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Entropy, correlations, and ordering in two dimensions
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The ordering of simple fluids in two dimensions was investigated using the residual multiparticle
entropy(RMPE) as a measure of the relevance of correlations involving more than two particles in
the configurational entropy of the system. To this end, we performed Monte Carlo simulations of
two prototype systems, i.e., Lennard-Jones particles and hard discs. Consistent with previous
studies, we found that, on approaching the freezing transition, the RMPE of the fluid undergoes a
change from negative to positive values. However, in two dimensions the vanishing of the RMPE
appears to be more directly related to the formation of six-fold orientationally ordered patches, a
process which foreshadows the freezing transition. The specificity of the structural condition
attained by the fluid in a state corresponding to a vanishing RMPE was further corroborated by an
analysis of the shape of the radial distribution functi&DF): in fact, it turns out that the spatial
profiles of the RDF of the Lennard-Jones fluid along a zero-RMPE locus can be superimposed at
medium and large distances notwithstanding the difference of density and/or temperature of the
corresponding thermodynamic states. The same long-range profile of the RDF is shared also by hard
discs in the cited condition. Such a “scaling” property also holds in three dimensions where it
provides a suggestive nexus between the ordering criterion based on the vanishing of the RMPE and
the Hansen—Verlet freezing rule. @000 American Institute of Physi¢d§0021-960680)51331-3

I. INTRODUCTION freezing transition of hard spherésSince then, a similar

analysis has been extended to a variety of model

The entropy of an even partially disordered mate_rial eNpotentials®® including mixture$ 12 systems composed of
folds information on the state of the system which lies be'nonspherical particle€ and lattice gase®%In all cases

yond the strictly thermodynamic level. In principle, this in-
formation can be extracted by resorting, in a classica
statistical-mechanical framework, to a “representation” of
the entropy in terms of the complete hierarchy repoint
distribution functions- In general, this is rather obviously a
prohibitive task. A few years ago, Giaquinta and Giunta fo-

cussed instead on a cumulative “measure” of the statisticaéﬁ b ull d ) h di h d
weight associated with correlations involving at least thred!3S P€€n successiully tested against such diverse thermody-

particles, the so-called residual multiparticle entropy@Mic phenomena as freezing, fluid—fluid phase separation,
(RMPE).2 This quantity is obtained by subtraction of the "ématic ordering, and the Kosterlitz and Thouless metal-—
“pair entropy,” i.e., the integrated contribution associatedinsulator transition in a two-dimensione2D) Coulomb lat-
with the pair distribution function only, from the excess en-tice gas.
tropy of the fluid. Indeed, the pair entropy, while being quan- ~Many semiempirical rules have been proposed with the
titatively preponderant with respect to other terms, is aaim of locating, say, the transition from the liquid to the solid
negative—definite quantitjwhatever the system or the ther- phase, without resorting to the knowledge of the free energy
modynamic state which does not convey any relevant of the two phases. Perhaps, the very first of such proposals is
“qualitative” information on the equilibrium structure of the the melting criterion proposed by Lindematnwhich states
system. On the contrary, the RMPE does not have a definitdhat in a solid the ratio of the root-mean-square displacement
sign. The crossover undergone by the RMPE from negativef a particle to the average nearest-neighbor distance is about
to positive values was originally put in relation with the 0.15 at the melting point. On the other hand, the most fa-
mous freezing criterion is that due to Hansen and Verlet,
dAuthor to whom correspondence should be addressed; electronic maiV:VhO observed that the height of the first peak of the structure
Paolo.Giaquinta@unime.it factor, S(k), is about 2.85 along the freezing line. This “uni-

examined so far, the vanishing of the RMPE proves to be an
|ntrinsic signature of the incipient ordering of the fluid, a
condition which faithfully heralds the occurrence, at nearby
densities and/or temperatures, of a phase transition into a
more structured phase. In this respect, the zero-RMPE con-
ition can be used as a one-phase ordering criterion which
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versal” feature has been verified by both numerical simula-characterization of angular order in terms of the orientational
tion and experiment for a wide class of three-dimensionatorrelation function(OCF. A rationalization of the zero-
(3D) systems® Just to give a few more examples, we recall RMPE condition as an indication of the incipient ordering of
still another empirical rule, proposed by Wendt and Abra-a fluid is further discussed in Sec. V in terms of the scaling
ham, in terms of the ratio between the heights of the firsbehavior of the RDF. Section VI is finally devoted to con-
minimum and of the first maximum, respectively, of the ra-cluding remarks.
dial distribution function(RDF).1° In many 3D liquids, this
ratio is about 0.14 at freezing. On the dynamical sidavéo | re pyibE: A BRIDGE BETWEEN ENTROPY AND
noted that in a liquid with a Langevin dynamics the ratio of ~qpre| ATIONS
the long- to the short-time diffusion coefficient is about 0.1
at the freezing point® More recently, Malescio and co- The statistical entropy of an opéne., grand-canonical
workers introduced a criterion based on the numerical instasystem can be expanded as an infinite sefies:
bility of the iterative solution of the Ornstein—Zernike o
equatior?! Se0= > Sns (1)

As a matter of fact, most of the above criterions are n=2
specific of a given transition. Furthermore, they may not beyheres,, is the excess entropy per particle in units of the
easily transferred_, without _mod|f|cat|ons, to 2D systemsoltzmann constankg, ands, is then-body entropy that is
where the crystalline phase is unstable at all temperafires gptained from a suitable resummation of spatial correlations
save fOI’T=O.22 As a I’esu|t, the Lindemann rule is useless in between up tn partic'eS. An analogous expansion holds in
its Original formulati0r|2.3 All of the other Criterions, while the canonical ensemb}é,with an identical expression for
suitable in principle for 2D systems, are not valid in generakhe partial quantities,, in terms of reduced distribution func-

and must be modified. For instance, in 2D the height of thejons. In particular, the pair entropy per particle reads
first peak of the structure factor at freezing is much higher

than 2.85; mo_reover,_its precisc_a value i_s more sensitiv_e tothe o __ Epj dr[g(r)Ing(r)—g(r)+1], )
shape of the interaction potential than in 3D, suggesting that 2
the Hansen—Verlet rule cannot“be extended to arbitrary diwherep andg(r) are the number density and RDF, respec-
mensionality in a simple wa$. Lowen verified the validity tively. The RMPE is defined as
of his dynamical criterion also for 2D soft-sphere fluids, by
still using a Langevin equation for the dynamics. Again, the ~ AS=S(ex~ S2- 3
critical ratio of the two diffusion coefficients is close to 0.1 At variance with the pair entrop)&s exhibits a nonmono-
(actually, a bit smaller than thet® However, the real prob- tonic behavior as a function of eithgror T. In particular, it
lem with this criterion is that it ceases to be valid when ajs negative at low density or high temperature, and becomes
different dynamics is considered, e.g., the Newtonian onepositive as a more ordered phase is approached. A positive
since in this case only one single diffusion coefficient can beRMPE implies aslowing downin the reduction of the con-
defined?® figurational space accessible to the system, caused by a de-
The 2D case is also particularly challenging in view of creasing volume and/or temperature. This effect, that is spe-
the many different scenarios that have been proposed for thsfically associated with the inversion of trend of the RMPE,
freezing transitiorf! including a two-stage continuous tran- is the outcome of thincreaseof the number of states that, in
sition from the fluid to the solid phase which would take the overall entropic balance, can be associated to correlations
place through the formation of a hexatic, bond-of order higher than two. This increase is obviously relative
orientationally-ordered phase. Such a possibility was conjeao the systematically negative background level set by the
tured in the celebrated KTHNY theof}. pair entropy. Such a feature is the underlying fingerprint of a
However, we do not aim here at investigating in detailnew structural condition that is being built up by the system,
the nature of the phase diagram of specific 2D models. Wé&forced” to exploit a different form of aggregation by com-
know that this is a difficult task to handle numerically evenpelling thermodynamic constraints. Not at all surprising, the
in simple case&’*Instead, we intend to ascertain the natureRMPE indicates that such a structural, cooperative rearrange-
and sensitivity of the indications given by the RMPE in re- ment is ascribable to many-particle correlations.
lation to latent tendencies to ordering, even of an unconven- The RMPE phenomenology that has been explored so
tional type as that exhibited in the hexatic phase. Actuallyfar regards mostly first-order phase transitions in 3D. Re-
this phase may ultimately prove to be metastable. Howevegently, the connection between the vanishing of the RMPE
even in such a case, signatures of angular ordering shoulshd the ordering of the fluid has also been verified in 2D,
show up in the dense fluid close to freezing and becomeven for long-ranged particle interactiotfsin fact, it has
manifest in the RMPE as well. In order to elucidate thisbeen shown that the RMPE vanishes in a Coulomb lattice
aspect, we have chosen, as established prototype modetms along the infinite-order Kosterlitz—Thouless transition
Lennard-Jone$LJ) particles and hard disd$iD). line, which separates the insulating from the conducting fluid
This article is organized as follows: In Sec. Il we intro- phase. This somewhat surprising circumstance proves the ex-
duce and discuss the RMPE. Section Il is devoted to a detreme sensitivity of the RMPE to all structural and thermo-
scription of the models and of the method. In Sec. IV, wedynamic changes which occur in a disordered system. With
present the results of this study with attention given to thesuch premises, it is natural to ask what is the behavior of the
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RMPE in a 2D continuous fluid system, where the reducedABLE I. Compressibility factor of a 2D LJ fluid fo*=0.7.
dimensionality may actually decouple the onset of orienta-

. " P/
tional order from the long-ranged positional one, thus caus- PPIp
ing unconventional cooperative phenomena to occur as, for ¢ Present work Ref. 31
instance, the emergence of a hexatic phase. 0.10 0.77
0.20 0.64
0.30 0.57
0.40 0.56
I1l. MODELS AND METHOD 0.50 0.60
0.60 0.83
We performed Monte CarldMC) simulations, in the 0.70 1.50 1.45
canonical ensemble, of a system of 450 particles interacting 0.75 232 2.29
in 2D through a LJ potential: 0.78 3.01
0.80 3.55
0.83 437 4.22

ULJ(r):4E

o 12 o 6 A
; I 4
wherer is the interparticle distance. The potential was trun-rthe amount of orientational order that develops in the fluid

pated ar=2.5¢, and the usual correction_WaS made to takef,, increasing densities was assessed through the six-fold
into account the effect of the neglected tail on the thermodyp -

namical quantities® The same technique was also used to

simulate a system of 450 hard discs. Particles were enclosed hG(r)=(cos{6[0(r')— 0(r")]}) , (7)

if‘ a square b.OX with periodic boundary conditions. The ini'Wherer is the distance between two particles located at po-
tial configuration was always that of a perfectly ordered hex- . . , " . "
agonal crystal. The equilibration of the samples typicallys'tIonsr andr. The q“a”“tya(r ) is the a”?'e Torme‘? by a
took (2x 10°)—(1x 10°) MC cycles, depending on the den- randomly chpsen_ neargst-nelghbor bon_d at/ylth a_flxed

sity. A cycle consisted of one attempt to sequentially changéeference axis. First neighbors of a particle in a given con-
the position of all the particles. The maximum displacemenf‘gurat'on were defmed through the Voronoi construction. As
of a particle was tuned, during the run, so as to keep théer the RDF, the histogram of the OCF was updated every
acceptance ratio of the MC moves as close to 0.5 as possiblé90—500 MC cycles. A similar analysis was performed for
The relevant thermodynamic averages were computed ovéiard discs. . .
(4x10°)—(7x10°) MC cycles. The RDF histogram was In order to complement our study of the RDF in 2D with
constructed with a spatial resolutidr = ¢/20, and updated SOMe information in 3D, we performed canonical NVT simu-
every 100—500 MC cycles. The RDF was evaluated up tdations of a 3D LJ system with 864 particles in two subcriti-
Rmax=L/2, whereL = (N/p) 2 is the simulation-box length. Ccal states, namelyp(' =0.856; T* =0.75) and p* =0.96;

At a distance of ordeR . the RDF was never found to 1" =1.15), and at the supercritical temperatdre=2.74.
differ significantly from unity. The fulfillment of this condi- We simulated a hard-sphere system as well at the reduced
tion is important since, otherwise, a bad estimate of the paifl€nsityp* =0.936.

entropy would be obtained, owed to the fact that, in the

high-density regime, several peaks of the RDF beyond theé/. RESULTS

first give a sizeable contribution to the integral in E2). S .
In the case of the LJ system, we spanned a wide densit¥_ The RDFs of the L‘? and HD ﬂ'”."ds in 2D are §hown n
ig. 1. The corresponding RMPE is plotted in Fig.2 as a

range at two supercritical temperatureg;=0.7 and 1, functi f the density. For lat . ith the HD
whereT* =kgT/€ is the reduced temperatufee shall use, unction of the density. For 1ater comparison wi €

in the following, alsop* = pa2), so as to calculate the equa- system, we also show a few points obtained through a MC
tion of state of the fluid. The present estimates for the ther-

modynamical properties of the LJ fluid are in excellentyag g 1. Compressibility factor of a 2D LJ fluid fof* =1.

agreement with previous simulation d¥tésee Tables | and

II), as well as with the values obtained using a semiempirical BPIp
equation of statd? The excess entropy was computed o Present work Ref. 31
through the equation
0.10 0.92
o= B(Uron— (o), 5 0.20 0.88
(20~ BlUen ™ fex) ®) 0.30 0.90 0.89
where u ey and f ., are the excess energy and Helmholtz 8-‘5‘8 2-?; 0.96
free energy, respectively. A thermodynamic integration was 0.60 154
performed in order to computie,), using a spline approx- 0.70 2.43 239
imant for the data reported in Tables | and II: 0.75 3.24 3.19
0.80 4.42 4.39
edp’ | BP(p") 0.83 5.33
ﬁf(ex)(p)zf — — (6) 0.856 6.19
0p p
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o 2r T FIG. 2. Residual multiparticle entropy plotted as a function of the reduced
density: full circles, 2D Lennard-Jones fluid Bt =0.7; full diamonds: 2D
1L Lennard-Jones fluid af* =1; open circles: hard discs; squares: hard cal-
ottes(Ref. 33. The lines are interpolating spline functions. An arrow iden-
tifies the random sequential additidRSA) threshold of hard discéRef.

0 1 L L L 1 L L 39). The inset shows the exce@®lid line) and pair entropydotted ling of

hard discs also plotted as a function of the reduced density. The crossover
undergone by the two curves corresponds to the zero-RMPE condition. The
density behavior of the above quantities in the LJ fluid is analogous to that

shown in the inset for hard discs.

g(r)

tures around T*=2.16, at a fixed reduced pressure
P* =202° The stability of such a phase has also been pos-
tulated for hard discs, in the density interval 0.90—G91.
The thermodynamic behavior of the RMPE is consistent with
0 S —— the hypothesis that the freezing of a fluid in 2D is anticipated
0 1 2 3 4 5 6 7 8 . .
/o by the growth of extended angular correlatlo_ns. This state-
ment can be made more precise by extracting the angular
FIG. 1. Radial distribution functions of the 2D models investigated: top, correlation |ength§6(p) which characterizes the space be-
Ile(? r7](El)rd(;]705neos 79ﬂgigl' :etn-t:rzl?éznar?in\?onersegﬂfﬁ?*it: 1de(1ennols i:i:dsupc*ed havior of the OCHsee Fig. 3 at large distances. We fitted
densitiESp* :10.75,' 0.78,’0.82, 07.85; bottom, hard discs at reduced densitieéhe heights of a fe_W peaks bg(r)j assumlng. a‘,n exponential
p* =0.764, 0.802, 0.828, 0.853. decay of the maxima as a function fThe fit included the
first five peaks beyond the third shell, so as to avoid the
interference of local-structure effects. The result of this
simulation of 2000 hard calottes embedded on the surface efnalysis is presented in Fig. 4. As expected, the angular cor-
a spheré®3*All the curves displayed in Fig. 2 have a profile relation function increases steadily as a function of the den-
that is morphologically similar to that found in 3D: at low sity. However, both fluids exhibit two distinct correlation
densitiesAs is a negative, decreasing function@f until it regimes, as is clearly witnessed by the sharp change of slope
reaches a minimum. Thenceforwardis starts growing rap- undergone byg(p) in a very narrow range of densities. In
idly to, eventually, become positive. However, at significantthe LJ fluid, the demarcation between the two regimes is
variance with what has been already ascertained in relatioparticularly evident at low temperatures. As shown in Fig. 4,
to the freezing of the LJ and HD models in 3Bthe RMPE  at T* =0.7 the quantityés(p) bends abruptly upward at a
turns out to vanish at a densip} that is slightly but defi- density p* =0.79, which is also the thresholgnarked in
nitely lower than the freezing-point density. In fact, Bt Fig. 4 with an arrow that was justindependentlyidentified
=0.7 we findp§=0.79 for the LJ system, while the cur- through the contribution of multiparticlpositional correla-
rently estimated freezing density ig¥ =0.833' In the tions to the configurational entropy of the system. It thus
higher-temperature statd{=1), p5=0.82 andpf =0.85, appears that the vanishing of the RMPE of the 2D LJ fluid
respectively’! The RMPE of hard discs changes signpgt  records the onset of extended angular correlations which
=0.83, while the freezing is expected to occupft=0.882°  may eventually be responsible for the emergence of a hexatic
Actually, the exact location of the freezing point and the veryphase. This consistent, two-fold indication also persists at
nature of the transition in 2D are still controversial for both higher temperatures, but for a more rounded “knee” of
models. In fact, evidence of a narrow hexatic window, closeég(p) and its expected shift to larger densities.
to the hitherto accepted freezing point, has been reported. Also in the HD case, the existence of two distinct re-
Large-scale simulations of the 2D LJ system suggest the exgimes is ostensibly manifested in the density dependence of
istence of apossibly, metastabléhexatic state for tempera- the angular correlation length whose slope shows a “discon-
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FIG. 3. Orientational correlation functions of the 2D models investigated atFIG 4. Orientational lation lenath plotted functi f the reduced
the same temperatures and densities as in Fig. 1. . 4. Orientational correlation length plotted as a function of the reduce

density: top, Lennard-Jones fluid Bt =0.7; center, Lennard-Jones fluid at
T* =1, bottom: hard discs. An arrow marks the density where the residual
multiparticle entropy is found to vanish.

tinuity” at a density close to 0.86see also Ref. 34 How-

ever, at variance with the LJ fluid, the RMPE of hard discs

vanishes at a densitypt =0.83) which slightly anticipates

the sharp rise ofg(p). Indeed, the buildup of extended an- the position of the knee in the angular correlation length.
gular correlations in the system is made possible by som&uch a shoulder eventually evolves into a distinct prepeak,
precursory structural phenomena. More specifically, we refelocated at a characteristic distance of the triangular lattice
to the pairing of disclinations to form dislocations and, con-corresponding to the next-nearest-neighbor coordination
textually, to the binding of dislocation pairs to form “rings,” shell, namelyr/a= J3, wherea=o(pcp/p)*? is the hex-

a process that is invoked by the KTHNY theory to explainagonal lattice constant on a plane ang is the HD density

the formation of the solid phase. An analysis of point defectst close packing. This feature had been explicitly observed in
that are observed in a dense fluid of hard calottes shows thaD by Prestipino Giarritta and co-worke¥sand has been
the fraction of rings increases sharply @ =0.83 at the discussed, more recently, in relation to the freezing of hard-
expense of isolated disclinatiofsThis conclusion can also core system& Of course, it is not surprising to verify that
be safely extended to the HD fluid, since any “spurious” the sprouting of orientational order is accompanied by the
effect originated by the finite curvature of the host surfaceappearance, on a local scale, of spatially ordered arrange-
emerges only at larger densiti#s® This circumstance can ments that also become progressively resolved in the RDF.
also be visually appreciated through an inspection of Fig. 2As to the nature of the information conveyed on this specific
where it is apparent that the data referring to the RMPE omatter by the RMPE, the evidence discussed above clearly
hard calottes distribute smoothly along the curve relative teshows that this structural indicator monitors the very first
the HD fluid. The emergence of ordered structures whictgermination of order which, in a HD fluid, is heralded by
“prepare the stage” for the formation of angularly correlated closely related precursory phenomena such as the formation
patterns is also reflected in the RDF of the HD fluid. In fact,of rings and of “minimal” clusters of hexagonally ordered
just atp* =0.83 we observe that the second maximum of theparticles. We argue, retrospectively, that in a soft-core-
RDF starts deforming: its shape becomes asymmetrical untpotential modellike the LJ fluid, these phenomena show up

a shoulder appears for densities in the range corresponding tmncurrently with the sharp rise of the angular correlation
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length at the same density threshold, sensitively recorded b 4
the vanishing of the RMPE.
We close this section with a comment on the position, 3

Pmin, Of the dip exhibited byAs(p). Giaquinta and Giunta
diffusely discepted, in their original article on this subjéct,
on the significance of the minimum of the RMPE of hard = 2t
spheres, and also gave a critical overview of the related evi-

dence on the thermodynamic, structural, and dynamical be

havior of the modef® This evidence consistently leads to the
conclusion that, for densities larger thap;,, the condition

of the hard-sphere fluid is strongly reminiscent of that of 0
“liquids” as originally defined by Bernal, namely fomo- 0
geneouscoherent and essentially irregularassemblages of
molecules contr?unmg no CrySta”me;,,reglonS or holes IargeFIG. 5. Radial distribution functions of the 2D Lennard-Jones and hard-disc
enough to admit another moleculé’In fact, beyond the fluids in a state where the residual multiparticle entropy is found to vanish:
minimum of the RMPE, such holes or cavities SUbStantia”)’triangles, Lennard-Jones fluid @t =0.7 andp* =0.79; circles, Lennard-
disappeaf. This condition, which at thermodynamic equilib- Jones fluid aff* =1 andp* =0.82; solid line: hard-disc fluid gt* =0.83.
rium applies only in a statistical sense, also has an intriguinghe contact value of the hard-disc RDF is 5.69.

counterpart in a different framework, such as that provided

by the random sequential additigRSA) of nonoverlapping i i
spheres onto a given volume. An RSA experiment is, byAS(p,T)=0. However, for the comparison not to be biased

definition, irreversible(particles are not allowed to move PY the “trivial” effect associated with the density, whose
and, thus, is noa priori significant for the properties of the Valué changes slightly from one system to the other, we res-

system at thermodynamic equilibriuin spite of this, Gi- ~ ¢aled the distances by referring them to dweragesepara-
aquinta and Giunta noted that the saturation dengitys, at ~ ton between neighboring particles which is roughly propor-

: “12 pe i -
which a system of hard spheres becomes jammed because '@/ 0o~ As is seen from Fig. 5, where we plotted the

other particles can be added, coincides with the position oRPF ©Of hard discs and of the LJ fluid at two supercritical
the minimum inAs(p).2 In 2D, the RSA limit density is: temperatures, the three profiles do substantially coincide
pRSA:0-696-39 As seen in Fig. 2, this value corresponds toas;ide from the first coordination shell whose detailed shape

the position of the dip in the RMPE of discs. Summing up, itobviously depends on the very nature of the interaction po-
turns out that the change of behavior undergone by th&ential at short distances. Indeed, even for the LJ fluid, the
RMPE of hard spherical particles, from a decreasing to af€ight Of the first maximum is slightly different in the two

increasing trend when plotted as a functiorppiccurs at a states that were singled out. The comparison unambiguously

density which corresponds to the RSA jamming limit both inShows that, after scaling and as long &s(p,T)=0, the

2D and in 3D. Such a characteristic threshold, that is maniRPFS of the HD and LJ systems can be superimposed from

fested by the model at equilibrium as well as out of equilib-the fir;t peak onwards. SUCh_ a scgling relation is not qually
fium, marks the limit beyond which cooperative, i.e., intrin- &ffective for the OCFgsee Fig. 6, inasmuch as the ampli-

sically many-body, effects come into play in determining thetude of the oscillations is not the same for two corresponding
state of the fluid. states or systems, within the accuracy registered for the

RDFs (~1%). On thebasis of the evidence discussed above,

V. THE SCALING OF THE RDF AND THE
HANSEN-VERLET CRITERION

0.6 T T T
As discussed above, the RMPE of a simple 2D fluid,
such as HD or LJ particles, records—in a sensitive and reli- r :_ .
able way—the onset of extended orientational order in the 0.4 i

system. As far as we can say, this indication is present any:
way, viz., independently of the existence—in the phase dia-=
gram of the system—of a thermodynamically stable hexatic="
phase which may anticipate the freezing of the fluid. The 0.2 1
nature of this indication is consistent with the evidence gath-

ered so far on other model systems in different thermody-

namic scenarios: in fact, as discussed in the introduction, ir 0
all cases investigated the vanishing of the RMPE pinpoints 0
the incipient ordering of the fluid into a more structured

state, not necessarily a crystalline solid. In this respect, the
zero-RMPE condition proves to be a rather genera| thougﬁ'G- 6_. Orie_nta?ional correlation functio_ns of the'2D_Lennard-Jor)es and
indirect “measure” of the degree of spatial order developeafard'q'sc, fluids in a state where the re;ldualmultlpartflie entr.OIOy is found
. o . 0 vanish: dotted line, Lennard-Jones fluidldt=0.7 andp* = 0.79; dashed

in the system. In order to scrutinize this aspect further, W6ine (intermediate curve Lennard-Jones fluid &t* =1 andp* = 0.82; solid
compared the RDFs of both models for states wherdine: hard-disc fluid ap* =0.83.
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4 . . . of the structure factor at the transition pointhe vanishing
of the RMPE is an internal, self-contained statement whose
5L physical content is rather straightforward, in view of the fact
a i that it more directly hits at the very core of the phenomenol-
ogy that is being investigated. Last, as already recalled in the
introduction, the zero-RMPE ordering criterion is more gen-
eral than the HV freezing rule inasmuch as it appligthout
modificationgo a larger variety of physical situations both in
2D and 3D, not just freezing.

g(r)
[\

Bt

VI. SUMMARY AND CONCLUDING REMARKS
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rp!” : In this article we have revisited the structural properties
of simple dense fluids in two dimensiofD), in the frame-
FIG. 7. Radial distribution functions of the 3D Lennard-Jones and hardwork provided by the multiparticle correlation expansion of
sphgre fluids in a state where the residual multiparticle entropy is found tqha configurational entropk/.ln particular, we computed—
vanish: squares, Lennard-Jones systeiffi*at 0.75 ando* = 0.86; triangles, - - f : : ;
Lennard-Jones system &t =1.15 andp*=0.96; circles, Lennard-Jones u5|_ng Monte Carlo SI_mUI_atlon techniques—a quantity which
system atT*=2.74 andp*=1.11; solid line: hard-sphere fluid g+  Weighs up the contribution of many-bodwhere “many”
=0.94. The contact value of the hard-sphere RDF is 5.65. stands for triplets, at legstorrelations in the overall balance
of states that are available to the system at given density and
temperature. Such a quantity, called residual multiparticle
we argue that the vanishing of the RMPE identifiestauc-  entropy(RMPE), is a sensitive indicator of the ordering phe-
tural) condition of the fluid that is alike—at least, as far asnomena which take place in a fluid in rather disparate ther-
radial correlations are concerned—for both systems, indemodynamic conditions. In the case of hard discs and
pendently of the specific thermodynamic state as well as of ennard-Jones particles, the vanishing of the RMPE wit-
the detailed shape of the interaction potential. nesses an accelerated growth of bond-angle correlations
Even in 3D, the RDFs scale, under the zero-RMPE conwhich preludes to the freezing of the fluid into a solid phase.
dition, in a very accurate way. Figure 7 shows the corre-The search for structural precursors to the freezing of simple
sponding data for hard spheres as well as for the LJ fluid ifluids has brought many authors to introduce one-phase cri-
three different thermodynamic statésne being supercriti- teria, which aim at locating the transition without resorting to
cal. In this case, the interparticle distances were obviouslythe comparison of the free energies of the coexisting phases.
referred to the quantity . We recall that in 3D the van- However, aside from other conceptual aspects, most of such
ishing of the RMPE is more directly related to the freezing ofempirical rules fail, in their original 3D formulation, in a
the fluid*® This circumstance gives us the possibility of re- lower dimensionality. In this respect, the zero-RMPE condi-
considering the celebrated Hansen-Ver(etv) freezing tion, used as a preliminary ordering criterion in relation to a
criterion® from a different perspective. The HV rule is a variety of thermodynamic phenomena, keeps valid in 3D as
one-phase criterion as is the currently investigated one. Aowell as in 2D.
tually, the affinity between the two criteria becomes clear  Finally, the comparison of the long-range profiles of the
after observing that the first maximum of the structure factorradial distribution function in those states where the RMPE
results, to a major extent, from the mapping in Fourier spacés zero for each of the two systems, suggests an illuminating
of the long-range oscillations exhibited by the RDF in realcorrespondence with the freezing criterion formerly intro-
space. More specifically, the frequency, damping, and ampliduced by Hansen and Verlet.
tude of these oscillations determine the position, width, and
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