimensions~2D!, highlighted the existence of
scaling relation for the radial distribution function~RDF! of
both model fluids when the thermodynamic states that
being compared refer to a condition such that the exc
entropy of the system can be exactly expressed as:

s~ex!52
1

2
rE dr @g~r !ln g~r !2g~r !11#, ~1!

wherer is the number density,g(r ) is the RDF ands~ex! is
the difference between the total entropy per particle of
fluid ~measured in units of the Boltzmann constantk) and the
corresponding noninteracting value. In general, the r.h.s
Eq. ~1! represents the contribution of two-body density c
relations only to the excess entropy.2 Correspondingly, Eq.
~1! is tantamount to the vanishing of the re-summed con
butions associated with correlations involving at least tria
of particles:3,4

Ds5s~ex!2s2 , ~2!

wheres2 is the pair entropy andDs is the so-called residua
multiparticle entropy~RMPE!. The relevance of the condi
tion Ds50 as a one-phase ordering criterion has been do
mented for a variety of thermodynamic phenomena both
continuous systems3–9 as well as in lattice fluids.10,11

Hansen and Schiff, while studying the structural prop
ties of fluids interacting through inverse-power repulsive p
tentials at crystallization, had already observed that the
cillations of the RDF beyond the first peak are similar
amplitude, in the two extreme cases of hard spheres and

a!Electronic address: saija@me.cnr.it
7580021-9606/2001/115(16)/7586/6/$18.00

Downloaded 02 Oct 2002 to 192.167.98.120. Redistribution subject to A
re
ss

e

of
-

i-
s

u-
n

-
-
s-

f a

Coulomb potential, although the positions are systematic
shifted.12 In this paper we aim to examine in closer and mo
critical detail the ‘‘collapse’’ of the RDF’s of different three
dimensional~3D! fluids onto a common spatial profile, afte
density effects have been properly taken into account.
order to do this, we further extended the analysis perform
in Ref. 1 to also include, besides hard spheres~HS! and LJ
particles, hard-core Yukawa fluids~HCYF!, i.e., hard spheres
attracting each other through a Yukawa potential.

II. MODELS AND METHOD

We performed standard Metropolis Monte Carlo~MC!
simulations of the following model potentials:

uHS~r !5H 1` r ,s

0 r>s
, ~3!

uHCYF~r !5H 1` r ,s

2e~s/r !exp@2z~~r /s!21!# r>s
,

~4!

uLJ~r !54eF S s

r D 12

2S s

r D 6G , ~5!

wherer is the interparticle distance,s is a geometrical scale
factor ~the sphere diameter for hard-core particles!, ande is
the depth of the attractive well. The range of the Yuka
potential can be adjusted through the parameterz. In the
following, we shall use reduced temperature units:T*
5kT/e.

The simulations were performed at constant tempera
T in 3D. The number of particles in each sample, replica
with periodic boundary conditions, ranged between 800 a
1000. Each simulation run was started from a perfect fa
centered-cubic~FCC! crystal configuration. The equilibration
6 © 2001 American Institute of Physics
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of the samples typically took, depending on the density
3105– 13106 MC sweeps, a sweep consisting of one
tempt to sequentially change all particle positions. The ma
mum displacement of a particle was adjusted along the
so as to keep the acceptance ratio of the MC moves as c
to 0.5 as possible. The relevant thermodynamic avera
were computed over 43105– 73105 MC sweeps. The RDF
histogram was constructed with a spatial resolutionDr
5s/20, and was updated every 100–500 MC sweeps.
RDF was computed up to a distanceRmax5L/2, whereL
5(N/r)1/3 is the length of the simulation box. The RDF wa
never found to differ significantly from unity at a distance
order Rmax. The fulfillment of this condition is crucial for
ensuring an accurate numerical estimate of the pair entr
at liquid densities.

III. THE SCALING CRITERION

According to the preliminary evidence presented in R
1 for hard-core and LJ particles in 2D as well as 3D, t
spatial profile of the RDF looks the same—as far as
phase and the amplitude of the oscillations beyond the
ond peak are concerned—for different systems and/or t
modynamic conditions, provided that~i! the states in which
the RDF’s are being compared are such that the RMPE of
fluid vanishes and~ii ! the interparticle separationr is referred
to the average distancel between nearest-neighbor~NN! par-
ticles:

ga~r I !.gb~r II !, if
r I

l a~ I !
5

r II

l b~ II !
, ~6!

where the subscriptsa, b label the model systems that a
currently being considered~i.e., HS, HCYF, LJ!, while I and
II identify two distinct thermodynamic conditions either f
two different fluids or for the same fluid~a5b! under the
zero-RMPE constraint. The characteristic distancel a can be
estimated asra

21/3.1 Equation~6! can then be rewritten as

ga~r !.gb~gr !, ~7!

where

g5
l b~ II !

l a~ I !
5S ra

rb
D 1/3

. ~8!

It is rather obvious that any ‘‘scaling relation’’ for the RD
like the one formalized in Eq.~6!, cannot hold, in general, a
very short distances where the influence of a specific po
tial on the detailed shape of the RDF is rather strong. Thi
particularly evident for potentials with a hard-core repulsi
as compared to a soft one. Saija and co-workers obse
that the agreement between the scaled RDF’s was extre
good from about the second peak onwards.1 The efficacy of
the abover-scaling procedure in ‘‘according’’ the phases
the damped oscillations of the RDF’s of different systems
different thermodynamic states at high enough values of
density may not look particularly surprising in that the N
separation is a ‘‘natural’’ reference distance for compar
spatial correlations in a way that is nota priori biased by
easily predictable density~viz., packing! effects on the rela-
tive arrangement of particles in the fluid. What, to us,
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definitely less obvious is that the amplitudes of the osci
tions do substantially coincide~within the numerical accu-
racy of the calculation! when the conditionDs(r,T)50 is
fulfilled. Before commenting further on this result, we sh
check the assumption made on the mean NN separatio
Ref. 1, where it was estimated asr21/3. The distancel,
which obviously depends on the thermodynamic state of
fluid, can be unambiguously defined and calculated thro
the so-called Voronoi construction:13 the embedding space i
first partitioned into polyhedral cells, each representing
set of points which are closer to a given particle than to a
other particle. By construction, every face of a Voronoi c
lies halfway between two opposite~with respect to the face!
neighboring particles and is orthogonal to the axis joini
them. The number of faces of the Voronoi polyhedron e
closing a given reference particle is thus equal, by definiti
to the number of its NN particles (nNN). Hence, for any
spatial configuration generated by the MC algorithm, one
identify the nearest neighbors of any particle in the fluid a
after performing an average over all the sampled configu
tions, construct the histogramP(r ) of the NN particles that
are located at distancer from a central ‘‘tagged’’ particle.
Figure 1 showsP(r ) for hard spheres and for a HCYF wit
z57 at high densities: the influence of a deep attractive
tential is rather manifest in the contact region up tor
'1.5s. A radial integral of the histogram readily yields th
mean NN separationl. We find thatnNN.14.5 at freezing
densities, an estimate that is definitely larger than the co
dination numbernc of a simple dense fluid or, even, of
hard-core fluid at closest packing (nc512). This apparently
paradoxical result is the subtle outcome of a geometr
‘‘marginality’’ problem whose origin can be explained b
resorting, for simplicity, to the crystalline structure of su
fluids. As is well known, the Voronoi cell relative to a perfe
FCC lattice is a rhombic dodecahedron~in this case the
Voronoi cell is nothing but the Wigner–Seitz cell!. Six ver-
tices of the dodecahedron are each equidistant between
chosen central particle and one of the six particles form
its second coordination shell. However, it is easy to rea
that even a minute perturbation of this structure—as can
induced, for instance, by a thermal fluctuation—disclose
few extra small faces on the surface of the cell~three, on
average! which are orthogonal to the lines joining the centr
particle with particles lying within the second coordinatio

FIG. 1. Histogram of the Voronoi nearest-neighbor particles that are loc
at a distancer from a given reference particle for hard spheres~continuous
line! and for a HCYF withz57 ~dashed line!. Both fluids have the same
density,rs350.95, the reduced temperature of the HCYF beingT* 50.5.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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shell. As a result, such particles are classified nearest ne
bors in the sense of Voronoi even if their separation from
central particle is larger, on average, than that of the o
more ‘‘internal’’ neighbors belonging to the first coordinatio
shell. This somewhat anomalous situation can also be v
alized through the histogram shown in Fig. 2, represen
the average distribution of the surface areas of the Voro
polygons: the presence of a subsidiary peak centered at
is the fingerprint of the existence of such marginally neig
boring particles.

Figure 3 shows the mean NN separationl, plotted as a
function of the density, for hard spheres and for a HC
with two different decay ranges of the potential (z53.9,7)
and at different temperatures as well. The data can be fi
with a simplec•r21/3 law, wherec.1.22. The value ob-
tained for the constantc is very close tosrCP

1/351.12 . . . ,
whererCP521/2s23 is the HS density at closest packing.
fact, one would expect to recoverl 5s as a lower-bound
value for a close-packed assembly of spherical hard-core
ticles. The tiny overestimate of the constantc that was ob-
tained through the fit, with the resulting moderate but s
tematic stretching of the average NN distances, is
outcome of the marginality problem discussed above, i.e.
the average inclusion of three more distant second-s
neighbors in the calculation ofl. As a result, on approachin
close packing, the mean NN separation calculated accor
to Voronoi no longer saturates ats but, rather, at@(1213
•21/2)/15#s.1.08s, a value that is consistent with the fit o

FIG. 2. Frequency of the surface areas of the Voronoi-cell faces~legend as
for Fig. 1!.

FIG. 3. Nearest-neighbor distances estimated as a function of the red
density for hard spheres through the Voronoi construction~open circles!.
Some data points relative to the HCYF forrs350.95 and for different
values ofz andT* are also shown but are hardly resolved on the scale of
plot. The data are fitted to the curvel (r)51.22s•r21/3 ~continuous line!.
Downloaded 02 Oct 2002 to 192.167.98.120. Redistribution subject to A
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the data presented in Fig. 2. In any case, given that only
ratios of the average NN separations are needed in Eq.~7! for
the scaling of the interparticle distances, the dependencel
on the density can be safely estimated asr21/3 ~as already
done in Ref. 1!, regardless of the value assigned to the co
stantc. This approximation turns out to be quite reliable al
for the LJ potential, as indirectly witnessed by the compa
son of scaled RDF’s that is presented in the forthcom
section.

IV. RESULTS

The thermodynamic states where we tested the sca
criterion for the three model fluids investigated are listed
Table I. We also included—for each fluid and temperature
the values of the freezing densitiesr f , independently ob-
tained by other authors with numerical simulation metho
for a comparison with the ‘‘intrinsic’’ ordering thresholdr0

that is associated with the vanishing of the RMPE.
The scaling procedure illustrated in the preceding s

tion was originally tested for the LJ fluid versus ha
spheres.1 We have now extended the comparison to inclu
four different thermodynamic states along the zero-RM
locus. It is well known that the indications given by th
entropy criterion are pretty consistent, also on the quant
tive side, with the thermodynamically established freez
threshold of the LJ fluid and bare hard spheres.3,4 Figure 4
shows the corresponding RDF’s: it is rather manifest th
within the numerical resolution of the calculation, the amp
tudes of the oscillations—beyond the first peak—do actua
coincide. This is true for both the LJ fluid along the zer
RMPE locus as well as for hard spheres at the one sin
density where the RMPE happens to vanish. Furtherm
after scaling the interparticle distances according to the
terion exposed in the preceding section, all of the RDF’s
found to collapse onto a unique profile. We have tried
ascertain whether the merging of the LJ RDF’s onto a co
mon profile might be considered as accidental by check
the sensitivity of the RDF’s to temperature changes at a fi
density. Figure 5 shows such a comparison forrs350.86
and 0.96. The temperatures at which we sampled the fluid
the same as those sorted out at different densities by
zero-RMPE constraint. As can be appreciated from Fig

ed

e

TABLE I. Thermodynamic states where the RMPE vanishes for the mo
potentials investigated.

Model z T* r0s3 r fs
3

HS 0.95 0.94a

LJ 0.75 0.86 0.87b

LJ 1.15 0.96 0.94b

LJ 2.00 1.04 1.04b

LJ 2.74 1.11 1.11b

HCYF 3.9 0.60 0.95 0.85c

HCYF 3.9 0.70 0.95 0.90c

HCYF 3.9 2.00 0.95 0.95c

HCYF 7.0 0.50 0.95 0.70c

HCYF 7.0 1.00 0.95 0.94c

aReferences 22 and 23.
bReference 19.
cVisual estimates from Ref. 14.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 4. Radial distribution functions of hard spheres and of a Lennard-J
fluid in thermodynamic states characterized by the vanishing of the res
multiparticle entropy~see Table I!. Hard spheres: continuous line; Lennar
Jones: dashed line (T* 50.75), dotted line (T* 51.15), dot-dashed line
(T* 52), dot-dot-dashed line (T* 52.74). The curves reported in the lowe
part~b! of the figure are the same as in~a! but for the use of scaled distance
r •r1/3.

FIG. 5. A check of the sensitivity of the radial distribution function of th
Lennard-Jones fluid to temperature changes at a fixed density:~a! rs3

50.86: continuous line (T* 50.75), dashed line (T* 51.15), dotted line
(T* 52). ~b! rs350.96: continuous line (T* 51.15), dashed line (T*
52), dotted line (T* 52.74).
Downloaded 02 Oct 2002 to 192.167.98.120. Redistribution subject to A
the amplitudes of the RDF’s now differ in a significant wa
Hence, it appears that the claimed correspondence is
rectly assured only if one compares the properties of the fl
relative to thermodynamic states whereDs(r,T)50, a con-
dition which, in general, implies different densities at diffe
ent temperatures.

In order to check the generality of Eq.~6!, we have also
considered another standard model fluid, i.e., the HCYF.
formerly anticipated, we investigated the properties of t
model for two values of the decay parameter,z53.9 and 7,
respectively, corresponding to a progressively shorter
shorter range of the attractive tail. According to numeric
simulation, for z53.9, the HCYF still has a liquid phas
which, however, becomes metastable with respect to su
mation for z.7.14 Other authors have already used the e
tropy criterion in order to predict the freezing point of th
HCYF.15–18 The most refined integral-equation theori
~MHNC, SCOZA! reveal a scarce sensitivity of the zer
RMPE density threshold with respect to temperatu
shifts.16,17 As a result, the corresponding locus in ther,T
diagram apparently fails to account for the ‘‘softening’’ o
the freezing line that is registered by numerical simulation
intermediate densities when the range of the potential
comes very short. This shortcoming is even accentuated
the alternative use of the criterion formerly proposed
Hansen and Verlet~HV! for estimating the freezing point o
the fluid.19 However, the numerical implementation of th
condition Ds(r,T)50 with Gibbs ensemble Monte Carl
data shows that the disappearance of the stable liquid p
would still occur forz.13.18 The present results, which ar
based on a numerical simulation of larger samples,
consistent—within a common range of the parameters—w
those obtained in Ref. 18. In fact, Table I shows thatr0(T)
sticks, for both values of the decay parameterz, at the HS
value over a wide temperature range. Actually, forz57, we
observed a modest bending of the zero-RMPE line towa
decreasing densities for deep metastable states only, i.e
temperatures lower than 0.5. Of course, the failure of
entropy-based criterion, as well as of the HV recipe, in mo
eling the shape of the transition line for very short-rang
potentials may be the outcome of an intrinsic deficiency
both criteria which becomes particularly evident in the ca
of such anomalous, almost adhesive potentials. Howeve
may also be an indirect indication of the fact that the th
modynamic gas-solid transition which occurs in this pecu
regime is conditioned by increasing stronger ‘‘energy’’ e
fects, at variance with the underlying structural modificatio
that are quite sensitively detected by the entropy criterion
higher densities. These structural effects, which are ass
ated with the existence of a metastable liquid phase, see
be altogether important in ‘‘assisting’’ the kinetics of th
nucleation of a solid phase.20

Figure 6 shows the RDF’s of the HCYF. In passing, w
recall that the small hump in the second maximum~slightly
more prominent than for bare hard spheres! is a short-
distance effect whose appearance~for increasing densities!
signals the incoming freezing transition.21 The RDF’s do
substantially overlap forz53.9. A tiny, but systematic, shif
towards smaller distances can be observed only at low t

es
al
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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peratures. Such a relative shift is hardly perceivable foz
53.9 but becomes more visible forz57. This effect is
clearly originated by the increased cohesion of the fluid
low temperatures, the expected consequence of a rather
and short-ranged attractive potential. As such, this shift c
not be accounted for by the scaling procedure presente
Sec. III which rests upon a definition of the NN distan
which does not significantly depend upon the temperatur
the fluid ~see Fig. 3!. However, what seems lacking in th
case is a finer definition of such a distance. The stra
definition resulting from the Voronoi construction does n
seem completely appropriate in the case of such uncon
tional potentials, in that it fails to monitor the small but sy
tematic lowering of the relative interparticle distances tha
registered upon decreasing the temperature of the fluid
given density. Such a failure is likely due to the ‘‘coarse
ing’’ of the currently used distance that is produced by
inclusion of relatively far particles~with respect to the cen
tral one!, as discussed in detail at the end of the preced
section. In order to check whether this is the case, we c
sidered the following modified definition of the average N
distance:

l w[K (
NN

wi•Ri L , ~9!

whereRi yields the relative distance of theith NN particle
from a given reference one, andwi is the ratio of the surface
area of the associated polygonal face to the total surface
of the Voronoi polyhedron constructed around the cen
particle. As usual, an averaging is then performed over

FIG. 6. Radial distribution functions of the HCYF in thermodynamic sta
characterized by the vanishing of the residual multiparticle entropy~see
Table I!. ~a! HCYF with z53.9: continuous line (T* 50.60), dashed line
(T* 50.70), dotted line (T* 52). ~b! HCYF with z57: dashed line (T*
50.50), dotted line (T* 51.00).
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the particles of the fluid and over the MC configurations. T
rationale behind this new definition is obviously that the fa
tor wi progressively reduces the relative weight of the fu
thermost particles in the evaluation of the average NN d
tance: in fact, the further the neighbor, the smaller the are
the associated polygon. The two quantities,l and l w , are
compared in Table II for the HCYF withz57: The data
show that, at variance with the original definition, th
weighted distancel w does depend on the temperature in
weak but systematic way, actually decreasing withT along
an isochore, as one would expect on an intuitive basis. Us
l w as the reference quantity, when scaling interparticle d
tances, almost completely removes the relative shift
served at different temperatures between the RDF’s of
fluid ~see Fig. 7!.

Summing up, the overall evidence on the HCYF appe
to be consistent with that discussed for the LJ fluid, wh
definitely being less stringent, also as a result of the fact
the RDF’s singled out by the zero-RMPE constraint refer
the same density. In fact, the amplitudes of the mediu
range oscillations coincide, independently of the tempera
and of the value of the decay parameterz. However, it is also
true that the density profile of the HCYF turns out to
almost insensitive to temperature changes for high eno
densities (rs3.0.7).

V. DISCUSSION AND CONCLUDING REMARKS

As a result of the scaling relation illustrated for fluid
with vanishing RMPE by Eqs.~6!, ~7!, and~8!, the RDF can
be split, at least for the model potentials investigated so
into the sum of a short-range interaction-dependent p

TABLE II. Average nearest-neighbor distances in a HCYF forz57 calcu-
lated through the Voronoi construction~see text!. The value forT* 5`
refers to hard spheres with no attraction.

T* l l w

0.5 1.225 1.116
1.0 1.222 1.120
` 1.227 1.127

FIG. 7. Radial distribution functions of hard spheres and of the HCYF w
z57 in thermodynamic states characterized by the vanishing of the resi
multiparticle entropy~see Table I!: the relative distancesr have all been
referred to the area-weighed nearest-neighbor distancel w . Hard spheres:
continuous line; HCYF: dashed line (T* 50.50), dotted line (T* 51.00).
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Ga(r ) and a seemingly ‘‘universal’’ long-range partg̃a(r ).
Correspondingly, the associated contribution to the to
structure factor of the fluid can be written as

S̃a~q!511raE e2 iq"r~ g̃a~r !21!dr

511rbE e2 i ~q/g!•r~ g̃b~r !21!dr

5S̃b~q/g!, ~10!

where the subscriptsa, b identify specific model fluids.
Hence, apart from minor effects associated with the temp
ture dependence of the average NN distance, it follows

S̃a~qra
1/3!'S̃b~qrb

1/3!. ~11!

As is well known, the long-range oscillations of the RD
contribute in a preponderant way to model the shape of
structure factor of the fluid,S(q), in the region of the first
peak. In this respect, having noted that the ordering condi
associated with the vanishing of the RMPE is t
fingerprint—in the fluid phase—of the freezing of a 3D flui
the simple scaling law stated by Eq.~11! for the ‘‘partial’’
structure factorS̃(q) shows up as a complementary but se
contained version of the HV criterion. In fact, this latter c
terion rests upon an ‘‘external’’ phenomenological obser
tion relative to the height~;2.85! of the first maximum of
S(q) at freezing. However, apart from a finer dependence
this value on the nature of the potential, it also turns out t
such a value is different in different spatial dimensions, ev
for the same model fluid. Instead, the overall profile~not
only the height! of the partial structure factorS̃(q) is found
to scale uniformly both in 2D as well as in 3D along th
thermodynamic locus characterized by the vanishing of
RMPE. From this perspective, the entropy criterion yield
more general statement than that following from the HV ru
However, both criteria identify an intrinsic structural cond
tion of the fluid which, in the enlightening perspective o
Downloaded 02 Oct 2002 to 192.167.98.120. Redistribution subject to A
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fered by the multiparticle correlation expansion of the sta
tical entropy, reveals itself as the microscopic backstage
the incoming transition of the fluid into a more ordered sta
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