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Entropy, correlations, and ordering in two dimensions
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The ordering of simple fluids in two dimensions was investigated using the residual multiparticle
entropy~RMPE! as a measure of the relevance of correlations involving more than two particles in
the configurational entropy of the system. To this end, we performed Monte Carlo simulations of
two prototype systems, i.e., Lennard-Jones particles and hard discs. Consistent with previous
studies, we found that, on approaching the freezing transition, the RMPE of the fluid undergoes a
change from negative to positive values. However, in two dimensions the vanishing of the RMPE
appears to be more directly related to the formation of six-fold orientationally ordered patches, a
process which foreshadows the freezing transition. The specificity of the structural condition
attained by the fluid in a state corresponding to a vanishing RMPE was further corroborated by an
analysis of the shape of the radial distribution function~RDF!: in fact, it turns out that the spatial
profiles of the RDF of the Lennard-Jones fluid along a zero-RMPE locus can be superimposed at
medium and large distances notwithstanding the difference of density and/or temperature of the
corresponding thermodynamic states. The same long-range profile of the RDF is shared also by hard
discs in the cited condition. Such a ‘‘scaling’’ property also holds in three dimensions where it
provides a suggestive nexus between the ordering criterion based on the vanishing of the RMPE and
the Hansen–Verlet freezing rule. ©2000 American Institute of Physics.@S0021-9606~00!51331-2#
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I. INTRODUCTION

The entropy of an even partially disordered material
folds information on the state of the system which lies b
yond the strictly thermodynamic level. In principle, this i
formation can be extracted by resorting, in a classi
statistical–mechanical framework, to a ‘‘representation’’
the entropy in terms of the complete hierarchy ofn-point
distribution functions.1 In general, this is rather obviously
prohibitive task. A few years ago, Giaquinta and Giunta
cussed instead on a cumulative ‘‘measure’’ of the statist
weight associated with correlations involving at least th
particles, the so-called residual multiparticle entro
~RMPE!.2 This quantity is obtained by subtraction of th
‘‘pair entropy,’’ i.e., the integrated contribution associat
with the pair distribution function only, from the excess e
tropy of the fluid. Indeed, the pair entropy, while being qua
titatively preponderant with respect to other terms, is
negative–definite quantity~whatever the system or the the
modynamic state! which does not convey any releva
‘‘qualitative’’ information on the equilibrium structure of th
system. On the contrary, the RMPE does not have a defi
sign. The crossover undergone by the RMPE from nega
to positive values was originally put in relation with th
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freezing transition of hard spheres.2 Since then, a similar
analysis has been extended to a variety of mo
potentials,3–8 including mixtures,9–12 systems composed o
nonspherical particles,13,14 and lattice gases.15,16 In all cases
examined so far, the vanishing of the RMPE proves to be
intrinsic signature of the incipient ordering of the fluid,
condition which faithfully heralds the occurrence, at near
densities and/or temperatures, of a phase transition in
more structured phase. In this respect, the zero-RMPE c
dition can be used as a one-phase ordering criterion wh
has been successfully tested against such diverse therm
namic phenomena as freezing, fluid–fluid phase separa
nematic ordering, and the Kosterlitz and Thouless met
insulator transition in a two-dimensional~2D! Coulomb lat-
tice gas.

Many semiempirical rules have been proposed with
aim of locating, say, the transition from the liquid to the so
phase, without resorting to the knowledge of the free ene
of the two phases. Perhaps, the very first of such proposa
the melting criterion proposed by Lindemann,17 which states
that in a solid the ratio of the root-mean-square displacem
of a particle to the average nearest-neighbor distance is a
0.15 at the melting point. On the other hand, the most
mous freezing criterion is that due to Hansen and Ver
who observed that the height of the first peak of the struct
factor,S(k), is about 2.85 along the freezing line. This ‘‘un
il:
6 © 2000 American Institute of Physics
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versal’’ feature has been verified by both numerical simu
tion and experiment for a wide class of three-dimensio
~3D! systems.18 Just to give a few more examples, we rec
still another empirical rule, proposed by Wendt and Ab
ham, in terms of the ratio between the heights of the fi
minimum and of the first maximum, respectively, of the r
dial distribution function~RDF!.19 In many 3D liquids, this
ratio is about 0.14 at freezing. On the dynamical side, Lo¨wen
noted that in a liquid with a Langevin dynamics the ratio
the long- to the short-time diffusion coefficient is about 0
at the freezing point.20 More recently, Malescio and co
workers introduced a criterion based on the numerical in
bility of the iterative solution of the Ornstein–Zernik
equation.21

As a matter of fact, most of the above criterions a
specific of a given transition. Furthermore, they may not
easily transferred, without modifications, to 2D syste
where the crystalline phase is unstable at all temperatureT,
save forT50.22 As a result, the Lindemann rule is useless
its original formulation.23 All of the other criterions, while
suitable in principle for 2D systems, are not valid in gene
and must be modified. For instance, in 2D the height of
first peak of the structure factor at freezing is much hig
than 2.85; moreover, its precise value is more sensitive to
shape of the interaction potential than in 3D, suggesting
the Hansen–Verlet rule cannot be extended to arbitrary
mensionality in a simple way.24 Löwen verified the validity
of his dynamical criterion also for 2D soft-sphere fluids,
still using a Langevin equation for the dynamics. Again, t
critical ratio of the two diffusion coefficients is close to 0
~actually, a bit smaller than that!.25 However, the real prob-
lem with this criterion is that it ceases to be valid when
different dynamics is considered, e.g., the Newtonian o
since in this case only one single diffusion coefficient can
defined.26

The 2D case is also particularly challenging in view
the many different scenarios that have been proposed fo
freezing transition,27 including a two-stage continuous tran
sition from the fluid to the solid phase which would ta
place through the formation of a hexatic, bon
orientationally-ordered phase. Such a possibility was con
tured in the celebrated KTHNY theory.28

However, we do not aim here at investigating in det
the nature of the phase diagram of specific 2D models.
know that this is a difficult task to handle numerically ev
in simple cases.29,30Instead, we intend to ascertain the natu
and sensitivity of the indications given by the RMPE in r
lation to latent tendencies to ordering, even of an unconv
tional type as that exhibited in the hexatic phase. Actua
this phase may ultimately prove to be metastable. Howe
even in such a case, signatures of angular ordering sh
show up in the dense fluid close to freezing and beco
manifest in the RMPE as well. In order to elucidate th
aspect, we have chosen, as established prototype mo
Lennard-Jones~LJ! particles and hard discs~HD!.

This article is organized as follows: In Sec. II we intr
duce and discuss the RMPE. Section III is devoted to a
scription of the models and of the method. In Sec. IV,
present the results of this study with attention given to
-
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characterization of angular order in terms of the orientatio
correlation function~OCF!. A rationalization of the zero-
RMPE condition as an indication of the incipient ordering
a fluid is further discussed in Sec. V in terms of the scal
behavior of the RDF. Section VI is finally devoted to co
cluding remarks.

II. THE RMPE: A BRIDGE BETWEEN ENTROPY AND
CORRELATIONS

The statistical entropy of an open~i.e., grand-canonical!
system can be expanded as an infinite series:1

s(ex)5 (
n52

`

sn , ~1!

wheres(ex) is the excess entropy per particle in units of t
Boltzmann constant,kB , andsn is then-body entropy that is
obtained from a suitable resummation of spatial correlati
between up ton particles. An analogous expansion holds
the canonical ensemble,15 with an identical expression fo
the partial quantitiessn in terms of reduced distribution func
tions. In particular, the pair entropy per particle reads

s252
1

2
rE dr @g~r !ln g~r !2g~r !11# , ~2!

wherer andg(r ) are the number density and RDF, respe
tively. The RMPE is defined as

Ds5s(ex)2s2 . ~3!

At variance with the pair entropy,Ds exhibits a nonmono-
tonic behavior as a function of eitherr or T. In particular, it
is negative at low density or high temperature, and becom
positive as a more ordered phase is approached. A pos
RMPE implies aslowing downin the reduction of the con-
figurational space accessible to the system, caused by a
creasing volume and/or temperature. This effect, that is s
cifically associated with the inversion of trend of the RMP
is the outcome of theincreaseof the number of states that, i
the overall entropic balance, can be associated to correlat
of order higher than two. This increase is obviously relat
to the systematically negative background level set by
pair entropy. Such a feature is the underlying fingerprint o
new structural condition that is being built up by the syste
‘‘forced’’ to exploit a different form of aggregation by com
pelling thermodynamic constraints. Not at all surprising, t
RMPE indicates that such a structural, cooperative rearran
ment is ascribable to many-particle correlations.

The RMPE phenomenology that has been explored
far regards mostly first-order phase transitions in 3D. R
cently, the connection between the vanishing of the RM
and the ordering of the fluid has also been verified in 2
even for long-ranged particle interactions.16 In fact, it has
been shown that the RMPE vanishes in a Coulomb lat
gas along the infinite-order Kosterlitz–Thouless transit
line, which separates the insulating from the conducting fl
phase. This somewhat surprising circumstance proves the
treme sensitivity of the RMPE to all structural and therm
dynamic changes which occur in a disordered system. W
such premises, it is natural to ask what is the behavior of
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RMPE in a 2D continuous fluid system, where the reduc
dimensionality may actually decouple the onset of orien
tional order from the long-ranged positional one, thus ca
ing unconventional cooperative phenomena to occur as
instance, the emergence of a hexatic phase.

III. MODELS AND METHOD

We performed Monte Carlo~MC! simulations, in the
canonical ensemble, of a system of 450 particles interac
in 2D through a LJ potential:

uLJ~r !54eF S s

r D 12

2S s

r D 6G , ~4!

wherer is the interparticle distance. The potential was tru
cated atr 52.5s, and the usual correction was made to ta
into account the effect of the neglected tail on the thermo
namical quantities.18 The same technique was also used
simulate a system of 450 hard discs. Particles were enclo
in a square box with periodic boundary conditions. The i
tial configuration was always that of a perfectly ordered h
agonal crystal. The equilibration of the samples typica
took (23105) – (13106) MC cycles, depending on the den
sity. A cycle consisted of one attempt to sequentially cha
the position of all the particles. The maximum displacem
of a particle was tuned, during the run, so as to keep
acceptance ratio of the MC moves as close to 0.5 as poss
The relevant thermodynamic averages were computed
(43105) – (73105) MC cycles. The RDF histogram wa
constructed with a spatial resolutionDr 5s/20, and updated
every 100– 500 MC cycles. The RDF was evaluated up
Rmax5L/2, whereL5(N/r)1/2 is the simulation-box length
At a distance of orderRmax, the RDF was never found to
differ significantly from unity. The fulfillment of this condi-
tion is important since, otherwise, a bad estimate of the
entropy would be obtained, owed to the fact that, in
high-density regime, several peaks of the RDF beyond
first give a sizeable contribution to the integral in Eq.~2!.

In the case of the LJ system, we spanned a wide den
range at two supercritical temperatures,T* 50.7 and 1,
whereT* 5kBT/e is the reduced temperature~we shall use,
in the following, alsor* 5rs2), so as to calculate the equa
tion of state of the fluid. The present estimates for the th
modynamical properties of the LJ fluid are in excelle
agreement with previous simulation data31 ~see Tables I and
II !, as well as with the values obtained using a semiempir
equation of state.32 The excess entropy was comput
through the equation

s(ex)5b~u(ex)2 f (ex)!, ~5!

whereu(ex) and f (ex) are the excess energy and Helmho
free energy, respectively. A thermodynamic integration w
performed in order to computef (ex) , using a spline approx
imant for the data reported in Tables I and II:

b f (ex)~r!5E
0

rdr8

r8
FbP~r8!

r8
21G . ~6!
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The amount of orientational order that develops in the fl
for increasing densities was assessed through the six-
OCF:

h6~r !5^cos$6@u~r 8!2u~r 9!#%& , ~7!

wherer is the distance between two particles located at
sitionsr 8 andr 9. The quantityu(r 8) is the angle formed by a
randomly chosen nearest-neighbor bond atr 8 with a fixed
reference axis. First neighbors of a particle in a given c
figuration were defined through the Voronoi construction.
for the RDF, the histogram of the OCF was updated ev
100– 500 MC cycles. A similar analysis was performed
hard discs.

In order to complement our study of the RDF in 2D wi
some information in 3D, we performed canonical NVT sim
lations of a 3D LJ system with 864 particles in two subcri
cal states, namely (r* 50.856; T* 50.75) and (r* 50.96;
T* 51.15), and at the supercritical temperatureT* 52.74.
We simulated a hard-sphere system as well at the redu
densityr* 50.936.

IV. RESULTS

The RDFs of the LJ and HD fluids in 2D are shown
Fig. 1. The corresponding RMPE is plotted in Fig. 2 as
function of the density. For later comparison with the H
system, we also show a few points obtained through a

TABLE I. Compressibility factor of a 2D LJ fluid forT* 50.7.

r*

bP/r

Present work Ref. 31

0.10 0.77
0.20 0.64
0.30 0.57
0.40 0.56
0.50 0.60
0.60 0.83
0.70 1.50 1.45
0.75 2.32 2.29
0.78 3.01
0.80 3.55
0.83 4.37 4.22

TABLE II. Compressibility factor of a 2D LJ fluid forT* 51.

r*

bP/r

Present work Ref. 31

0.10 0.92
0.20 0.88
0.30 0.90 0.89
0.40 0.97 0.96
0.50 1.15
0.60 1.54
0.70 2.43 2.39
0.75 3.24 3.19
0.80 4.42 4.39
0.83 5.33
0.856 6.19
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simulation of 2000 hard calottes embedded on the surfac
a sphere.33,34All the curves displayed in Fig. 2 have a profi
that is morphologically similar to that found in 3D: at lo
densities,Ds is a negative, decreasing function ofr* until it
reaches a minimum. Thenceforward,Ds starts growing rap-
idly to, eventually, become positive. However, at significa
variance with what has been already ascertained in rela
to the freezing of the LJ and HD models in 3D,2,3 the RMPE
turns out to vanish at a densityr0* that is slightly but defi-
nitely lower than the freezing-point density. In fact, atT*
50.7 we findr0* .0.79 for the LJ system, while the cu
rently estimated freezing density isr f* 50.83.31 In the
higher-temperature state (T* 51), r0* .0.82 andr f* 50.85,
respectively.31 The RMPE of hard discs changes sign atr0*
.0.83, while the freezing is expected to occur atr f* .0.88.26

Actually, the exact location of the freezing point and the ve
nature of the transition in 2D are still controversial for bo
models. In fact, evidence of a narrow hexatic window, clo
to the hitherto accepted freezing point, has been repor
Large-scale simulations of the 2D LJ system suggest the
istence of a~possibly, metastable! hexatic state for tempera

FIG. 1. Radial distribution functions of the 2D models investigated: t
Lennard-Jones fluid at T* 50.7 and reduced densitiesr*
50.70, 0.75, 0.79, 0.81; center, Lennard-Jones fluid atT* 51 and reduced
densitiesr* 50.75, 0.78, 0.82, 0.85; bottom, hard discs at reduced dens
r* 50.764, 0.802, 0.828, 0.853.
of

t
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e
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tures around T* 52.16, at a fixed reduced pressu
P* 520.29 The stability of such a phase has also been p
tulated for hard discs, in the density interval 0.90– 0.9130

The thermodynamic behavior of the RMPE is consistent w
the hypothesis that the freezing of a fluid in 2D is anticipa
by the growth of extended angular correlations. This sta
ment can be made more precise by extracting the ang
correlation lengthj6(r) which characterizes the space b
havior of the OCF~see Fig. 3! at large distances. We fitte
the heights of a few peaks ofh6(r ), assuming an exponentia
decay of the maxima as a function ofr. The fit included the
first five peaks beyond the third shell, so as to avoid
interference of local-structure effects. The result of th
analysis is presented in Fig. 4. As expected, the angular
relation function increases steadily as a function of the d
sity. However, both fluids exhibit two distinct correlatio
regimes, as is clearly witnessed by the sharp change of s
undergone byj6(r) in a very narrow range of densities. I
the LJ fluid, the demarcation between the two regimes
particularly evident at low temperatures. As shown in Fig
at T* 50.7 the quantityj6(r) bends abruptly upward at
density r* .0.79, which is also the threshold~marked in
Fig. 4 with an arrow! that was justindependentlyidentified
through the contribution of multiparticlepositional correla-
tions to the configurational entropy of the system. It th
appears that the vanishing of the RMPE of the 2D LJ flu
records the onset of extended angular correlations wh
may eventually be responsible for the emergence of a hex
phase. This consistent, two-fold indication also persists
higher temperatures, but for a more rounded ‘‘knee’’
j6(r) and its expected shift to larger densities.

Also in the HD case, the existence of two distinct r
gimes is ostensibly manifested in the density dependenc
the angular correlation length whose slope shows a ‘‘disc

,

s

FIG. 2. Residual multiparticle entropy plotted as a function of the redu
density: full circles, 2D Lennard-Jones fluid atT* 50.7; full diamonds: 2D
Lennard-Jones fluid atT* 51; open circles: hard discs; squares: hard c
ottes~Ref. 33!. The lines are interpolating spline functions. An arrow ide
tifies the random sequential addition~RSA! threshold of hard discs~Ref.
39!. The inset shows the excess~solid line! and pair entropy~dotted line! of
hard discs also plotted as a function of the reduced density. The cross
undergone by the two curves corresponds to the zero-RMPE condition.
density behavior of the above quantities in the LJ fluid is analogous to
shown in the inset for hard discs.
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tinuity’’ at a density close to 0.86~see also Ref. 34!. How-
ever, at variance with the LJ fluid, the RMPE of hard dis
vanishes at a density (r* .0.83) which slightly anticipates
the sharp rise ofj6(r). Indeed, the buildup of extended a
gular correlations in the system is made possible by so
precursory structural phenomena. More specifically, we re
to the pairing of disclinations to form dislocations and, co
textually, to the binding of dislocation pairs to form ‘‘rings,
a process that is invoked by the KTHNY theory to expla
the formation of the solid phase. An analysis of point defe
that are observed in a dense fluid of hard calottes shows
the fraction of rings increases sharply atr* .0.83 at the
expense of isolated disclinations.35 This conclusion can also
be safely extended to the HD fluid, since any ‘‘spuriou
effect originated by the finite curvature of the host surfa
emerges only at larger densities.34,35 This circumstance can
also be visually appreciated through an inspection of Fig
where it is apparent that the data referring to the RMPE
hard calottes distribute smoothly along the curve relative
the HD fluid. The emergence of ordered structures wh
‘‘prepare the stage’’ for the formation of angularly correlat
patterns is also reflected in the RDF of the HD fluid. In fa
just atr* .0.83 we observe that the second maximum of
RDF starts deforming: its shape becomes asymmetrical u
a shoulder appears for densities in the range correspondin

FIG. 3. Orientational correlation functions of the 2D models investigate
the same temperatures and densities as in Fig. 1.
s
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the position of the knee in the angular correlation leng
Such a shoulder eventually evolves into a distinct prepe
located at a characteristic distance of the triangular lat
corresponding to the next-nearest-neighbor coordina
shell, namelyr /a5A3, wherea5s(rCP/r)1/2 is the hex-
agonal lattice constant on a plane andrCP is the HD density
at close packing. This feature had been explicitly observe
2D by Prestipino Giarritta and co-workers,34 and has been
discussed, more recently, in relation to the freezing of ha
core systems.26 Of course, it is not surprising to verify tha
the sprouting of orientational order is accompanied by
appearance, on a local scale, of spatially ordered arra
ments that also become progressively resolved in the R
As to the nature of the information conveyed on this spec
matter by the RMPE, the evidence discussed above cle
shows that this structural indicator monitors the very fi
germination of order which, in a HD fluid, is heralded b
closely related precursory phenomena such as the forma
of rings and of ‘‘minimal’’ clusters of hexagonally ordere
particles. We argue, retrospectively, that in a soft-co
potential model~like the LJ fluid!, these phenomena show u
concurrently with the sharp rise of the angular correlat

t
FIG. 4. Orientational correlation length plotted as a function of the redu
density: top, Lennard-Jones fluid atT* 50.7; center, Lennard-Jones fluid a
T* 51; bottom: hard discs. An arrow marks the density where the resid
multiparticle entropy is found to vanish.
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length at the same density threshold, sensitively recorde
the vanishing of the RMPE.

We close this section with a comment on the positio
rmin , of the dip exhibited byDs(r). Giaquinta and Giunta
diffusely discepted, in their original article on this subjec2

on the significance of the minimum of the RMPE of ha
spheres, and also gave a critical overview of the related
dence on the thermodynamic, structural, and dynamical
havior of the model.36 This evidence consistently leads to th
conclusion that, for densities larger thanrmin , the condition
of the hard-sphere fluid is strongly reminiscent of that
‘‘liquids’’ as originally defined by Bernal, namely ‘‘homo-
geneous, coherent, andessentially irregularassemblages o
molecules containing no crystalline regions or holes la
enough to admit another molecule.’’37 In fact, beyond the
minimum of the RMPE, such holes or cavities substantia
disappear.2 This condition, which at thermodynamic equilib
rium applies only in a statistical sense, also has an intrigu
counterpart in a different framework, such as that provid
by the random sequential addition~RSA! of nonoverlapping
spheres onto a given volume. An RSA experiment is,
definition, irreversible~particles are not allowed to move!
and, thus, is nota priori significant for the properties of th
system at thermodynamic equilibrium.38 In spite of this, Gi-
aquinta and Giunta noted that the saturation density,rRSA, at
which a system of hard spheres becomes jammed becau
other particles can be added, coincides with the position
the minimum inDs(r).2 In 2D, the RSA limit density is:
rRSA.0.696.39 As seen in Fig. 2, this value corresponds
the position of the dip in the RMPE of discs. Summing up
turns out that the change of behavior undergone by
RMPE of hard spherical particles, from a decreasing to
increasing trend when plotted as a function ofr, occurs at a
density which corresponds to the RSA jamming limit both
2D and in 3D. Such a characteristic threshold, that is ma
fested by the model at equilibrium as well as out of equil
rium, marks the limit beyond which cooperative, i.e., intri
sically many-body, effects come into play in determining t
state of the fluid.

V. THE SCALING OF THE RDF AND THE
HANSEN–VERLET CRITERION

As discussed above, the RMPE of a simple 2D flu
such as HD or LJ particles, records—in a sensitive and r
able way—the onset of extended orientational order in
system. As far as we can say, this indication is present a
way, viz., independently of the existence—in the phase d
gram of the system—of a thermodynamically stable hex
phase which may anticipate the freezing of the fluid. T
nature of this indication is consistent with the evidence ga
ered so far on other model systems in different thermo
namic scenarios: in fact, as discussed in the introduction
all cases investigated the vanishing of the RMPE pinpo
the incipient ordering of the fluid into a more structur
state, not necessarily a crystalline solid. In this respect,
zero-RMPE condition proves to be a rather general tho
indirect ‘‘measure’’ of the degree of spatial order develop
in the system. In order to scrutinize this aspect further,
compared the RDFs of both models for states wh
by
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Ds(r,T)50. However, for the comparison not to be bias
by the ‘‘trivial’’ effect associated with the density, whos
value changes slightly from one system to the other, we
caled the distances by referring them to theaveragesepara-
tion between neighboring particles which is roughly prop
tional to r21/2. As is seen from Fig. 5, where we plotted th
RDF of hard discs and of the LJ fluid at two supercritic
temperatures, the three profiles do substantially coinc
aside from the first coordination shell whose detailed sh
obviously depends on the very nature of the interaction
tential at short distances. Indeed, even for the LJ fluid,
height of the first maximum is slightly different in the tw
states that were singled out. The comparison unambiguo
shows that, after scaling and as long asDs(r,T)50, the
RDFs of the HD and LJ systems can be superimposed f
the first peak onwards. Such a scaling relation is not equ
effective for the OCFs~see Fig. 6!, inasmuch as the ampli
tude of the oscillations is not the same for two correspond
states or systems, within the accuracy registered for
RDFs (;1%). On thebasis of the evidence discussed abo

FIG. 5. Radial distribution functions of the 2D Lennard-Jones and hard-
fluids in a state where the residual multiparticle entropy is found to van
triangles, Lennard-Jones fluid atT* 50.7 andr* 50.79; circles, Lennard-
Jones fluid atT* 51 andr* 50.82; solid line: hard-disc fluid atr* 50.83.
The contact value of the hard-disc RDF is 5.69.

FIG. 6. Orientational correlation functions of the 2D Lennard-Jones
hard-disc fluids in a state where the residual multiparticle entropy is fo
to vanish: dotted line, Lennard-Jones fluid atT* 50.7 andr* 50.79; dashed
line ~intermediate curve!, Lennard-Jones fluid atT* 51 andr* 50.82; solid
line: hard-disc fluid atr* 50.83.
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we argue that the vanishing of the RMPE identifies a~struc-
tural! condition of the fluid that is alike—at least, as far
radial correlations are concerned—for both systems, in
pendently of the specific thermodynamic state as well as
the detailed shape of the interaction potential.

Even in 3D, the RDFs scale, under the zero-RMPE c
dition, in a very accurate way. Figure 7 shows the cor
sponding data for hard spheres as well as for the LJ fluid
three different thermodynamic states~one being supercriti-
cal!. In this case, the interparticle distances were obviou
referred to the quantityr21/3. We recall that in 3D the van
ishing of the RMPE is more directly related to the freezing
the fluid.2,3 This circumstance gives us the possibility of r
considering the celebrated Hansen–Verlet~HV! freezing
criterion18 from a different perspective. The HV rule is
one-phase criterion as is the currently investigated one.
tually, the affinity between the two criteria becomes cle
after observing that the first maximum of the structure fac
results, to a major extent, from the mapping in Fourier sp
of the long-range oscillations exhibited by the RDF in re
space. More specifically, the frequency, damping, and am
tude of these oscillations determine the position, width, a
area ~and, consequently, height! of the first maximum of
S(k).40 Hence, the HV criterion, upon fixing a ‘‘universal’
reference value for the height of the first maximum of t
structure factor in order for freezing to occur, is actua
‘‘tagging’’ a related amplitude of the oscillations observed
the RDF profile. But, the existence of a characteristic spa
profile associated with the incipient ordering of the fluid
precisely what follows from the RMPE criterion through th
scaling of the RDFs in those thermodynamic states where
conditionDs(r,T)50 is satisfied. We conclude that the tw
criteria manifestly rest on a common rationale, namely
identification of a specific condition of the fluid which,a
posteriori, unravels as the underlying stage for the occ
rence, at a macroscopic level, of a thermodynamic transi
into a more ordered state. Note, however, that, at varia
with the ad hocformulation of the HV rule, which rests on
an external input~i.e., the height of the principal maximum

FIG. 7. Radial distribution functions of the 3D Lennard-Jones and ha
sphere fluids in a state where the residual multiparticle entropy is foun
vanish: squares, Lennard-Jones system atT* 50.75 andr* 50.86; triangles,
Lennard-Jones system atT* 51.15 andr* 50.96; circles, Lennard-Jone
system atT* 52.74 and r* 51.11; solid line: hard-sphere fluid atr*
50.94. The contact value of the hard-sphere RDF is 5.65.
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of the structure factor at the transition point!, the vanishing
of the RMPE is an internal, self-contained statement wh
physical content is rather straightforward, in view of the fa
that it more directly hits at the very core of the phenomen
ogy that is being investigated. Last, as already recalled in
introduction, the zero-RMPE ordering criterion is more ge
eral than the HV freezing rule inasmuch as it applieswithout
modificationsto a larger variety of physical situations both
2D and 3D, not just freezing.

VI. SUMMARY AND CONCLUDING REMARKS

In this article we have revisited the structural propert
of simple dense fluids in two dimensions~2D!, in the frame-
work provided by the multiparticle correlation expansion
the configurational entropy.1 In particular, we computed—
using Monte Carlo simulation techniques—a quantity wh
weighs up the contribution of many-body~where ‘‘many’’
stands for triplets, at least! correlations in the overall balanc
of states that are available to the system at given density
temperature. Such a quantity, called residual multipart
entropy~RMPE!, is a sensitive indicator of the ordering ph
nomena which take place in a fluid in rather disparate th
modynamic conditions. In the case of hard discs a
Lennard-Jones particles, the vanishing of the RMPE w
nesses an accelerated growth of bond-angle correlat
which preludes to the freezing of the fluid into a solid pha
The search for structural precursors to the freezing of sim
fluids has brought many authors to introduce one-phase
teria, which aim at locating the transition without resorting
the comparison of the free energies of the coexisting pha
However, aside from other conceptual aspects, most of s
empirical rules fail, in their original 3D formulation, in a
lower dimensionality. In this respect, the zero-RMPE con
tion, used as a preliminary ordering criterion in relation to
variety of thermodynamic phenomena, keeps valid in 3D
well as in 2D.

Finally, the comparison of the long-range profiles of t
radial distribution function in those states where the RM
is zero for each of the two systems, suggests an illumina
correspondence with the freezing criterion formerly intr
duced by Hansen and Verlet.
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